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Abstract: With characteristics of low-cost and easy deployment, the distributed wireless 

pyroelectric infrared sensor network has attracted extensive interest, which aims to make it 

an alternate infrared video sensor in thermal biometric applications for tracking and 

identifying human targets. In these applications, effectively processing signals collected 

from sensors and extracting the features of different human targets has become crucial. 

This paper proposes the application of empirical mode decomposition and the  

Hilbert-Huang transform to extract features of moving human targets both in the time 

domain and the frequency domain. Moreover, the support vector machine is selected as the 

classifier. The experimental results demonstrate that by using this method the identification 

rates of multiple moving human targets are around 90%. 

Keywords: multiple human identification; distributed wireless pyroelectric sensor 

network; empirical mode decomposition; feature extracting 

 

1. Introduction 

The development of modern science and technology has made people’s living environments 

gradually become intelligent and networked. Meanwhile, all sorts of environmental monitoring 

systems [1,2], security systems and intelligent auxiliary systems [3] are increasingly being widely used 

in the home, office, factory or harsh working conditions such as mines. In these applications, the 
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accurate identification of moving human targets is crucial for physical protection and emergency relief, etc. 

Generally, systems for the tracking and recognition of human targets [4] need to collect stable and 

reliable physical characteristics [5] such as fingerprints, iris, voice spectra, facial features, or 

behavioral characteristics such as signatures and gait in order to realize individual identification and 

action tracking based on those characteristics. Traditional video systems [6,7] have been applied in 

many recognition scenarios, however, they mainly identify a person using facial features which are 

greatly affected by many external factors such as lighting, angle or clothes. In addition, they usually 

have high computational overhead and require huge data throughput. Recently, it was found that the 

behavioral characteristics of a human target are independent physical appearances and have strong 

advantages, compared with other biological characteristics, in an ever-changing environment [8]. In a 

distant or crowded scene, however, it is a very complicated problem to identify a human target using 

some behavioral biometric features, whose main reason is closely related to the perception of human 

object form and feature selection. 

In recent years, with the development of the sensor technology, wireless network communication 

technology, distributed inference and learning technology, signal processing technology, the tracking and 

recognition of humans using distributed systems have gradually drawn the attention of researchers [9,10]. 

The behavioral information of a human object can usually be measured by passive or active sensors, 

and some tiny, cheap, spatially distributed sensors nodes with computation and communication 

capabilities can work together to complete complex tasks. Therefore, researchers have attempted to 

combine their virtues and develop distributed sensor networks based on pyroelectric infrared sensor 

nodes in order to realize tracking and recognition of human objects [4,10]. The pyroelectric infrared 

sensor has various advantages [9,11,12]: (1) high capability in detecting infrared radiation; (2) low power 

consumption (about 2 mW) and a small amount of calculation; (3) its performance is independent of 

illumination and has strong robustness to color changes of the background; (4) its angular rate sensitivity 

range is about 0.1 r/s to 3 r/s, which can cover most human walking speeds of t around 2–10 m; (5) it can 

only respond to a moving target; (6) it can obtain a better field of view (FOV) combined with low price 

Fresnel lens arrays. Thus, compared with the traditional video system, using a distributed wireless 

pyroelectric sensor network can provide better spatial coverage and reduce the time and place 

restrictions of system deployment. Meanwhile, the characteristics of the pyroelectric infrared sensor 

make the system have the ability to be operated under any illumination condition, as well as the ability 

to capture the statistical characteristics of the human body temperature [13].  

The major purpose of our study is to establish an effective distributed wireless pyroelectric infrared 

sensor network system in a specific environment. Referring to the work of Hao et al. [4], our system, 

which is shown in Figure 1, consists of four sensor MASKs (as mask sensor module), a wireless 

gateway and a host computer. Each MASK consists of sixteen pyroelectirc infrared sensor nodes. Each 

sensor node is covered by a Fresnel lens which constitutes a coded network. Once a human target 

moves in the network, the infrared radiation of the human target can be captured and transformed into 

an electrical signal which can be transmitted to the host computer to be further processed through the 

wireless gateway after preliminary noise reduction and data compression.  

  



Sensors 2014, 14 7211 

 

 

Figure 1. Setup of the distributed wireless pyroelectric infrared sensor system. 

