
Sensors 2014, 14, 9227-9246; doi:10.3390/s140509227

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

RESTful Discovery and Eventing for Service Provisioning in

Assisted Living Environments

Jorge Parra
1,
*, M. Anwar Hossain

2
, Aitor Uribarren

1
 and Eduardo Jacob

3

1
 Embedded Systems, IK4-Ikerlan, J.M. Arizmendiarrieta 2, Arrasate-Mondragón 20500, Spain;

E-Mail: auribarren@ikerlan.es
2
 College of Computer and Information Sciences, King Saud University, PO Box 51178,

Riyadh 11543, Saudi Arabia; E-Mail: mahossain@ksu.edu.sa
3
 Communications Engineering Department, University of the Basque Country (UPV-EHU),

Alda. Urquijo s/n, Bilbao 48013, Spain; E-Mail: Eduardo.Jacob@ehu.es

* Author to whom correspondence should be addressed; E-Mail: jparra@ikerlan.es;

Tel.: +34-943-712-400; Fax: +34-943-796-944.

Received: 1 April 2014; in revised form: 18 May 2014 / Accepted: 20 May 2014 /

Published: 23 May 2014

Abstract: Service provisioning in assisted living environments faces distinct challenges

due to the heterogeneity of networks, access technology, and sensing/actuation devices in

such an environment. Existing solutions, such as SOAP-based web services, can

interconnect heterogeneous devices and services, and can be published, discovered and

invoked dynamically. However, it is considered heavier than what is required in the smart

environment-like context and hence suffers from performance degradation. Alternatively,

REpresentational State Transfer (REST) has gained much attention from the community

and is considered as a lighter and cleaner technology compared to the SOAP-based web

services. Since it is simple to publish and use a RESTful web service, more and more service

providers are moving toward REST-based solutions, which promote a resource-centric

conceptualization as opposed to a service-centric conceptualization. Despite such benefits

of REST, the dynamic discovery and eventing of RESTful services are yet considered

a major hurdle to utilization of the full potential of REST-based approaches. In this paper,

we address this issue, by providing a RESTful discovery and eventing specification and

demonstrate it in an assisted living healthcare scenario. We envisage that through this

approach, the service provisioning in ambient assisted living or other smart environment

settings will be more efficient, timely, and less resource-intensive.

OPEN ACCESS

Sensors 2014, 14 9228

Keywords: REST; middleware; discovery; eventing; health monitoring

1. Introduction

Ambient Assisted Living (AAL) environments are electronically augmented surroundings with

sensor and actuator devices, and are aware of the presence of people to provide them timely and

relevant services for better health and wellness support [1]. With the increase of the elderly population,

more and more of them are being placed in these AAL environments to receive caregiver assistance in

activities of daily living (ADL) and health monitoring. Nowadays, it is common in AAL facilities that

there are several health care devices and sensors with varying level of computational and networking

capabilities. As a result, it is possible to interconnect these devices in order to realize some distributed

and collaborative applications for better healthcare support in AAL environments, however, service

provisioning in such environments faces distinct challenges due to the heterogeneity of networks,

access technology, and sensing/actuation devices.

Several approaches and technologies have been made available in order to address the above

challenges, such as OSGi [2], Web Services [3], UPnP [4] and others. Among these, web services have

gained much popularity for developing interoperable systems and applications. However, this solution

is considered heavier than what is required in the smart environment-like context and hence suffers

from performance degradation.

As an alternative, REST, which is considered as a lighter and cleaner technology compared to the

SOAP-based web services, has gained much attention from the community. Besides, it is simple to

publish and use a RESTful web service. As a result, more and more service providers are moving

toward REST-based solutions, which promote a resource-centric model compared to a service-centric

model. However, an adequate dynamic service discovery for RESTful web services is still a challenge [5].

For AAL, it is important to work on this challenge because the addition or removal of a new sensor or

service needs to be propagated dynamically to all the other entities so that they can adjust their

behavior. Another challenge comes with this discovery mechanism, which is the eventing (event

management) because it is also an essential feature in a sensory environment. Event management

enables engagement and notifications among existing services for supporting functional collaboration

and composition. This paper essentially addresses the above two challenges.

This work focuses on specifying a lightweight middleware approach based on REST for enabling

dynamic discovery and event management of networked resources. More specifically, it defines

a mechanism to dynamically discover sensor and actuator devices and exchange notifications among

them following the REST principles. Such a middleware is suitable for service provisioning in AAL

because it simplifies the development of health and wellness applications on top it.

The remainder of this paper is organized as follows: in Section 2 we comment on some related

literature. Section 3 elaborates on the proposed middleware highlighting the details of the discovery

and eventing mechanism. Then, Section 4 evaluates the proposed solution and provides implementation

details. Finally, Section 5 concludes the paper with a note on some future work directions.

Sensors 2014, 14 9229

2. Related Work

This section briefly comments on some related literature that studies the dynamic service provisioning

issue using different mechanisms, such as OSGi, DPWS and UPnP. Some of the earlier works that

motivate the use of REST to interconnect devices are [6–8]. The authors in [6] describe the data and

services as resources like what REST promotes. The work in [7] focuses on the discovery mechanism,

which is described to be based on a resource repository (centralized). Sensors and actuators advertise

themselves to this repository using the ATOM protocol. The repository also accepts queries from

potential clients of the resources. The authors in [8] propose a systematic implementation of the

RESTful constraints in order to expose the real-world data and functionality on the web through REST

interface. The authors also state the challenge underlying the dynamic discovery for RESTful resources.

