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Abstract: Dempster-Shafer evidence theory (DSET) is a flexible and popular paradigm for 

multisource data fusion in wireless sensor networks (WSNs). This paper presents a novel 

and easy implementing method computing masses from the hundreds of pieces of data 

collected by a WSN. The transfer model is based on the Mahalanobis distance (MD), which is 

an effective method to measure the similarity between an object and a sample. Compared 

to the existing methods, the proposed method concerns the statistical features of the observed 

data and it is good at transferring multi-dimensional data to belief assignment correctly and 

effectively. The main processes of the proposed method, which include the calculation of 

the intersection classes of the power set and the algorithm mapping MDs to masses, are 

described in detail. Experimental results in transformer fault diagnosis show that the proposed 

method has a high accuracy in constructing masses from multidimensional data for DSET. 

Additionally, the results also prove that higher dimensional data brings higher accuracy in 

transferring data to mass. 
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1. Introduction 

Multi-sensor data fusion is a technology that makes it possible to combine information from multiple 

sources to obtain a unified picture [1]. In wireless sensor networks (WSNs), data fusion is a useful way 

to decrease or eliminate the uncertainty of decisions when dealing with information from different sources. 

It is widely used in state estimation problems [2], pattern recognition [3], robotics [4], and medical 

imaging [5]. Different theories have been proposed in multisource data fusion, such as the Bayesian 

approach, Dempster-Shafer evidence theory (DSET) [6], fuzzy set theory [7], and the rough set theory [8]. 

In a WSN, hundreds of pieces of data with different properties are collected by the nodes. To 

achieve a reasonable result, the theory used in this application should be good at transferring these 

large amounts of data with different properties into a unified result. DSET is an efficient way to deal 

with the uncertainty and imprecision of information [9], and its fusion framework has an advantage of 

combining different information into one, which makes it become a flexible method in WSN 

multisource information fusion. The mass function, also called basic belief assignment (BBA) function, is 

a prerequisite for using DS theory in reality. However, there are no fixed models to get mass in DSET. 

Hence how to use the hundreds of multisource pieces of data to construct the mass for DSET is the first 

problem that should be solved. A good and efficient paradigm for constructing an evidence structure must 

be set up because it is vital to get accurate conclusions from the information we collected. Suppose 

there is a classification problem with three possible results, the commonly used belief assignment 

transferring method is as shown in Figure 1. 

Figure 1. Common method used to transfer observed data into a belief assignment. 
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In Figure 1, The X axis stands for the observed data and the Y axis is the belief assignment. The 

three possible patterns are A, B and C. The observed data is transferred to the belief assignment (mass) 

according to the intervals to which it belongs. This method is easy to implement, but its accuracy is 

low. The reason involves two aspects: (1) the method ignores the statistical features of the observed 

data. The mean value and the standard deviation are always different, except for their distribution intervals. 

Even though the sample data sets of A and B distribute the same interval, their statistical features are 

still different. In this perspective, this common way isn’t able to get the correct mass of the observed 

data; (2) the observed data is always organized in a multi-dimensional pattern. For example, a sensor 

can monitor temperature and humidity at the same time, the data will be presented as (T,H), where  

T and H are temperature and humidity, respectively. How to calculate the belief assignment from  



Sensors 2014, 14 7051 

 

 

multi-dimensional data becomes another problem. These two problems are why we develop the 

proposed method to transfer multi-dimensional data to mass for DSET. 

In this paper, Mahalanobis distance (MD) is used to measure the similarity between an object and a 

class. A long MD corresponds to a low belief assignment, and a short MD means a large belief 

assignment. Unlike Euclidean distance (ED), MD indicates the “distance” of the data’s covariance. It is 

not affected by the dimension of the data and is a more scientific measurement of the similarity 

between an observed object and a class than Euclidean distance, because MD considers the difference 

of the samples’ statistical features, including the mean value and covariance. The two main problems 

existing in the common method will be solved by transferring the MD to mass. Besides, for a compound 

class, which means the mixed class of the power set in DSET, the masses can also be calculated using 

MD. The main process of the proposed method includes three main steps: firstly is the calculation of 

the intersection classes of the power set and then is the step calculating the MD between the object and 

the subset samples, the last step is the algorithm mapping MDs to masses. The experimental results 

will be described to verify the performance of the proposed method. The proposed algorithm is used in 

transformer fault diagnosis to construct masses of diagnosis evidences from data collected in the 

transformer’s inner space. The obtained results prove that the proposed has a high accuracy in constructing 

masses for DSET, especially in high dimensional data. 