 

However, there are several crucial problems, as follows, need much attention before using a 

distributed wireless pyroelectric infrared sensor network in the process of identification of moving 

human targets: 

(1) The effective coding of the field of view (FOV) of the sensor network in order to capture the 

infrared radiation of moving human targets for implementation of the subsequent algorithm. 

(2) The effective data fused by multiple channel signals which are collected from four sensor MASKs. 

(3) Choosing the appropriate type and number of eigenvalues to establish a target identification model. 

(4) Choosing an appropriate classifier and matching the eigenvalues of human targets to the  

model template.  

In this paper, we propose a novel way that extracts the instantaneous amplitude and instantaneous 

frequency of moving human target as eigenvalues by using empirical mode decomposition (EMD) and 

Hilbert-Huang transform (HHT) algorithms on the basis of an established distributed wireless 

pyroelectric infrared sensor network. After dimensional reduction, an identification model using a 

support vector machine (SVM) classifier was developed by training selected eigenvalues. Then, human 

targets can be identified by matching their subsequent captured signals to the previous model. 

The rest of this paper is organized as follows: Section 2 reviews related works. Section 3 describes 

the distributed wireless pyroelectric infrared sensor network and system deployment. Section 4 shows 

the problem and proposed approaches. Section 5 shows experimental results and discussion. Section 6 

concludes the paper. 

  



Sensors 2014, 14 7212 

 

 

2. Related Works 

Although research about identification of human targets by applying pyroelectric infrared sensor is 

insufficient, many meaningful achievements have been obtained recently. In [14], Hao presented a 

kind of wireless pyroelectric infrared sensor tracking system composed of three modules, namely: 

sensor modules, synchronization and error filtering module and data fusion module. The pyroelectric 

infrared sensor module in this system has the ability to detect the angular displacement of moving 

human targets in the network. Combined with an adjustable FOV, which is realized by the Fresnel lens 

array, a single human body can be tracked successfully in the system. In addition, the paper also 

presents the problem of processing balance between light and electrical signal, the distribution of 

calculating load among the three types of module, and the tradeoff between performance and cost.  

In [15], Fang presented a real time human target recognition system using a pyroelectric infrared 

sensor array and the hidden Markov chain model (HMM). A series of digital sequences, which 

represented the characteristics of moving human targets, were generated from an array of pyroelectric 

infrared sensors covered by Fresnal lenses. While the statistical characteristics of moving human 

targets were modeled by training the HMM using the expectation maximization algorithm (EM), 

ultimately, the identifications of the human targets were completed by evaluating the characteristics of 

new data sequences and the trained HMM model under the maximum likelihood rule. Each human 

target, in addition, could be regarded as a distributed infrared heat source. Therefore, some special 

movement habits of an individual can be translated into a kind of unique and statistical label in signal 

space through reasonable sampling to the infrared domain. Fang, in [13], also presented a human 

recognition system based on pyroelectric infrared sensors and proposed an algorithm for motion 

feature representation of human targets by the sensor signal spectrum. The identification process of the 

system includes the training with different levels of velocity and the testing of various registered 

targets. However, the performance of this algorithm was highly dependent on the height of the sensor 

location and the distance to the target. Also, it can only be applied to fixed path scenarios. In [16], 

Zappi pointed out that the signal sensor node is usually used to trigger an alarm to judge the existence 

of moving targets while an array composed of many pyroelectirc infrared sensors has the capability to 

extract more features of moving human targets such as direction, speed and the other characteristics. 

Consequently, they proposed a tracking algorithm with low calculation complexity to distinguish the 

direction and the number of moving human targets. However, its measurement accuracy needs to be 

improved. Afterward, Zappi proposed in [9] another algorithm for sensor data fusion and feature 

extraction to track human targets moving along footpaths and higher tracing precision was obtained. 

At present, there are various researches on algorithms for feature extraction and identification of 

moving human targets, including characterizing the appearance and extracting the features of moving 

human targets by building a spatial-temporal model of walking persons; extracting the features by 

using the image optical flow, etc. In fact, the features of a moving human target contain two 

components which are the structural component and the dynamical component. The structural 

component, which is a static component, is responsible for recording the human body shape 

information such as height and stride, while motion feature information like arm swings, body tilt and 

gait can vividly be represented by the dynamic component. Thus, on the basis of the two types of 
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components, the existing algorithms can be roughly divided into two categories: the methods based on 

statistics (Model-Free) and the methods based on models (Model-Based).  