The work in [2] is a demonstration of a home care environment, which is based on the OSGi

framework. This provides a platform-centric approach such that the devices and sensors are all

connected to an OSGi gateway, where the application layer acts as a centralized controller to invoke

and/or compose different services for the user. The dynamic discovery in OSGi is supported by local

lookup service, whereas the current paper proposes RESTful discovery in a distributed dynamic

environment. Although the approach in [2] provides a local solution to expose the devices as services,

it requires external mechanisms such as Web Service, UPnP or REST to intercommunicate among the

different OSGi platforms.

In [9], the authors propose a context sensitive web service search mechanism, adding semantics to

the WSDL descriptions of the services. However they do not address the dynamic capabilities offered

by other WS family of technologies such as WS-Discovery and WS-Eventing, which are comparable

technologies to the proposed solutions given in our paper.

In [10,11], and in our earlier work [3], the authors justify the use of Device Profile for Web

Services (DPWS) for service oriented communications to have dynamic Web Service infrastructures.

Here, the devices can be discovered, described, and subscribed using Web Service-based standard

protocols, such as WS-Discovery and WS-Eventing. However this set of protocols is heavier than

a RESTful approach, which we analyze and show in this paper.

Compared to SOAP/XML Web Service solutions, RESTful architecture has shown its strength [12],

which can be applicable to the device networking domain. REST leverages existing well-known

standards (HTTP, XML, URI, MIME) and the necessary infrastructure has already become pervasive

and is currently available in many networked devices. HTTP clients and servers are available for

all major hardware platforms, and thus, such a lightweight infrastructure can be incorporated to

a number of networked devices. Using URIs and hyperlinks, it is possible to discover resources

without a centralized registry or repository approach, and hence, performance can be optimized in

devices with low processing capabilities using lightweight formats for resource representations.

The simplicity and easy-to-understand design guidelines make RESTful architecture suitable to be

applied in consumer device domain. Furthermore, RESTful architectures are more scalable than

the well-known Service Oriented Architectures (SOA) due to the uniform interface (e.g., GET, POST,

PUT, DELETE). Interaction with SOA services requires understanding both data and service interface

contract, while in REST only the data contract must be understood because the interface is uniform

Sensors 2014, 14 9230

for all the services. Furthermore, HTTP support for data types in Accept and Content-Type HTTP

headers also helps with scalability [13].

The DIGIHOME middleware platform is proposed in [14] in order to support the integration of

pervasive environment devices. The integration of heterogeneous devices is based on REST principles;

however, the dynamic discovery of resources in this middleware is dependent on UPnP and Service

Location Protocol (SLP). In contrast, we use the RESTful approach for service discovery and eventing.

There have been some efforts for standardizing AAL infrastructures such as the UniversAAL

open platform [15] and Continua Alliance [16], which works on enabling complete health care and

fitness systems, and focuses on achieving interoperability among health care companies and devices.

Nevertheless, a recent survey of RESTful web services for service provisioning in next-generation

networks [5] identified the potential of RESTful web services for interconnecting heterogeneous

devices and services. However, the authors also iterated that no appropriate dynamic service publication

and discovery platform for REST has been defined yet. In this paper, we address this problem and

propose a solution for it.

3. RESTful Approach for Discovery and Eventing

3.1. REST Basics and Potentials

REST is an architectural style, outlined and proposed by Fielding, which defines four design

principles for distributed hypermedia systems: (P1) unique identification of resources; (P2) uniform

interface to manipulate resources through representations; (P3) self-descriptive messages; and (P4)

hypermedia as the engine of application state [17]. The modern web is one instance of a REST-style

architecture and can be used to briefly explain the above four principles. They essentially define

a resource oriented abstraction where, everything in the web is a resource that could be uniquely

addressed, and could be accessed using a uniform interface.

For example, ―http://www.mdpi.com/journal/sensors/special_issues/aal‖ is an URI that identifies

and addresses a resource on the web (P1) and its representation is an HTML document, which can be

retrieved by means of an HTTP GET request (P2). This request message includes all the required

information to get the resource representation in the URI and in the HTTP headers (e.g., accepted

content-type) and hence, the server does not rely on previous requests (statelessness) to send the

response, which includes HTTP status code and additional HTTP headers along with the resource

representation (P3). The HTML document contains hyperlinks to other resources, which are used to

guide the client through the application without maintaining any application state in the server (P4).

HTTP servers can host a number of resources uniquely identified by URIs. However, assuming

that resources are related to files in the server file system, is a common misunderstanding (simplified

view of a web server). Resources can represent other entities than that of files and can be generated

dynamically. When a request for a given resource arrives to the HTTP server that is hosting the resources,

it decides how the resource identifier is mapped down to the actual computing entities that implement

the resource [18].