The remainder of this paper is organized as follows: Section 2 illustrates the related work. In 

Section 3, the MD method and DSET are briefly introduced, and then the mechanism for transforming 

data into masses in DSET by using the MD-mass method is developed in Section 4. Section 5 depicts 

the scheme of the implementation process for the proposed algorithm. In Section 6, the experiment for 

transformer fault diagnosis is described, along with its results. Finally, the discussion and conclusions 

are presented in Section 7. 

2. Related Work 

Mahalanobis distance (MD) is a useful method to calculate the similarity of different samples [10]. 

It is used in many fields, including statistics [11], pattern recognition [12], and manufacturing control [13]. 

In this paper, we focus on the research of belief transferring model. Aside from the common method in 

Section 1, many belief assignment functions have been developed to obtain masses from observed data 

and they are proved to be reasonable in certain applications. Chakeri developed a method based on Fuzzy 

C-means to gain masses [14]; the method is good at obtaining belief assignments from imprecise 

information. Szlzenstein put forth an iterative estimation method based on Gaussian model [15]. In [16], a 

scheme for constructing an evidence structure that uses an artificial neural network (ANN) is proposed; the 

method is good at dealing with large scale data in applications like image processing. In [17], Xin 

developed three methods to construct the BBA function. These methods are based on gray correlation 

analysis, fuzzy sets, and attribute measure, respectively. They are proved to be reasonable in converting 

different data sources into masses. Other efforts have been made to solve this issue by using different 

methods and theories, like fuzzy entropy [18], automatic thresholding [19], and so on. 

The research on BBA function can be summarized as follows: (1) different transfer functions are 

developed counter to different specific applications, like pattern recognition, image processing. There 

is no a unified framework suitable under all conditions; (2) the existing developed methods are not suitable 
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in WSN multisource data fusion because they ignore the importance of statistical features, which is 

good for obtaining a more correct belief assignment; (3) many of them can’t be implemented in sensor 

nodes because their complex computational process, such as the ANN method. 

3. Preliminaries 

In this section, the basic theories related to the proposed method will be introduced, including the 

DSET, the Closed World Assumption and the Open World Assumption and Mahalanobis distance. 

3.1. DSET 

DSET [20] is an extension of the classical probability theory. It is a good strategy to deal with the 

conflicts and imprecision in multisource data fusion. Given an object X, let 1( ,..., )c   be the set 

composed by all possible results of X, where the classes in   must be mutually exclusive and exhaustive. 

  is called the frame of discernment of X, and 2  is the power set of all possible subsets of  . The 

mass function of 2  is defined as a function m: 2 [0,1]  , which satisfies the condition: 

( ) 1  and   ( ) 0 
A

m A m


    
(1) 

where   denotes the null set, and m(A) is called the basic belief assignment of A, where A is a subset 

of  .The numerical value of m(A) represents the degree of trust of exact set A. Subset A with non-zero 

mass is called a focal element. The structure composed of focal elements and their masses is called an 

evidence structure, expressed as: 

{( , ( )) | , ( ) 0}A m A A m A   (2) 

We call ( , ( ))A m A  a piece of evidence. There are two types of evidences: singletons and compound 

sets. The above process is the step of representing evidence by using focal elements. 

In DSET, the impact of evidences on proposition A has two points: belief and plausibility. They are 

defined as follows: 

Bel( ) ( )
B A

A m B


  (3) 

Pls( ) ( ) 1 Bel( )
A B

A m B A
 

    
(4) 

where Bel( ),Pls( ) and Bel( )A A A  denote the belief function, plausibility function, and dubiety 

function, respectively. It is apparent that Bel( ) Pls( )A A is satisfied in all situations. If 

Bel( ) Pls( )A A , then A must be a singleton class. A focal element of DSET provides an explicit 

measure by a belief interval: [Bel( ),Pls( )]A A , where the lower and upper probabilities depict the 

belief and plausibility, respectively. 

After we get the evidence structure, a rule of combination can be used to fuse all the independent 

evidences into one. The Dempster combinational rule is expressed as: 

1
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(6) 

where   is the symbol of the combination operator. iA  designates the focal element of data source i. 

K indicates the conflict among the sources to be combined. After combining, a Pignistic probability 

can be made using the following expression [21]: 

1
Bet ( ) ( ) ( )

| |
l M

i M

A A M

P A m A
A

   (7) 

Bet ( )iP A  is called the Pignistic probability transformed by the final evidence structure. Then, a 

decision can be made by choosing the class with maximum Pignistic probability as the result of the 

fusion process. 