The methods based on statistics are currently popular recognition algorithms which have been 

widely applied to identify moving human targets. These methods mainly focus on calculating some 

kinetic parameters of a human target from a continuous signal sequence and further completing 

classification and recognition. Due to the high dimensionality of feature data, some dimensionality 

reduction techniques are needed in practical applications. Niyogi proposed a theory that the head and 

feet of a human body have different locomotion patterns in space-time dimensionality so that some 

edge features of moving human targets can be extracted through handling these patterns [17].  

Moreover, a kind of generalized symmetry operator was introduced by Hayfron-Acquah [18]. In order 

to identify moving objects, Sarkar proposed a kind of baseline algorithm in allusion to gait recognition 

of moving human targets [19]. In [20], little extracted the gait features based on a video system and 

calculated the FED vector between the sample set and a complete gait sequence of each frame image, 

and then the moving target could ultimately be recognized by using the HMM model. Huang, in [21], 

presented an algorithm to merge the motion information in both space and time domains into extension 

gait features by increasing regularity analysis. In addition, principal component analysis (PCA) was 

applied to reduce the data dimensions. Overall, due to the independence of the body structure and 

motion characteristics of human targets, those methods based on statistics can reduce computational 

complexity, which is suitable for real-time applications. 

The methods based on models refer to the establishment of some model according to the specific 

structural characteristics of the bodies of different human targets. Therefore, different structures and 

mode of motion determine various established models. The classification and recognition of human 

targets is mainly achieved by comparing the sequence signal to the acquired model. Lee proposed the 

eccentricity parameters of seven interconnected ellipses to model the structure of moving human 

targets [22]. Moreover, Nash fitted the human body by a kind of herringbone model [23]. In [24], 

Wang greatly improved the recognition effect by combining the dynamic characteristics and static 

characteristics which usually represent the shape of a human body. 

3. Sensor Modules and Deployment 

In order to design the wireless network platform based on pyroelectric infrared (PIR) sensors, we 

study the design method for various video sensor platforms [25–27]. Referring to the system which 

was set up by Hao in [4], we built a distributed pyroeletric infrared sensor network with several sensor 

nodes, a wireless gateway and a host computer to detect and identify moving human targets. 

3.1. Sensor Node 

With relatively stable performance, the LiTaO3 film pyroelectric infrared sensor is chosen as the 

detection node in the system. Due to the lower receiving sensitivity of the sensor itself, every signal 

sensor node is covered by a Fresnel lens as shown in Figure 2. It can not only focus the infrared heat 

on the sensor node, but also can increase the angle and detectable distance. This was proved in some 

experiments in which the effective detection range could be increased from 2 m to 12–14 m.  
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Based on the parameters and characteristics of the D205B sensor, we design the sensor node with the 

parameters listed in Table 1. 

Figure 2. A pyroelectric infrared (PIR) sensor node covered by a Fresnel lens. 

 

Table 1. The parameters and characteristics of the D205B sensor. 

Parameters Value 

IR Receiving Electrode 0.7 × 2.4 mm, 4 elements 

Sensitivity ≥4300 V/W 

Detectivity (D*) 1.6 × 108 cm·Hz1/2/W 

Supply Voltage 3–15 V 

Operating Temperature −30–70 °C 

Offset Voltage 0.3–1.2 V 

FOV 150° 

As shown in Figure 3, the original thermal infrared signal of human target can be translated into an 

analog signal through three steps. Firstly, the original human thermal infrared signal will be focused on 

the pyroelectric sensor by using the Fresnel lens. Then, the infrared signal is translated into a weak 

electrical signal by the PIR sensor. Finally, we can get the analog signal after amplifying and filtering 

the weak electrical signal. 

Figure 3. Human thermal infrared signal processing in sensor node. 
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3.2. MASK Module 

The mask sensor module, which is shown in Figure 4, consists of a sensing unit, a processing unit, 

and a communication subsystem. The sensing unit is usually composed of a PIR sensor, amplifier and 

actuator. The original analog signal which is captured by the sensor node is first amplified by the 

amplifier, and then it is converted into digital signal by the analog-to-digital converter (ADC) module 

in the processing unit which is equipped with the STM32 CPU which has embedded 256 kB of flash 
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memory and 48 kB of RAM for programs and data. All the sensing coordination and communication 

tasks are executed by this 32-bit CPU at 72 MHz. The memory subunit can store sensing data for a 

period of time. A communication subsystem interfaces the device to the network, and is composed of a 

transceiver subunit and processing circuit. The processed signal is sent to the wireless gateway by the 

communication subsystem on the basis of the Zigbee protocol in the specified interval. Moreover, the 

whole system is powered by a power unit that may be supported by an energy scavenging unit such as 

solar cells. The physical device is shown in Figure 5. 