In addition to only GET and POST methods, HTTP/1.1 defines other methods such as DELETE,

PUT, OPTIONS, HEAD, TRACE and CONNECT, each of which has an associated semantics with

Sensors 2014, 14 9231

respect to the target resource and conform the uniform interface in a RESTful architecture. Here,

DELETE may be used to remove the resource identified the URI; PUT may be used to create or

update the resource representation; OPTIONS can be used to obtain the set of methods supported by

the resource; HEAD can be used to retrieve a metadata-only representation of the resource; while

TRACE and CONNECT are very rarely used and have no special interest in RESTful architectures.

Furthermore, HTTP/1.1 also specifies a set of status codes that provides a very rich set of semantics

for the message exchange. For example, a ―200 OK‖ status code indicates a successful HTTP request,

while a ―201 Created‖ status code indicates that the creation request has been fulfilled and resulted in

a new resource being created. Both of these status codes indicate successful actions but have

separate semantics. Similarly, there are other status codes that can be leveraged for relevant purposes.

Beside the status codes, HTTP/1.1 defines the HTTP headers that specify internals and features of

the data exchange, ranging from the accepted or provided content-type to conditional request

expressions based on resource modification date. The combined and intensive use of HTTP methods,

status codes and headers provide a powerful and rich uniform interface for designing RESTful

applications and services [18].

Similar to the web resource representation, REST principles can also be applied to define and

represent networked devices and services and the communications among them. Inherently, a group of

sensors and actuators is a set of distributed resources. Therefore, considering and representing

the devices as REST resources is not a surprising approach. Thus, a sensor such as a weight

scale could be represented as a resource, identified by a URI like ―http://myHome/weight_scale‖. The

measured weight and the current user can also be represented by two other resources identified by

―http://myHome/weight_scale/weight‖ and ―http://myHome/weight_scale/user‖, respectively. So if we

consider the weight resource, sending a GET request to the weight resource should retrieve the last

weight measurement of the weight scale. While, if the objective is to set the user that is using the scale,

a PUT message containing the user identification can be sent to the ―user‖ resource, which will update

the user representation.

3.2. Discovery

3.2.1. Background on Discovery

Discovery protocols specify the rules and behaviors required to advertise and locate services

(e.g., sensors or other devices) in a networked environment. There are typically three use cases in

discovery mechanism as shown in Figure 1a. Services can advertise themselves by broadcasting

messages with their description and location, so that potential clients can be aware of them. Services

can send these advertisements either for announcing their presence (Say hello) or for communicating

their unavailability (Say bye). Additionally, clients (e.g., an application or another service) can search

for target services, by means of broadcasting a query message (Search) to announce their interests

and waiting for replies from matching services. Technologies such as WS-Discovery (DPWS) [19]

and SSDP (UPnP) [20] represent existing discovery specifications that can be applied to networked

environments. This paper introduces a REST based discovery specification.

Sensors 2014, 14 9232

Figure 1b shows the interactions between clients and sensors in the mentioned discovery use cases.

Sensors broadcast a Hello message containing their own information and location (Say hello use case)

to the listening clients. On the other hand, clients can also broadcast messages for querying specific

sensor types (Search use case). The matching sensors will reply to this query request by sending a

unicast message to the client, describing themselves and providing their network location. When a

sensor is no longer available in the network, it broadcasts a Bye message (Say bye use case) to the

network so that all the clients can react accordingly.

Figure 1. Discovery use cases (a) and behavior (b).

3.2.2. Discovery Model Specification

The fundamental of the proposed discovery model is based on defining a list that should contain all

the available services in the network. In order to conceptualize this, we define a virtual resource that

represents the list. The URI of this virtual resource is ―http://224.100.0.1:28888/Resources‖ which

belongs to a multicast group. Any sensor or client application can join in this group and, thus, be aware

of changes in the virtual list of resources. This abstraction that represents a list of available resources is

the basis of the discovery mechanism. When a new sensor comes into the network it is included in the

virtual list, and when an existing sensor leaves the network, it is removed from the list.

It must be remarked that this list does not really exist and is just a virtual artifact defined for

supporting the discovery model. The remainder of this section describes the specific HTTP messages

that must be sent to this virtual resource in order to implement the discovery use cases identified

in Figure 1a in a RESTful way. All the messages to the multicast group are based on HTTP over UDP.

The interactions for sensor advertisement are depicted in Figure 2. Sensors advertise their presence

(Say hello) by sending a multicast PUT message to the virtual ―http://224.100.0.1:28888/Resources‖

resource, describing their own type and location. The figure shows an annotation with a

sample message that illustrates how a weight scale device (type = ―WeightScale‖, location =

sd Interactions for the discov ery use cases

:Client :Sensor

opt query match

[sensor matches the search query]

Hello(sensor_info)

«broadcast»

Search(query)«broadcast»

SearchResponse(sensor_info)

«unicast»

Bye(sensor_info)

«broadcast»

(a)

(b)

uc Discov ery use cases

Client

Search

Say hello

Say bye

Sensor

Sensors 2014, 14 9233

―http://172.16.6.45:21334/Sensors/WeightScale‖) would advertise itself to potential listeners in the

multicast group. For the sake of clarity, the advertised sensor type (WeightScale) is described using

a simple textual description, although more complex types could also be applied. In a similar way,

when the sensor leaves the network (Say bye use case), it sends a multicast DELETE message to

the virtual resource. This message will reach to all the group members indicating the unavailability of

the sensor in the network, so that the group members can react to this change.