3.2. Closed World Assumption and Open World Assumption 

When a proposition’s genuine nature is uncertain, the Closed World Assumption regards this 

proposition as a false proposition; in contrast, the Open World Assumption takes this proposition as an 

unknown proposition. For example, under the known condition “Juan is a Boston citizen,” we can 

make proposition A: “Juan is a citizen of New York.” From the viewpoint of the Closed World 

Assumption, A is false, while the Open World Assumption regards A as an unknown proposition, 

because Juan maybe a New York citizen, though the possibility is low. 

In short, the Closed World Assumption is applicable in an environment where all the conditions are 

known to us. When there are unknown conditions, we can take the Open World Assumption. In DSET, 

for a null set, its mass must equal 0, and it belongs to the Closed World Assumption. In the 

Transferable Belief Model (TBM) [21], ( ) 0 m   is allowed, and it agrees with the Open World 

Assumption. TBM extends the scope of using DSET, and our mass allocation strategy can also be 

divided into the Closed World Assumption and Open World Assumption. 

3.3. Mahalanobis Distance 

Let X  be a data matrix ( n p ), containing n objects measured by p variables. X  (1 p ) is the 

column vector of every object’s mean value.   is the variance and   denotes the Pearson correlation 

coefficient. Then, a variance–covariance matrix of X can be expressed as: 

2

1 12 1 2 1 1

2

21 2 1 2 2 2

2

1 1 2 2

n n

n n

X

p p p p n

C
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where kx  and lx  are objects in X with subscript k and l. 
1

XC
 is the inverse matrix of XC , 

Mahalanobis distance of object (1 )ox p  to X  is: 

1( , ) ( ) ( )T

o o X oMD x X x X C x X    (10) 

We can see that the MD method is a way to calculate the similarity of two objects by their 

covariance. To get a better understanding of MD, a figure can be depicted as shown in Figure 2. The 

distributed points are sample points and their center points are O1 and O2. From the viewpoint of ED, 

the circles represent equal EDs to center point O1. Therefore, we know that point A and point B are 

equal to center point O1, because they have the same ED to O1. Things will be changed in (b), where 

the circles stand for equal MDs to center point O2. Unlike ED, MD is not the spatial distance but the 

distance of covariance. Thus, point A and point C are the same to center point O2. In reality, the 

distribution of objects is never a “circle,” but is more like a kind of ellipse. Apparently, MD is a more 

accurate and effective metric for the similarity than ED. 

Figure 2. Difference between ED and MD in metric distance. (a) Distance defined by ED. 

(b) Distance Defined by MD. 

  

(a) (b) 

4. MD-mass Method Process 

The process of the proposed method includes three main steps. The first is classifying the 

compound sample classes of the power set. Next step is calculating the MDs from new observed 

objects to all subsets. Then the obtained MDs will be transferred to the masses in step 3. 

4.1. Calculation of Intersection Classes’ Scope 

It is easy to calculate the MD between an object and a singleton (crisp) class, but we can’t calculate 

the MD between an object and a compound class directly. At the beginning, an original data sample 

belongs to a singleton class, but not to a compound (or mixed) class. One of the great advantages of 

DSET is that a certain degree of imprecision and conflicts between evidences are allowed to exist, and 

DSET is good at dealing with this issue. Thus, the method used to obtain the samples of the compound 

classes is very important. 
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4.1.1. The Calculation with One Dimensional Data 

For one dimensional data, the intersection classes are easy to find out. Given two sample sets

1 2 1 2{ , , }, { , , }n nX x x x Y y y y  , which have been preprocessed and the abnormal data have been 

removed. We set XI is the interval that contains all possible elements of X and the scope of the 

elements in XI  are all in the interval min max[ , ]X X . It is the same with YI . The intersection interval is set as: 

XY X YI I I  (11) 

min maxwith  ,  k XY kz I Y z X     

The intersection class is shown in Figure 3. In Figure 3a, there is no intersection interval between 

XI  and YI , thus their intersection is null set. In Figure 3b, the intersection is XYI and its interval is 

min max[ , ]Y X . If an element of XI  or YI  belongs to the interval min max[ , ]Y X , it belongs to XYI , too. In 

(c), YI  is contained in XI , so all elements of YI  and the elements in XI  in the interval min max[ , ]Y Y  

belong to XYI . In reality, the data in different situation always distribute in different intervals with 

different statistical features. Here it must be emphasized that the statistical features of the samples are 

not shown in the figure. Though YI  and XYI  are the same intervals in Figure 3c, sample sets of YI  and 

XYI  are different. For example, the sample set in YI  has 100 samples, the mean value and variance are 

10, 2.5, respectively. While sample set in XYI  has more than 100 samples, the mean value and variance 

are 15, 2.0, respectively. In this situation, their statistical features, like mean value and standard 

deviation, are different too. They still can be classified because the MDs of an object to their sample 

data are different. 