Figure 4. The composition module of one sensor MASK. 
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Figure 5. Mask sensor module. 

  

3.3. Gateway Module 

The gateway module is composed by four wireless module units, STM32 processor and gateway 

unit. The human target signals which are detected by each MASK, are all transmitted to the four 

CC1100 wireless modules in the specified interval. Since the four wireless modules have four kinds of 

different channels and connect with the STM32 processor by General Purpose Input/Output (GPIO), 

the STM32 processor can independently process the different data streams from the MASK modules, 

and it can also complete wireless data acquisition at the same time. Moreover, sensed data will be 

transmitted to the host computer through an Ethernet interface for further processing and display. The 
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whole structure and a photo of the wireless gateway module are shown in Figure 6 and Figure 7, 

respectively. The whole system is also powered by a power unit. 

Figure 6. The module composition of the wireless gateway. 
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Figure 7. The wireless gateway module. 

 

3.4. Location of Human Targets  

In order to accurately extract the features of human targets moving in the network, we locate 

moving human targets relying on the feedback from various coded signal of sensor nodes that detect 

the entire network FOV which has been segmented and coded. On account of the fact that the 

pyroelectric infrared sensor is sensitive to certain human body radiation wavelengths, different the 

sensor nodes of the system can capture the heat radiation and translate it into a time-varying signal 

when a human target moves in the detection area [28]. This is achieved in the following ways: 

(1) Distributing the sixteen sensor nodes of each MASK as a fan, which can make the detection 

area cover a certain range. In order to improve precision, the detection area is coded and 

overlap of the visible range between adjacent sensor nodes is allowed.  

(2) Distributing the calculation workload between the MASK, the wireless gateway and the host 

computer. We build the system according to the process of signal filtering, threshold value 

judgment, error detection and path tracking. 

(3) Balancing the performance and cost of the system and using fast Fourier transform (FFT) as the 

filtering algorithm to process signals.  
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To facilitate location of human targets, the MASK in the system is designed as two-column and 

consists of sixteen sensor nodes. Two-column nodes give two separable detection ranges of 70°. Each 

test scope contains seven different perceptual visibility detection areas. Thus, the average angular 

resolution of sensor MASK module is 10°. Its structure is shown in Figure 8. This kind of visible 

design also makes it convenient to realize data association with human targets. 

Figure 8. Coded mask sensor module.  

 

Figure 9 shows the division of the detection area of the system. The outward fan area is divided into 

14 sub areas which are numbered 1 to 14, respectively. The sensor nodes of each MASK are also 

numbered 1 to 14; moreover, each sensor node has a corresponding binary value of 1 with output and  

0 without output. Because the target crosses different numbered areas, different binaries will be 

obtained when a human target moves in the sensor network. We can simply locate the human target by 

simply associating the number with the actual physical coordinates. However, this method can be 

achieved only for different directions of one fan area. In order to locate the human target in the whole 

sensor network, we try to apply the collaboration of multiple MASKs to obtain more precise location 

information. As shown in Figure 10, there are some overlapping areas, which can be numbered 1 to 4, 

at the adjacent detection range of MASKs. Hence, the human target can be detected by two sensor 

MASKs simultaneously when it moves in those adjacent ranges, so more precise coordinate 

information can be calculated according to the relation between the locations of two MASK sensors 

themselves and the angle of the detection area. 

Figure 9. Division of the detection area of the system. 
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Figure 10. Field of view (FOV) of the whole sensor network. 
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4. Problem and Proposed Approaches 

In this section, we present the multiple human targets identification problem in terms of a sensor 

observation model. The process of this problem can be formulated as five parts: data fusion, feature 

extraction, data learning, hypothesis testing and final identification. 