Figure 2. Sequence diagram for sensor advertisement.

The interactions required for the ―Search‖ use case are described in Figure 3. A client can search for

a specific sensor type by sending a multicast GET message to the virtual resource, which indicates

the type of the sensor it is interested in. All the sensors that match the request shall reply to it by

sending a unicast message to the client containing the sensor location. This unicast response is sent

using HTTP over UDP. If the client does not specify any type in the GET request, all the sensors in the

network shall reply to this query. The annotations in the sequence diagram show the sample messages

interchanged between a client (who is searching for a ―WeightScale‖) and the matching sensor (which

sends its location URI to the client).

Figure 3. Sequence diagram for client search.

sd Interactions for discov ery adv ertisements

Sensor Client
PUT /Resources?type=WeightScale HTTP/1.1

Host: 224.100.0.1:28888

Resource-URI: http://172.16.6.45:21334/Sensors/WeightScale

DELETE /Resources?type=WeightScale HTTP/1.1

Host: 224.100.0.1:28888

Resource-URI: http://172.16.6.45:21334/Sensors/WeightScale

PUT(type, location)

«multicast»

DELETE(type, location)

«multicast»

sd Interactions for client search

:Client :Sensor
GET /Resources?type=WeightScale HTTP/1.1

Host: 224.100.0.1:28888

HTTP/1.1 204 No content

Location: http://172.16.6.45:21334/Sensors/WeightScale

GET(type)

«multicast»

«unicast»

Sensors 2014, 14 9234

Table 1 contains the specification of the messages we just described. The third column defines

message templates for each use case that must be adjusted by replacing {resource type} and {URI}

with representative value.

Table 1. Message templates for discovery use cases.

Use Case Method Message Template

Say hello PUT

PUT/Resources?type={resource type} HTTP/1.1

Host: 224.100.0.1:28888

Resource-URI: {URI}

Say bye DELETE

DELETE/Resources?type={resource type} HTTP/1.1

Host: 224.100.0.1:28888

Resource-URI: {URI}

Search GET

REQUEST
GET/Resources[?type={resource type}] HTTP/1.1

Host: 224.100.0.1:28888

RESPONSE
HTTP/1.1 204 No content

Location: {URI}

3.3. Eventing

3.3.1. Background on Event Management

Event notification mechanisms are typically based in the observer pattern, whose purpose is the

definition of a one-to-many dependency between objects so that when the base object changes state,

all its dependents are automatically notified. The pattern establishes a simple model to define the

relationships among the participants to achieve the desired publish-subscribe capabilities. In a general

eventing model we can distinguish the following elements: event sources, event listeners, subscriptions

and notifications. Event sources are the event generators that post the event information. Event listeners

have the ability to express interest in an event. Subscriptions represent client interest on events and

are accepted by event sources. Finally, a notification is the message that the event source sends to

the event listener containing the event information. There are several proposals that can be applied to

event notification. WS-Eventing (DPWS) [19] and GENA (UPnP) [20] are two eventing specifications

that can be applied to an AAL environment.

Figure 4a represents the use cases of event management mechanism, where the Client actor

represents ―event listeners‖ and the Sensor actor represents ―event sources‖. Figure 4b shows the high

level interactions between client and sensor for the eventing use cases. Initially (Create Subscription

use case), the client subscribes to listen to some event of the sensor and the sensor replies with the

newly created subscription information (i.e., unique identifier for the subscription and expiration time)

that should be used in further interactions regarding this subscription. Later, any change in sensor data

will be sent (Notify Event use case) to the client. The subscription can be renewed (Renew

subscription use case) in order to listen to events for extended period. Finally can be destroyed when

the client is no longer interested in listening to events (Remove subscription use case) or when the

sensor is not able to notify the changes of its data (Cancel subscription use case). All the described

interaction messages are exchanged using ―unicast‖ mechanism between the communicating parties.

Sensors 2014, 14 9235

Figure 4. Event management use cases (a) and behavior (b).

3.3.2. Proposed RESTful Eventing Model Specification

The proposed RESTful eventing model specification is described in several steps. They are as follows:

Step 1: Identification of resource structure to represent event sources and event listeners

Based on the event management use cases given in Figure 3, the required resource structure to

represent event listeners and event sources is identified. The core of this structure consists of two

resource trees, as depicted in Figure 5, one representing the event source, and the other representing

the event listener. The resource tree structure of the event source represents the public view for the

event listeners, whereas the resource tree structure of the event listener represents the public view for

the event sources.

Event source tree is composed of an abstract ―Publisher‖ resource which contains a ―Subscriptions‖

resource, representing a container for the list of potential subscriptions, each of them being represented

by the ―Subscription‖ resource. A ―Subscription‖ resource consists of a ―ListenerURI‖ resource and an

―Expiration‖ resource.

On the other hand, the event listener tree is composed of an abstract ―Subscriber‖ resource which

can integrate many ―EventListener‖ resources, each of them containing an ―EventInfo‖ resource. A single

―EventListener‖ resource can listen to a single event source. An ―EventInfo‖ resource represents the

event data notified by the event source.