Figure 3. Calculation of intersection scope with one dimensional data. (a) Intersection 

interval of X and Y is null set. (b) Intersection interval of X and Y. (c) Intersection interval 

of X and Y when Y’s interval is contained in X. 

(b) (c)
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4.1.2. The Calculation with 2 or Higher Dimensional Data 

The MD between an object and different samples can be calculated in different dimensions. Thus, if 

the observed data are in multi-dimension, their intersection scope is also in the corresponding 

dimension. Here the intersection scope is also defined as: AB A BI I I . 

If an object distributes in the scope of ABI , it belongs to the corresponding intersection sample set. 

In 2-dimension space, the intersection classes’ scope is shown in Figure 4, which describes the way to 

find intersection class between sample set A and sample set B in a 2 dimension space. The black dots 

stand for elements of set A and the blue triangles denote the elements of set B. Let AI  be the set that 

contain all possible elements of A. It is the same with BI . In Figure 4a of, the compound class ABI  is 

the intersection of AI  and BI , it is the same with Figure 4b. The obtained intersection scope in (a) is 

([a1, a2], [b1, b2]), in Figure 4b, it is ([a3, a4], [b3, b4]). The sample set of ABI  are comprised by the 

samples that distribute in the scope of ABI . The difference is that in Figure 4b, AB B AI I I  . The 

sample set of ABI  are comprised by all samples of B and partial samples of A that belong to scope of 

ABI . In this situation, their distribution scopes are the same, but their statistical features are not equal 

to each other, because the samples they included are different. 

Figure 4. Calculation of intersection scope with 2-dimensional data. (a) Intersection scope 

of A and B. (b) Intersection scope of A and B when B’s scope is contained in A. 

 

(a) (b) 

In 3-dimensional space or even higher dimensional space, the intersection space is calculated as the 

same way as 2-dimensional space. Generally speaking, the higher dimension brings higher distinguishability. 

4.2. Calculation of Evidences’ MDs 

Given 1( ,..., )c   as the frame of discernment and t  is the object to be classified. jM  is the 

sample data of a subset in 2 , except the null set. 
jM  is the column vector of every sample mean 

value. For object t , we can get the MD between t  and jM  by the expression: 

1( , ) ( ) ( ), 1,2,...,2 1
j

T c

j j M jMD t M t M C t M j      (12)  

 

b1

b2

x

y

Sample Set A
Sample Set B

Intersection Set of A 
and B

a1 a2

b3

b4

x

y

Sample Set A

Sample Set B

Intersection Set of A 
and B

a3 a4



Sensors 2014, 14 7057 

 

 

where ( , )jMD t M  denotes the MD of t  to subset jM , and 
jMC is the variance-covariance matrix of 

jM , c is the number of elements in the frame of discernment. The samples of jM are very important 

because they are the standard for whether an object belongs to jM  or not. 

4.3. Mapping MDs to Masses 

In this paper, we take MDs as the basis of the basic belief assignments of the evidences. Now, a 

mechanism should be set up to map MDs to masses. This mechanism must satisfy the following principles: 

(1) Every subset should get a reasonable mass in order to conduct the fusion process by DSET. 

(2) The sum of all the masses must equal 1, and any evidence’s corresponding mass should be in the 

range [0,1]. 

(3) The mass function should be a monotone decreasing function, which means the mass decreases 

with increasing MD. 

In a neural network, there are several types of common transfer functions, like logsig and tansig [22]. 

Here, we use logsig as the mapping function to convert the MDs to masses. To subset A, the assigned 

mass can be calculated by: 

( | ) ( )A Am A MD f MD  (13)  

( )

1
with     ( ) 1

1
 

 
 A

A k MD
f MD

e
 (14)  

where ( | )Am A MD  is the assigned mass of subset A with AMD , ( )Af MD is a monotonically 

decreasing transfer function converting MD between object and subset A to evidence’s mass.   is the 

mean of the MDs, k is the adjustment coefficient, and the shape of the function will be changed when k 

changes its value. 