4.1. Empirical Mode Decomposition  

The idea of the empirical mode decomposition (EMD) algorithm was first proposed and developed 

by Huang and coworkers [29]. This algorithm is a self-adaptive signal processing method, which is 

very suitable for application in non-stationary signal processing scenarios. By decomposing the data 

first into some intrinsic mode functions (IMFs), it can solve those problems involving non-stationary 

data that the Hilbert transform cannot be used on. An IMF represents a kind of oscillatory mode 

embedded in the signal and every single IMF should satisfy two conditions: firstly, the number of 

extreme and zero-crossing must either be equal or differ at most by only one among the whole dataset; 

secondly, the mean value of the envelope is defined by the local maxima and the local minima must be 

zero at any point in dataset. The processing of a signal X(t) using the EMD algorithm can be 

represented as follows: 

Initialize ( ) ( )ir t X t , 1i  ; 

Initialize ( ) ( ), 1ik ih t r t k  ; 

Calculate the upper and lower envelopes of ( )ikh t  by cubic spline interpolation in its local maxima 

and minima. 

Calculate the mean value ( )ikm t  of the upper envelop and lower envelop, then let 

( 1) ( ) ( ) ( )i k ik ikh t h t m t   . 

If 
( 1) ( )i kh t

 satisfies the two conditions and becomes an IMF, then set 
( 1)( ) ( )i i kc t h t . Else let 

1k k   and repeat the steps above. 

Calculate the residue 1( ) ( ) ( )i i ir t r t c t   . If 1( )ir t  contains at least two extreme, it is treated as 

input to derive the next IMF. 

Else the process is finished and 1( )ir t  is denoted as the final residue 
fr . 

Ultimately, the original signal ( )X t  can be decomposed into a set of IMFs ( )ic t  and a residue 
fr  as: 
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( ) ( )
j

i f

i

X t c t r


   (1)  

IMFs are determined by the signal itself rather than pre-determined functions so the EMD 

algorithm is a self-adaptive signal process. 

4.2. Acquisition and Preliminary Processing of Signal  

Generally, there are three data fusion methods for the signal which was acquired from multiple sensors 

of the same type working together. Namely, sampling fusion, feature fusion and decision fusion.  

Theoretically, when one or multiple human targets move in the detection areas, for N MASKs, each 

having m pyroelectric infrared sensor nodes, the ensemble data of the system can be denoted as 

1[ ... ]T T T

ND d d , where 1d [ ... ]i i iLd d  is an m × L event sequence. The feature sequence selection is to 

choose M sequences containing information about motion human targets and then denoting as ξ( ) .  

In addition, for fusing the signal characteristics, the highest frequency of the signal sequences of each 

MASK will be selected as the feature sequence. 

For the fusion strategy, the probability of a joint feature vector is in accord with a joint hypothesis 

of the human target. Thus, we can refer to the Formula (2) as the fusion decision rule: 

0 , max ( | ) γ

, arg max ( | ),

i i

i i i

H if p X H
X

H i p X H otherwise





 (2)  

The binary decision vector 1[ ... ]N

k kD D  can be obtained for the k-ith human target, and then the final 

decision can be completed by using the majority voting strategy. Figure 11 shows the signal which is 

finally transferred to the host computer. 

Figure 11. The signal of a moving human target in a wireless pyroelectric infrared sensor network. 

 

4.3. Time-Frequency Analysis for the Signal of Moving Human Target 

Compared with other algorithms, EMD has the capability to demonstrate the changing features of a 

signal in different frequency ranges based on adaptively decomposing the time domain non-stationary 

signal. The decomposition results of a moving human target signal which is captured by a pyroelectirc 

infrared sensor are shown in Figure 11. It can be clearly seen from Figure 12 that the original signal is 

decomposed into six IMF components and one residue after several cycles of iterative calculations 
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using the EMD algorithm. Each IMF component represents the instantaneous amplitude features of the 

original signal in a different frequency range. Consequently, appropriate IMF components of the 

frequency range can be selected to compose feature values of specific moving human targets.  

Figure 12. The original signal of a moving human target and its intrinsic mode  

functions (IMFs) using the empirical mode decomposition (EMD) algorithm. 

  

  

  

  

For analysis of the signals of a human target moving in a pyroelectirc infrared sensor network, 

signal decomposition in the time domain often cannot accurately demonstrate the movement features 

of various human targets due to the characteristics of the signal itself. Therefore, transforming the 

signal to the frequency domain for further decomposition and analysis is also needed in addition to the time 

domain signals. Pertinent literature has proved that the signal from a pyroelectric infrared sensor node is 

usually a non-stationary one whose obvious feature is the existence of time-varying frequency eigenvalues.  