Sensors 2014, 14 9236

The specification and the semantics of the methods (GET, POST, PUT and DELETE) used for the

resources in Figure 5 are detailed in Table 2 (for event source) and Table 3 (for event listener).

The methods within the resource map the interactions required for the identified use cases in the

event management. In these tables, the first column lists all the required resources, second column

refers to representation, third column lists all the supported methods and the fourth column shows the

specific HTTP headers to parameterize the requests and the responses. For the responses in fourth

column, the HTTP status code is shown.

Figure 5. Resource model for event management.

class Resource tree structure for ev ent management

Event listenerEvent source

Resource

Subscription

+ DELETE

Resource

Subscriptions

+ POST

Resource

Publisher

Resource

ListenerURI

+ PUT

+ GET

Resource

Expiration

+ PUT

+ GET

Resource

Ev entListener

+ DELETE

Resource

Ev entInfo

+ GET

+ PUT

Resource

Subscriber

0..*

1

1

1

1

0..*

Sensors 2014, 14 9237

Table 2. Publisher’s resource specification detail.

Resource Representation Method Required Headers

Subscriptions None

POST

Creates a new

subscription

REQUEST

Host: {Host domain info}

Listener: {URI}

Expiration: {Seconds}

Content-Length: 0

RESPONSE

204 No content
Location: {URN}

Subscription URN

DELETE

Removes

a subscription

REQUEST Host: {Host domain info}

RESP ONSE

205 Reset content

ListenerURI URI

PUT

Updates the

listener URI

REQUEST

Host: {Host domain info}

Content-Type: text/plain

Content-Length: {length}

RESPONSE

204 No content

GET

Obtains the

listener URI

REQUEST Host: {Host domain info}

RESPONSE

200 Ok

Content-Type: text/plain

Content-Length: {length}

Expiration
Number of

seconds

PUT

Updates the

expiration time

REQUEST

Host: {Host domain info}

Content-Type: text/plain

Content-Length: {length}

RESPONSE

204 No content

GET

Obtains the

remaining

expiration time

REQUEST Host: {Host domain info}

RESPONSE

200 Ok

Content-Type: text/plain

Content-Length: {length}

Table 3. Subscriber’s resource specification detail.

Resource Representation Method Required Headers

EventListener None

DELETE

Cancels

a subscription

REQUEST Host: {Host domain info}

RESPONSE

205 Reset content
Location: {URN}

EventInfo Event data

PUT

Notifies an

event

REQUEST

Host: {Host domain info}

Content-Type: {content-type}

Content-Length: {length}

RESPONSE

204 No content

GET

Obtains the

last event

REQUEST Host: {Host domain info}

RESPONSE

200 Ok

Host: {Host domain info}

Content-Type: {content-type}

Content-Length: {length}

Sensors 2014, 14 9238

Step 2: Resource tree instantiation for sample event source and event listener

Figure 6 shows the resource tree for a sample healthcare device (a weight scale) that has some data

whose changes could be of interest to potential listeners. The main resource (WeightScale) represents

the device that has two attributes (represented by resources as well), such as the ―Location‖ and

―Weight‖. Some of these attributes can have events, adopting the Publisher role. It must be noted that

this role is not taken by the ―WeightScale‖ resource, but by the ―Weight‖ resource, because the events

shall be raised on changes of the measured weight, which is the representation of this resource (e.g.,

69.2 kg). Thus, the corresponding ―Subscriptions‖ resource shall belong to the ―Weight‖ resource, not

to the ―WeightScale‖ resource. It should be clear from this figure, that the ―Weight‖ resource is an

instantiation of the abstract ―Publisher‖ resource in Figure 5, and that two different listeners represented

by the corresponding ―Subscription‖ resources are subscribed to the ―Weight‖ of the scale.

The URIs and representations of the relevant resources are also annotated in Figure 6. For the sake

of simplicity, in this example, we are not considering complex representations of the resources (e.g.,

XML, JSON, etc.) but just a simple text/plain content type.

Figure 6. Resource tree for a weight scale with annotations for URI and representations.

In a similar way, Figure 7 shows an example of the resource tree that a healthcare monitor

application (event listener) would expose in order to receive notifications from the corresponding

sensors (in this case, a weight scale and a blood pressure monitor). The ―HealthcareMonitor‖ resource

is the root of the subscriber application, containing multiple event listener resources. Thus, the

―WeightListener‖ and ―BloodPressureListener‖ resources are instances of the EventListener class

shown in Figure 5, with their corresponding ―EventInfo‖ child resource, which represents each specific

event data. Again, simple text/plain types have been used for event data.

object Example resource structure for ev ent source

Subscriptions :
Subscriptions

Subscription :
Subscription

Expiration :
Expiration

ListenerURI :
ListenerURI

WeightScale

Weight :
Publisher

Subscription :
Subscription

Expiration :
Expiration

ListenerURI :
ListenerURI

Location

URI: http://xxx/WeightScale/Weight

Representation: 69.2
URI: http://xxx/WeightScale/Weight/Subscriptions

URI: http://xxx/WeightScale

URI: http://xxx/WeightScale/Weight/Subscriptions/FFA4-A112

URI: http://xxx/WeightScale/Weight/Subscriptions/FFA4-A112/Expiration

Representation: 1332

URI: http://xxx/WeightScale/Weight/Subscriptions/FFA4-A112/NotifierURI

Representation: http://yyy/HealthcareMonitor/WeightListener

URI: http://xxx/WeightScale/Weight/Subscriptions/11A5-76EE

URI: http://xxx/WeightScale/Location

Representation: bathroom

Sensors 2014, 14 9239

Figure 7. Resource tree for a healthcare monitor with annotations for URI and representations.