Figure 5. Curve of transfer function with different k. (a) k = 1. (b) k = 2. 

  

(a) (b) 

Figure 5 shows the curve of the transfer function, in Figure 5a, 4   and 1k  , in Figure 5b, 

4   and 2k  . Horizontal axis is calculated MD, vertical axis is the transferred mass. According to 

this function, when MD < 2, the mass of the corresponding evidence is close to 1, whereas in the 

interval [2,6], the mass will decrease as the MD increases. When k = 2, the curve is steeper than the 
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line of k = 1. Thus, we should adjust the value of k according to the actual situations to guarantee the 

transferring accuracy as high as possible. 

The transfer function satisfies the principle of mass assignments we just proposed. When the MD 

between an object and a class is less than a certain value (threshold value), it belongs to the class with 

a high probability. If MD exceeds the threshold value, the probability decreases with the increasing of 

MD’s value. When MD is larger than another certain value, the probability is quite low and is virtually 

zero. For example, when we judge whether a man is middle aged or not, if he is 40–50, we can be sure 

that he belongs to the middle age class. If his age is 30–40 or 50–60, the boundaries are not clear because 

there is a possibility that he is a youth or an old man. In this situation, the probability of middle age will 

decrease when the MD of his age increases. If his age is younger than 30 or older than 60, we can be sure 

that he is not a middle-aged man; in this case, the probability is very low. 

4.4. Automatic Adjustment of k 

In the previous section, we showed that   is the mean value of the MDs between an object and a 

class of 2 . Thus, we know its value by computing the mean of the MDs quickly and easily. The main 

problem is how to adjust the value of k automatically and properly. 

Let   be the standard deviation of the calculated MDs. According to the Central Limit Theorem of 

statistics, and we can assume that the original data agrees with the Gaussian distribution. In a Gaussian 

distribution, the original data complies with the “3  principle”. 

In a Gaussian distribution,   denotes the standard deviation and   denotes the mean value. The 

probability that a value is in the interval ( , )     is 0.6826. The probabilities are 0.9544 and 

0.9974 for intervals of ( 2 , 2 )      and ( 3 , 3 )     , respectively. Thus, we can suppose that 

almost all the data in the Gaussian distribution belongs to the interval ( 3 , 3 )     , and the 

probability that a value will exceed the interval is not larger than 0.3%. 

We set max to be the upper threshold value of the output masses and min  as the lower threshold 

value. Apparently, max  is the belief assignment when MD equals to 0 and max  should approximate to 1: 

max

1
1 ,      0

1 k
x

e 
   


 (15) 

min  is the belief assignment when MD is larger than ( 3 )   , according to the “ 3  principle”, 

min  should approximate to 0. 

min 3

1
1 ,     - 3

1 k
x

e 
  

 
  


 (16) 

Expressions (15) and (16) can be modified as: 

max max min min

1 1
max{ [ln( ) ln(1 )], [ln(1 ) ln( )]}

3
k    

 
      (17) 

min  and max can be set in the interval [0.001, 0.003] [0.995, 0.999], respectively. 
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5. Scheme for Constructing Masses in DSET 

In Section 4, the process of using MD to realize the masses in DSET was developed. The main idea 

of the algorithm is to construct the basis of the basic belief assignments through the prepared samples. 

Then, the MDs between the object and the samples are computed, and the following step is mapping 

the MDs to masses. Based on a real situation, we can choose a closed or open world. Finally, the output 

masses should be normalized. 

Figure 6 illustrates the assignment process for the masses in DSET. The detailed description of the 

process is as follows: 

Figure 6. Process of proposed mass constructing method. 

Is Open World? 

Is sum<1?

 Calculate the normalized output masses 
M’=(m1,m2,…,mt,m(Φ)=1-sum)

 Calculate the normalized output masses 

M’=(m1/sum,m2/sum,…,mt/sum,m(Φ)=0)

Mapping MDs to mass probabilities

Output Masses M=(m1,m2,…,mt)

Calculate the sum of output masses

Sum=m1+m2+…+mt

End

Start

Input Sample Sets X
set the Frame of discernment Ω

Calculate the numerical features of the subsets
 F=(f1,f2,…,ft), t=2^n-2

Input the data of the object to be recognized

Calculate the MD between object and Sample set
MD = (d1,d2,…,dt)

Set the mass probability is agreed with the 
Closed World Assumption or 

Open World Assumption

N

N

Y

Y

 

(1) This first step is calculating the statistical features of each subset in 2 , especially the compound 

class of the power set. In order to guarantee the accuracy, it requires us to input adequate sample 

data to get correct statistical features. 