The traditional Fourier transform, is the classical physics tool for periodic signals. Its essence is the 

general feature within the whole frequency domain range and it is unable to show the variation of 
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instantaneous frequencies (IF) of the signal. Thus, Huang proposed the Hilbert-Huang transform (HHT) on 

the basis of the EMD algorithm. The basic idea is that the original time signal is decomposed into a 

combination of numbers of IMFs by EMD. Then, some meaningful instantaneous amplitudes and 

instantaneous frequencies are calculated by using the Hilbert transform for every IMF component, so 

that the Hilbert spectrum with time-varying information will be obtained [30]. 

Figure 13 shows the two dimensional distribution of instantaneous frequencies of a moving human 

target signal. It can be clearly seen from Figure 12 that the energy of the human target is mainly 

concentrated in the vicinity of 0.5 Hz during 0 to 300 s. When the distance between the human target and 

the MASK is 7.5 to 8 m, which is the best detection distance for a pyroelectric infrared sensor, the 

instantaneous frequencies are just concentrated on 0.5 Hz corresponding to the velocity of the moving 

human target in the network, which is about 1 m/s. In addition, that is a reasonable normal  

walking velocity. 

Figure 13. The two-dimensional (2D) image of instantaneous frequencies. 

 

4.4. Classifier 

Currently, the neural network method is usually applied in pattern recognition applications and data 

classification. Its primary idea can be simply described as a hyperplane generated and moved randomly 

by the system until the centralized data, which belong to inhomogeneous points, is located on different 

sides of the sub-hyperplane. This random processing mechanism determines the final classified 

hyperplane will be quite close to the points in the training set. Hence, it will not be the optimal solution 

in most cases. In order to overcome the defects of the neural network, we consider seeking a special 

data classification hyperplane which makes the training points’ distance to the optimal hyperplane as 

far as possible, so as to achieve the purpose of data point optimization classification, and then a new 

general learning machine, support vector machine, emerges [31]. Modeled by the principle of 

structural risk minimization, the support vector machine is expected to minimize risk effectively and 

significantly improve the recognition ability of its model. In addition, it shows many unique 

advantages in resolving pattern recognition and classification problems of small samples, nonlinear 

and high dimensional data. It can be popularized to learning problems of other machines such as 

function fitting and so on. Theoretically, a support vector machine can realize optimal classification of 

linear data while Vapnik mapped data into high dimensional space using some kinds of kernel 
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function. However, in the process of mapping from the low dimensional feature space to the high 

optimal hyperplane, it cannot be calculated directly in most cases because of the speedy increase of the 

space dimensions. By defining various kernel functions, a decision function is obtained as follows: 

* *

1

( ) α ( )
n

i i i

i

f x Sgn y K x x b


 
   

 
  (3) 

As a parameter symbol function, the results of this decision function are only two options which 

either is +1 or −1. According to Equation (3), it is known that the final discriminant function actually 

contains the inner product and summation of support vectors, thus the complexity of the recognition 

algorithm ultimately depends on the number of support vectors. Through the analysis above, it is 

known that the data classification in support vector machines is mainly completed by a kernel function, 

thus it is proved that different support vector machine classification algorithms will appear for 

different selections of kernel functions. Currently there are three kinds of mainstream kernel function: 

(1) Linear Kernel defined as ( , )i iK x x x x  . 

(2) Polynomial Kernel defined as ( , ) [( 1)]q

i iK x x x x   . And the support vector machine with this 

kernel function is a q-order polynomial classifier. 

(3) Radial Basis Function Kernel defined as  2( , ) exp / 2σi iK x x x x   . The support vector 

machine with this kernel function is a radial basis function classifier. In addition, every center 

of a base function corresponds to a support vector and the every weight vector of output is 

allocated by the algorithm automatically. 

In allusion to the two support vector machine classification problems, namely that it cannot be 

directly applied in linearly separable multiclass pattern recognition such as classification of multiple 

human targets because it was first proposed for two categories. To settle this problem, a support vector 

machine classifier can be constructed for each human target. Each classifier of each human target is 

responsible for the distinction between the detected points which belong to this human target and the 

points belonging to other targets. The final result is decided by the support vector machine classifier 

whose output is the most far away from the interface w x b  . 