Step 3: Interactions with resources of event source

Figure 8 depicts the interactions initiated by a client that occur in the subscription management process.

Any client who is interested in getting a notification when a new weight measurement is taken,

shall POST a message to the ―Subscriptions‖ resource of the ―Weight‖ resource. This message shall

include both the URI where the sensor should send the notifications for the client to listen (e.g.,

http://yyy/WeightListener) and the desired expiration time (3600 s), using specific HTTP headers.

On the reception of this request, the sensor shall create a new unique Subscription resource for this

specific client, storing the listener URI and the expiration time creating the corresponding resources.

In the reply for the subscription request, the sensor shall include the name of the new subscription

(e.g., FFA4-A112) using the Location HTTP header, thus allowing the client to identify the URI of

the dynamically created resource. This URI will be used by the client and the sensor in further interactions

related to the subscription management (renewing, removing or cancelling the subscription).

Whenever the clients decides to renew the subscription, it shall update the representation of the

expiration time, by means of sending a PUT request to its subscription’s Expiration resource,

which will be replied by the sensor acknowledging the update.

If the client decides to remove the subscription because it is no longer interested in receiving

updates of the weight measurement, it shall simply send a DELETE request to the Subscription

resource, indicating to the sensor that this subscription is no longer required. The sensor shall

reply accordingly.

Step 4: Interactions with resources of event listener

In Figure 9, the interactions that occur between a sensor and the resources of an event listener resources.

Whenever a sensor data changes, the sensor will send a PUT message to the specific ―EventInfo‖

resource of all the event listeners, containing the specific representation of the event data. A simplistic

representation of the event data is shown in the annotation of this diagram (a basic text/plain type)

for the sake of clarity, though more complex representations could be used. Finally, in the case

object Example resource tree for ev ent listener

HealthcareMonitor

WeightListener :
EventListener

BloodPressureListener :
EventListener

EventInfo :EventInfo EventInfo :EventInfo

URI: http://yyy/HealthcareMonitor

URI: http://yyy/HealthcareMonitor/WeightListener
URI: http://yyy/HealthcareMonitor/BloodPressureListener

URI: http://yyy/HealthcareMonitor/WeightListener/EventInfo

Representation: 76,3

URI: http://yyy/HealthcareMonitor/BllodPressureListener/EventInfo

Representation: 14.3, 9.1

Sensors 2014, 14 9240

the sensor can no longer support the subscription, it will notify this to the subscriber) sending

a DELETE message to the specific ―EventListener‖ resource of the client.

Figure 8. Interactions between resources of event source.

Figure 9. Interactions with resources of event listener.

sd Client actions

:Client

:Subscriptions

:Subscription

:Expiration

:ListenerURI

POST /WeightScale/Weight/Subscriptions HTTP/1.1

Host: 172.16.6.45:21334

Listener: http://yyy/WeightListener

Expiration: 3600

Content-Length: 0

HTTP/1.1 204 No Content

Location: FFA4-A112

PUT /Sensors/Weight/Subscriptions/FFA4-A112/Expiration HTTP/1.1

Host: 172.16.6.45:21334

Content-Length: 4

1500

HTTP/1.1 204 No Content

HTTP/1.1 205 Reset Content
DELETE /Sensors/Weight/Subscriptions/FFA4-A112 HTTP/1.1

Host: 172.16.6.45:21334

POST()

PUT()

DELETE()

sd Actions initiated by sensors

:Sensor

:EventInfo :EventListener

PUT /WeightListener/EventInfo HTTP/1.1

Host: 172.16.6.23:8888

Content-Length: 4

73.2

HTTP/1.1 204 No Content DELETE /WeightListener HTTP/1.1

Host: 172.16.6.23:8888

HTTP/1.1 205 Reset Content

loop Notify ev ents

opt Cancel subscription

PUT()

DELETE()

Sensors 2014, 14 9241

4. Evaluation

The goal of this section is to evaluate and demonstrate the proposed approach. To do so, we first

compare the RESTful solution with two other dominant technologies currently being used for

discovery and eventing. We then show the suitability of the proposed solution by implementing it in

the context of an AAL healthcare scenario. In the following we describe these two objectives.

4.1. Comparing REST with DPWS and UPnP

We compare the proposed RESTful approach with DPWS and UPnP in terms of the size of

the messages that are required for dynamic discovery and eventing. The comparison is done based on

the specification of these technologies. We measure the size of each specific message that is required

for the different uses cases identified in discovery and eventing. The efficiency in terms of processing

time needed for message composing, parsing and networking is highly related to the message size.