(2) Subsequently is the calculation of the sample set’s numerical features. After the beginning of the 

algorithm, the frame of the discernment should be set up according to the specific situation. All 

the possible subsets (proposition sets) are constructed, and the mean value and standard deviation 

of every subset are computed. 
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(3) Then Compute the MDs between the object and the classes of 2 . For all classes where the  

mean and standard deviation values exist, calculate the MDs with the data collected from the 

observed object. 

(4) Transfer MDs to the masses. With the use of the transfer function, the obtained MDs will be 

converted into masses. 

(5) After the mapping step, the output is not the final answer we want. It should be normalized under 

the Closed World Assumption (CWA) or Open World Assumption (OWA). In CWA, the object 

to be recognized must belong to one of the subsets in  , which means the mass of the null set is 

0, that is ( ) 0m   . In OWA, unknown classes are allowed to exist, and the mass of the null set 

may be larger than 0. In this situation, if the sum of all the masses is larger than 1, which means 

the mass of the known classes is large enough, the mass of the null set should be set to 0, 

otherwise, ( ) 1m sum   . 

6. Experimental Results 

6.1. Setup of Transformer Fault Diagnosis 

A transformer is an important distribution component in a power system. The security and 

reliability of the power system is heavily influenced by the transformer. In order to accurately and 

effectively detect the type of fault in a transformer, different sensors are applied in the inner space of 

the transformer [23,24], like gas sensor, voltage sensor, temperature sensor and humidity sensor. Now, 

we use DSET to solve the problem because DSET’s advantage is fusing multisource data into one 

unified result. Here we use the method to construct masses form data collected by the gas sensors as a 

validation of the proposed method. 

There are various kinds of gases in the transformer’s internal space. In this paper, we use H2, CH4, 

C2H6, C2H4 and C2H2 as the basis of the diagnosis. When different faults occur, the percentage of each 

gas will change. To simplify the experiment, we consider three types of states: the normal state (No), 

temperature fault (Te), and discharge fault (Di). The collected data are the percentages of each gas  

for a total number of 600 pieces of data (120 samples). In this case, the frame of discernment is

{No, Di, Te} , and the power set is 2 {No,Di,Te,No Di,No Te,   Di Te,No Di Te} , 

except the null set. 

6.2. Experiment Results 

To illustrate the proposed algorithm, we take the combination of two gases as a sample; they are 

(C2H6, C2H4). There are 40 samples for each state. To examine the proposed algorithm, 30 samples for 

each state are used as the basis of the classification, and the remaining 10 samples are used as the 

validation data. Before the process of finding out the scope of the compound class, some outlier data 

should be eliminated, because they will decrease the accuracy of the algorithm. Here, we delete the 

three samples with the largest MDs to form a crisp sample set. Figure 7 shows the distribution map of 

(C2H6, C2H4) in different fault conditions. 

In Figure 7, the circle, triangle, and hexagon represent the normal state (No), temperature fault (Te), 

and discharge fault (Di), respectively. The first step is to determine the sample sets for all subsets  
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in 2  In order to simplify the computation complexity, we calculate the intersection scope by  

rectangular area. After the process of calculating the intersection scopes, the intervals of the compound  

subsets are No Di= ([2.15 7.70][6.93 10.63])， ， , Di Te=([1.63 7.70][14.19 44.37])， ， , No Te= ,

No Di Te= and the samples of each subset in 2  are depicted in Figure 7b, No&Te and 

No&Te&Di are not shown in the map as they equal to the null set. The validate data and the 

corresponding results are described in Figure 8. Here min , max  are set as 0.001,0.999, respectively. 

Figure 7. The distribution of the sample data, which includes (a): the original samples 

collected in the 3 conditions; (b): the all calculated sample sets of the power set. 

  

(a) (b) 

Figure 8. The distribution map of the validate data. 

 

As shown in Figure 8, new observed fault data is collected to validate the correctness of the 

proposed algorithm. The distribution map shows the 30 validate samples collected in the three 

conditions. The corresponding masses of the validate samples are shown in Figure 9. The horizontal 

axis denotes the number of validate sample, vertical axis is the mass assignments of each sample and 

the sum of each mass equals to 1. The first 10 samples were collected when the transformer was normal, 

and 10–20 were collected when the transformer was in a temperature fault state, the last 20–30 samples 
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correspond to the state of a discharge fault. After the process of the proposed method, masses under 

CWA and OWA are obtained, as shown in Figure 9a,b, respectively. 