5. Experiments and Results 

The experimental distributed wireless pyroelectric infrared sensor network has been implemented in 

a 10 m × 10 m room without any obstacles. One or more human targets were moving in the detection 

area. Figure 14 shows the experiment scene. 

5.1. Human Target Tracking and Locating 

When one or more human targets move in the detection area, the host computer can process the 

signals received from the wireless gateway module and the tracking results are displayed on the color 

screen of a personal digital assistant (PDA). It uses the graphical display to indicate the relative 

position of the human targets in real-time. Figure 14 displays several snapshots of targets tracked using 

the PDA. It is clearly shown in Figure 15 that the purple overlapping region is the area which can be 

detected by three MASKs and the red overlapping region is the area which can be detected 
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simultaneously by all four MASKs. Compared with the actual position of the moving human target, 

this PDA system can track and locate the moving human targets within a certain error range. 

Figure 14. The experiment scene and a moving human target. 

  

Figure 15. Snapshots of tracked targets shown on a personal digital assistant (PDA). 

    

    

5.2. Recognition of Human Targets 

For human target identification, we used four pyroelectric infrared sensor MASKs which have been 

described in Section 3. The human targets randomly walked at the same time at a normal rate of speed 

inside the detection area that is illustrated in Figure 14. The human target signals were received and 

fused by four MASKs; next, the signals were transmitted to the wireless gateway module, which is 

illustrated in Figure 7, and sent by the upper machine to a host computer for subsequent processing.  

Figure 16a–c display the signals of three different moving human targets and the IMFs of the 

corresponding human target signals were decomposed by the EMD algorithm. For the three human 

targets, we use principle component analysis (PCA) to extract their features from the combination of 

seven IMFs of each human target. Then, a SVM classifier is trained and modeled by those extracted 
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features and at last three human targets can be identified by using the trained SVM classifier in three 

different ways. 

(a) Extracting the features from the data matrix which is combined with all IMFs of each human 

target. Figure 17a displays the identification rate of three human targets using the features which were 

extracted from all IMFs. The identification rates of repeated ten experiments of three targets are all 

around 70%. 

(b) Extracting the features from the data matrix which is combined with IMF1, IMF2, IMF3, and 

IMF4 of each human target. Figure 17b illustrates the identification rate of three human targets using 

the features which were extracted from combination of IMF1, IMF2, IMF3, and IMF4 of three targets. 

The identification rates of repeated ten experiments of three targets are also all around 70%. 

(c) For the reason that the most time domain features are contained in the components of IMF1, IMF2, 

IMF3, IMF4, the identification rates in experiment (a) are basically as same as in experiment (b), for the 

reason that the most time domain features are generally contained in the components of IMF1, IMF2, 

IMF3, and IMF4. However, the identification rates are relatively low if we use the features merely 

extracted from time domain IMFs components. Therefore, in experiment (c) we chose the combined 

features of IMF1, IMF2, IMF3, IMF4 and instant frequencies transformed by HHT as eigenvectors to 

recognize the three human targets. The identification rates, which are shown in Figure 17(c), basically 

stabilize around 90% due to the fact those eigenvectors already include most features both in time 

domain and frequency domain. 

Figure 16. The signal and the IMFs corresponding to three human targets: (a) the first 

human target; (b) the second human target; and (c) the third human target. 

 

    

    

(a) 
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Figure 17. The rate of identification of human targets: (a) the identification rate using features 

extracted from all IMFs; (b) the identification rate using features extracted from four IMFs;  

and (c) the identification rate using features combined with IMFs and instant frequencies. 

   

6. Conclusions 

In this paper, we present a wireless distributed pyroelectric infrared sensor network system and a 

novel feature extracting method using an EMD algorithm for tracking and identifying moving human 

targets. The system consists of four MASK modules, a wireless gateway module, PDA and a host 

computer. Moreover, compared to other means of signal feature extraction, the method we applied in 

this paper is the EMD and HHT algorithms which can extract instant features in either the time domain 

or frequency domain. In addition, we use a SVM to construct a classifier to identify multiple human 

targets. The results of repeated experiments show that the proposed sensor system and EMD and HHT 

algorithms can work as a reliable biometric system for a few human targets. 
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