In the case of discovery, Figure 10 compares the message sizes for Hello, Bye and Search use cases

as they are defined in the three targeted solutions (REST, DPWS, UPnP). The results shown in this

figure are based on single message size for each type, without considering the multiple repetitions that

are mandatory for the multicast messages used in Hello, Bye and Search request messages. Thus, if we

consider the required repetitions, the accumulated message size of the RESTful approach will be much

smaller than the other studied approaches, which demonstrates its lightweightness. In the case of

DPWS, the overhead is due to the use of SOAP and XML format in the message specification. The

main difference between UPnP and REST results comes from the additional description needed to express

the semantics of the Hello and Bye messages. UPnP does not benefit from the semantics of HTTP

methods because the same NOTIFY method is used for both Hello and Bye messages requiring

additional data definition (NTS:ssdp:byebye and NTS:ssdp:alive headers) instead of simply using

PUT (hello) and DELETE (bye) methods.

Figure 10. Comparison of message size (bytes) for discovery use cases.

The same analysis has been done for the messages involved in the eventing use cases, as shown in

Figure 11, and it’s visible that the messages in the RESTful approach are smaller in size than the

messages used in other solutions. All the messages are unicast, without no need of repetitions, and we

Sensors 2014, 14 9242

have considered REQUEST, RESPONSE+ for correct responses and RESPONSE- for faulty responses

(generated when sending incorrect requests). SOAP and XML are still an issue for DPWS, while

REST and UPnP have similar message size except in the case of Notify Event. In this case, UPnP

specifies the using of a very constrained XML schema for event data representation (only the single

value) and further, can not use more efficient formats such as plain text or JSON.

Figure 11. Comparison of message size (bytes) for eventing use cases.

Overall, the RESTful approach is lightweight and more efficient that the others because due to

the smaller message size, as we demonstrated, the message composing, parsing and networking takes

less time.

4.2. Implementation Infrastructure of Prototype

In order to investigate the suitability of the proposed approach in AAL, this section describes

a prototype pervasive application for healthcare support in a home environment that has been implemented

using the RESTful discovery and eventing specifications, proposed in this paper. Nowadays several

health monitoring sensors are available in the market with heterogeneous networking capabilities.

We took a set of representative sensors and embedded them in an AAL environment in order to capture

different physiological parameters like blood pressure, O2 saturation, weight, temperature, glycemia,

cholesterol, electrocardiogram (ECG) and spirometry, as shown in Figure 12.

This prototype realizes a monitoring system that seamlessly captures and stores data from a set

of heterogeneous health sensors as mentioned before, displaying elaborated health information to users

by means of a front-end application, running in a SmartTV and a tablet.

The prototype demonstrates a distributed architectural deployment of the healthcare application

as shown in Figure 13. The sensors layer is composed of a number of devices with heterogeneous

communication capabilities and device-dependent protocols such as USB and Bluetooth serial

communication profiles.

Sensors 2014, 14 9243

Figure 12. Healthcare sensors used in the AAL environment.

Figure 13. Demonstrating application deployment.

It is possible that a sensor device implements the proposed mechanism in order to support dynamic

discovery and eventing policies in a RESTful way, however none of the sensors used in this prototype

had those capabilities. Without this support, the devices need to be integrated using a different

mechanism, such as the one we adopted with the help of several plug computers running Debian/Linux

operating system. We then built a Java prototype implementation of the RESTful service discovery and

eventing model which acts as a gateway from the device proprietary protocols to a Wi-Fi network,

exposing all the health devices as REST resources that can be discovered and subscribed by any

potential application.

The Application layer in the figure is developed as a Java based user interface, that tracks and

monitors data coming from the available sensors, running in Android home devices (SmartTV and

tablet). The application is built on top of a homogeneous middleware, a prototype of the proposed

approach, which offers discovery and eventing mechanisms, thereby isolating the application from the

variability of underlying device protocols. The specific set of hardware components used for this

prototype implementation is listed in Table 4.

Sensors 2014, 14 9244

Table 4. Integrated devices for healthcare application.

Devices Model

Blood pressure Taidoc TD-3132

O2 Saturation DigiO2 HemOxi POM-101

Weight Tanita BC-590BT

Glycemia Taidoc TD-4255

ECG Taidoc TD-2202

Spirometry Vitalograph copd-6

Temperature Taidoc TD-1261A

Plug computer Globalscale GuruPlug Server

SmartTV Sony NSZ-GS7

Tablet PC Archos 80 G9

5. Conclusions

This paper proposed a RESTful discovery and eventing specification, which is a lightweight and

efficient approach compared to existing service discovery and event management solutions. To the

best of our knowledge this is the first RESTful approach in this direction. This work is described by

specifying the RESTful resource tree structure, resource tree instantiation for sample event source and

event listener, and interactions between resources of event source and event listener for both discovery

and eventing mechanisms. We evaluated the proposed approach with existing ones as per specification

and found that the RESTful approach needs minimal message size for service discovery and eventing,

which is very promising. We implemented the proposed technique in the context of an assisted living

healthcare scenario for connecting heterogeneous sensor and actuator devices in order to obtain real-time

health data from the inhabitants for better health monitoring. The proposed approach described in this

paper would be a suitable solution for many pervasive sensor-rich environments for dynamic service

provisioning. Therefore, in the future we plan to demonstrate the applicability of our approach in

various pervasive applications domain, and to study the requirements for safety and security that come

together with the use of health related data.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University

for funding this work through the research group project No. RGP-VPP-049.