Apparently, most of the masses under CWA are correct, except Nos.13, 15, 27. These are incorrect 

because boundaries between samples are not clear and the three objects’ positions are too far from the 

sets they should belong to, which causes them to lie in the scope of other samples. A good way to get 

an optimized mass result is to calculate the MD by higher dimensional data pattern, such as (C2H6, 

C2H4, H2). In OWA, unknown states of the transformer are allowed. Thus, the null set’s mass may be 

larger than 0. The belief assignment of the null set in Nos. 1, 6, 14, 20, and 25 are obviously larger than the 

other masses. These results predict that there are maybe unknown fault types unknown in the frame of 

discernment. However, considering the researchers have had a comprehensive understanding of the 

transformer’s fault conditions, hence the world is better to be set as “closed” in this situation to get a 

more accurate classify result. 

Figure 9. The obtained masses from the validate data. (a) masses obtained under CWA; 

(b) masses obtained under OWA. 

  

(a) (b) 

Figure 10. Average accuracies of the masses calculated with different dimensional data 
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To verify the accuracy, more tests are conducted with different multi-dimensional gas data patterns 

from 1 to 5. In 1-dimension, only one gas data is used to construct masses, such as C2H4, in 2-dimensions, 

two gas data are combined to construct masses, like (C2H6, C2H4). It is the same with 3- to 5- dimensional 

data patterns. We define the accuracy as: 
c

ii
N

r
N




 (17) 

where r is the accuracy rate, N  is the total number of objects, iN  is the number of objects which have 

been correctly classified from its mass. If an object belongs to class i , it is correctly classified by 

satisfying ( )im   1max{ ( ),..., ( )}cm m  . The tests results are mean value of all possible data patterns in 

different dimensions. For example, the test accuracy of one-dimensional data is the average of the 

accuracies of the five patterns: (H2), (CH4), (C2H6), (C2H4) and (C2H2). The accuracies in CWA and 

OWA are illustrated in the Figure 10. The accuracies of the constructed masses increase with the 

increasing of the test data’s dimension, especially from 1-dimension to 3-dimensions. Apparently, a higher 

dimension of the data will be beneficial to get more accurate masses. In practice, it is better not obtain 

mass from 1-dimensional data. In conclusion, the results illustrates that calculating belief assignment 

in DSET by MD is completely feasible and the method is easy to implement in sensor nodes. 

7. Discussions and Conclusions 

In the proposed algorithm, there are a couple of caveats that should be observed. First, it should be 

emphasized that the sample data used in the proposed algorithm should be adequate enough to get the 

correct statistical features of the sample data. This is a disadvantage compared to other method like 

ANN, which require low amount data to train the network. In Section 4, the calculation process of the 

intersection classes’ scope was developed. The boundaries of intersection scopes calculated by the 

proposed method are straight lines, in reality they maybe irregular curves, which means the calculated 

intersections are approximations and may not that accurate. However, in practice, finding out the exact 

intersection space is a tough problem and there is no significance in sacrificing large amount computations 

in calculating the exact intersection scopes. Hence we choose the proposed method to calculate intersections, 

it is fast and efficiency and its experimental accuracy results are acceptable, too. 

The algorithm presented in this paper is helpful in dealing with the multisource data of a WSN. In a 

WSN, the sensor nodes do not have an enormous amount of computing ability and their energy is 

limited. It is very meaningful to fuse the multisource data before uploading to the servers, which 

releases the transmission pressure of the sink node. The proposed paradigm has a high calculation speed, 

and the output masses are reasonable and stable, which lays a good foundation for the subsequent fusion 

calculation steps. We believe the paradigm proposed in this paper has a promising future in application. 

The future work may include the following: (1) applying the proposed algorithm in fuzzy set theory as 

the method to calculate the membership; (2) finding another way to compute the intersection between 

crisp focal elements in DSET and verifying its reasonableness; (3) developing a flexible and effective 

neural network by DSET and MD and examining its performance; (4) finding a reasonable way to 

calculate the MDs from multimedia data, rather than just scalar data. 

  



Sensors 2014, 14 7064 

 

 

Acknowledgments 

This research is supported by National Natural Science Foundation under Grant 61371071, Beijing 

Natural Science Foundation under Grant 4132057, Beijing Science and Technology Program under 

Grant Z121100007612003. 

Author Contributions 

In this paper, the idea and primary algorithm were proposed by Zhenjiang Zhang. Tonghuan Liu refined 

the idea and solution models. Wenyu Zhang conducted the simulation and analysis of the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the 

state-of-the-art. Inf. Fusion. 2013, 14, 28–44. 