Author Contributions

Jorge Parra and M. Anwar Hossain designed the proposed solution and were responsible for the

manuscript compilation and edition. Aitor Uribarren developed the prototype implementation and

carried out the experimental analysis. Eduardo Jacob assessed the results and provided critical reviews

and suggestions during the research work. Jorge Parra coordinated the research project.

Conflicts of Interest

The authors declare no conflict of interest.

Sensors 2014, 14 9245

References

1. Ruyter, B.D.; Pelgrim, E. Ambient assisted-living research in carelab. Interactions 2007, 14,

30–33.

2. Filippo Palumbo, J.U.; Stimec, A.; Furfari, F.; Karlsson, L.; Coradeschi, S. Sensor network

infrastructure for a home care monitoring system. Sensors 2014, 14, 3833–3860.

3. Parra, J.; Hossain, M.A.; Uribarren, A.; Jacob, E.; Saddik, A.E. Flexible smart home architecture

using device profile for web services: A peer-to-peer approach. Int. J. Smart Home 2009, 3,

39–56.

4. Song, H.; Kim, D.; Lee, K.; Sung, J. Upnp-based sensor network management architecture.

In Proceedings of the ICMU Conference, Osaka, Japan, 13–15 April 2005.

5. Belqasmi, F.; Glitho, R.; Fu, C. Restful web services for service provisioning in next-generation

networks: A survey. IEEE Commun. Mag. 2011, 49, 66–73.

6. Drytkiewicz, W.; Radusch, I.; Arbanowski, S.; Popescu-Zeletin, R. Prest: A rest-based protocol

for pervasive systems. In Proceedings of the 2004 IEEE International Conference on Mobile

Ad-hoc and Sensor Systems, Fort Lauderdale, FL, USA, 25–27 October 2004; pp. 340–348.

7. Stirbu, V. Towards a restful plug and play experience in the web of things. In Proceedings of the

IEEE International Conference on Semantic Computing, Santa Clara, CA, USA, 4–7 August

2008; pp. 512–517.

8. Guinard, D.; Trifa, V.; Wilde, E. A resource oriented architecture for the web of things.

In Proceedings of the Internet of Things (IOT), Tokyo, Japan, 29 November–1 December 2010;

pp. 1–8.

9. Da Silva, V.G.; Cirilo, C.E.; do Prado, A.F.; de Souza, W.L. An approach to dynamic discovery

of context-sensitive web services. In Proceedings of the Eighth International Conference on

Internet and Web Applications and Services, Rome, Italy, 23–28 June 2013.

10. Jammes, F.; Mensch, A.; Smit, H. Service-oriented device communications using the devices

profile for web services. In Proceedings of the 3rd International Workshop on Middleware for

Pervasive and Ad-Hoc Computing, Kauai Island, HI, USA, 8–12 March 2005; pp. 1–8.

11. Zeeb, E.; Bobek, A.; Bohn, H.; Golatowski, F. Lessons learned from implementing the devices

profile for web services. In Proceedings of the Digital EcoSystems and Technologies Conference,

(DEST’07Inaugural IEEE-IES), Cairns, Australia, 21–23 February 2007; pp. 229–232.

12. Pautasso, C.; Zimmermann, O.; Leymann, F. Restful web services vs. ―Big‖ web services:

Making the right architectural decision. In Proceedings of the 17th International Conference,

Beijing, China, 21–25 April 2008; pp. 805–814.

13. Vinoski, S. Rest eye for the soa guy. IEEE Internet Comput. 2007, 11, 82–84.

14. Romero, D.; Hermosillo, G.; Taherkordi, A.; Nzekwa, R.; Rouvoy, R.; Eliassen, F. Restful Integration

of Heterogeneous Devices in Pervasive Environments. In Distributed Applications and Interoperable

Systems; Springer: Berlin, Germany, 2010; pp. 1–14.

15. Hanke, S.; Mayer, C.; Hoeftberger, O.; Boos, H.; Wichert, R.; Tazari, M.-R.; Wolf, P.; Furfari, F.

UniversAAL—An Open and Consolidated AAL Platform. In Ambient Assisted Living; Springer:

Berlin, Germany, 2011; pp. 127–140.

Sensors 2014, 14 9246

16. Carroll, R.; Cnossen, R.; Schnell, M.; Simons, D. Continua: An interoperable personal healthcare

ecosystem. IEEE Pervasive Comput. 2007, 6, 90–94.

17. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures.

Ph.D. Thesis, University of California, Irvine, CA, USA, 2000.

18. Vinoski, S. Restful web services development checklist. IEEE Internet Comput. 2008, 12, 94–96.

19. Devices Profile for Web Services (DPWS). Available online: http://www.docs.Oasis-open.Org/

ws-dd/ns/dpws/2009/01 (accessed on 22 May 2014).

20. Universal Plug and Play (UPnP). Available online: http://www.Upnp.Org/ (accessed on 22

May 2014).

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