2. Liu, Y.; Yan, L.; Xiao, B.; Xia, Y.; Fu, M. Multirate multisensor data fusion algorithm for state 

estimation with cross-correlated noises. In Knowledge Engineering and Management; Springer: 

Berlin/Heidelberg, Germany, 2014; pp. 19–29. 

3. Rombaut, M.; Zhu, Y.M. Study of Dempster–Shafer for image segmentation applications. Image 

Vis. Comput. 2002, 20, 15–23. 

4. Basir, O.A.; Shen, H.C. Interdependence and information loss in multi-sensor system. Robot. Syst. 

1999, 16, 597–612. 

5. Bloch, I. Some aspects of Dempster-Shafer evidence theory for classification of multi-modality 

medical images taking partial volume effect into account. Pattern Recogn. Lett. 1996, 17, 905–916. 

6. Braun, J.J. Dempster-Shafer theory and Bayesian reasoning in multisensor data fusion. In 

Proceedings of the AeroSense 2000, International Society for Optics and Photonics, Orlando, FL, 

USA, 24 April 2000; pp. 255–266. 

7. Zimmermann, H.J. Fuzzy set theory. Wiley Interdiscip. Rev. 2010, 2, 317–332. 

8. Pawlak, Z. Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 1997, 99, 

48–57. 

9. Jousselme, A.L.; Maupin, P. Distances in evidence theory: Comprehensive survey and 

generalizations. Int. J. Approx. Reason. 2012, 53, 118–145.  

10. Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 1936, 

2, 49–55. 

11. Cho, S.; Hong, H.; Ha, B.C. A hybrid approach based on the combination of variable selection 

using decision trees and case-based reasoning using the Mahalanobis distance: For bankruptcy 

prediction. Expert Syst. Appl. 2010, 37, 3482–3488.  

12. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The mahalanobis distance. Chemometr. 

Intell. Lab. Syst. 2000, 50, 1–18. 



Sensors 2014, 14 7065 

 

 

13. Saldivar-Pinon, L.; Chacon-Murguia, M.I.; Sandoval-Rodriguez, R.; Vega-Pineda, J. Human sign 

recognition for robot manipulation. In Pattern Recognition; Springer: Berlin/Heidelberg, 

Germany, 2012; pp. 107–116. 

14. Chakeri, A.; Nekooimehr, I.; Hall, L.O. Dempster-Shafer theory of evidence in Single Pass  

Fuzzy C Means. In 2013 IEEE International Conference on IEEE Proceedings of Fuzzy Systems, 

Hyderabad, India, 7–10 July 2013; pp. 1–5. 

15. Salzenstein, F.; Boudraa, A.O. Iterative estimation of Dempster Shafer’s basic probability 

assignment: Application to multisensor image segmentation. Opt. Eng. 2004, 43, 1293–1299. 

16. Zhu, H.; Basir, O.A. Scheme for constructing evidence structures in Dempster-Shafer evidence 

theory for data fusion. In Proceedings of the 2003 IEEE International Symposium on IEEE 

Computational Intelligence in Robotics and Automation, 16–20 July 2003; Volume 2, pp. 960–965. 

17. Guan, X.; Yi, X.; He, Y. Study on algorithms of determining basic probability assignment 

function in Dempster-Shafer evidence theory. In Proceedings of the 2008 International Conference 

on IEEE Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; Volume 1,  

pp. 121–126. 

18. Dhar, M.; Chutia, R.; Mahanta, S. A note on existing Definition of Fuzzy Entropy. Int. J. Energ. 

Inform. Commun. 2012, 3, 17–21.  

19. Harrabi, R.; Braiek, E.B. Color image segmentation using multi-level thresholding approach and data 

fusion techniques: application in the breast cancer cells images. EURASIP J. Image Video Process. 

2012, 2012, 1–11. 

20. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. 

21. Smets, P.; Kennes, R. The transferable belief model. Artif. Intell. 1994, 66, 191–234. 

22. Basheer, I.A.; Hajmeer, M. Artificial neural networks: fundamentals, computing, design, and 

application. J. Microbiol. Methods 2000, 43, 3–31. 

23. Kelly, J.J. Transformer fault diagnosis by dissolved-gas analysis. IEEE Trans. Ind. Appl. 1980, 6, 

777–782. 

24. Saha, T.K. Review of modern diagnostic techniques for assessing insulation condition in aged 

transformers. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 903–917. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


