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Abstract: Building upon the findings from the field of automated recognition of respiratory
sound patterns, we propose a wearable wireless sensor implementing on-board respiratory
sound acquisition and classification, to enable continuous monitoring of symptoms, such
as asthmatic wheezing. Low-power consumption of such a sensor is required in order
to achieve long autonomy. Considering that the power consumption of its radio is kept
minimal if transmitting only upon (rare) occurrences of wheezing, we focus on optimizing
the power consumption of the digital signal processor (DSP). Based on a comprehensive
review of asthmatic wheeze detection algorithms, we analyze the computational complexity
of common features drawn from short-time Fourier transform (STFT) and decision tree
classification. Four algorithms were implemented on a low-power TMS320C5505 DSP.
Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds
in two operating scenarios of different detection fidelities. The execution times of all
algorithms were measured. The best classification accuracy of over 92%, while occupying
only 2.6% of the DSP’s processing time, is obtained for the algorithm featuring the
time-frequency tracking of shapes of crests originating from wheezing, with spectral features
modeled using energy.

Keywords: wearable sensor; respiratory sounds; wheeze detection; short-term Fourier
transform; decision trees; DSP; low-power implementation
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1. Introduction

Asthma is one of the most common chronic diseases, affecting more than 300 million patients
worldwide. Long-term disease management is required in order to maintain the life quality of asthmatic
patients and to prevent the progression of the disease. Management mainly consists of adherence to a
prescribed medication plan and avoidance of asthmatic attack triggers. The occurrence of symptoms,
such as “asthmatic wheezing” in respiratory sound, indicates a low level of control over the chronic
disease [1].

Recently, medical devices for the quantification of wheezing appeared on the market [2]. The devices,
operating on-demand in handheld form and operating overnight in holter form, were found to be useful
in clinical trials for the diagnosis of asthma in children during bronchial challenge tests [3], for the
monitoring of the response to therapy [4] and for the diagnosing of nocturnal asthma [5]. Nevertheless,
the current practice of long-term asthma management still lacks a low-cost and wearable sensing system
to empower patients and caregivers to continuously track the intensity of symptoms on their own.
Recently, the advancement of low-power electronic technologies and the advent of smartphones enabled
the design of sensing systems consisting of unobtrusive wearable sensors, measuring physiological
signals, and a smartphone, serving as a gateway and interface for feedback to the patient [6–9].

The concept of such a sensing system for the detection of asthmatic wheezing is shown in Figure 1.
The battery-powered sensor node is worn on the skin surface. It consists of an acoustic sensor
(microphone or accelerometer), a signal conditioning and an analog to digital conversion circuit (ADC),
a digital signal processor (DSP) and a radio module communicating with the smartphone. A respiratory
sound analysis algorithm performing real-time detection of wheezing is executed on the DSP on-board
sensor node.

Figure 1. The concept of the system for the long-term acoustic monitoring of asthmatic
symptoms. Abbreviations: DSP, digital signal processor; RF, radio-frequency module.
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The low power consumption of the wearable, size-constrained wheeze detection sensor node is
required in order to achieve long autonomy. In [10], the power consumption of such a sensor node
was profiled, identifying the DSP and the radio module as the main consumers. The context of the
medical application and the use of a smartphone as a peer device narrow the choice of radio modules to
IEEE-802.15.1 (Bluetooth) and IEEE-802.15.4 (ZigBee) compliant, setting the boundaries of the radio
power consumption [11]. Considering that the radio power consumption is kept minimal if transmitting
only upon (rare) occurrences of wheezing, we focus on optimizing the power consumption of the DSP.
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The main hardware prerequisites for low DSP power consumption are: (a) architectural features
enabling efficient code execution (the number of instructions per clock cycle); (b) the high ratio of
the processing speed with respect to the power consumed in the active state (millions of instructions per
milliwatt); and (c) low power consumption in non-active states (standby, sleep, etc.) [10]. Following
these guidelines, a Texas Instruments TMS320C5505 [12] 16-bit fixed-point audio/speech processor,
featuring fast Fourier transform (FFT) unit, was chosen for this study.

In software, the DSP power can be lowered by minimizing portions of the time spent in the active
state, by shortening the wheeze detection algorithm’s execution time. Wheeze detection is performed
on features obtained from time-frequency decompositions of respiratory sound: short-time Fourier
transform (STFT), cepstral analysis, wavelets or linear prediction [13–16]. Most numerous are the
algorithms using computationally fast STFT [17–23]. However, to the best of our knowledge, no work
has been done regarding their mutual comparison in terms of the relation between their classification
accuracies and execution speeds.

Thus, the contributions of this article are: (a) the review of STFT-based wheeze detection algorithms;
(b) the analysis of the a priori computational complexity of the representative algorithms and their DSP
implementation; (c) the test environment for the automated assessment of the classification accuracies
of the algorithms running on the DSP; and (d) the analysis of the relation between the accuracies and
execution times, for two scenarios of different detection fidelities: (1) the detection of the occurrence
(event) of wheezing; and (2) the tracking of the wheeze duration.

The outline of the article is as follows: Section 2 describes the properties and the acquisition of the
respiratory sound signal. Section 3 reviews the previous work on the detection of wheezing, focusing
on STFT-based algorithms. Section 4 describes the implemented algorithms. Section 5 describes the
evaluation methodology: the hardware platform, test signals, testing procedures and metrics. The results
are listed in Section 6 and discussed in Section 7, and conclusions are drawn in Section 8.

2. Respiratory Sound Signal

2.1. Acquisition of Respiratory Sounds

Air streaming through airways produces mechanical vibrations, which are conducted through body
tissues to the skin surface [24]. The human body’s transfer characteristic is a low-pass-type with the
parameters varying with the local tissue. On the skin surface, vibrations are sensed by a transducer, most
commonly an electret-condenser microphones. The microphone is coupled to the skin surface through
an air cavity formed by a shallow conical or bell-shaped enclosure attached to the skin. As an alternative,
accelerometers can be attached directly to the skin surface [25]. Both the frequency characteristic and
dynamics of the signal acquired at the output of the transducer are patient dependent and affected by:
the measurement location [25], body posture [26], the geometry of the transducer coupling [27] and the
transducer design [28].

Usually, the transducer output signal contains heart sounds concentrated below 60 Hz superimposed
on the respiratory sound signal [29]. Thus, an analog bandpass filter is commonly used to isolate the
respiratory sound signal band. An amplifier with a gain of 40–60 dB is required to adjust the dynamics
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of the microphone output (order of magnitude: 1–10 mV) to the input range of an analog to digital
converter (ADC). Usually, the signal is digitized to 16-bit resolution, with a sampling frequency higher
than 5,000 Hz [30].

2.2. Time-Frequency Properties of Respiratory Sounds

Normal respiratory sounds are cyclostationary, exhibiting the repetition of respiratory cycles. Each
respiratory cycle can be divided into the inspiratory phase, the expiratory phase and the inter-respiratory
pause. The respiratory sounds of the inspiratory phase usually exhibit a higher amplitude and are of a
longer duration than the sounds during the expiratory phase [31]. Normal respiratory sounds’ frequency
spectrum is similar to a band-limited colored noise. The majority of the energy of the respiratory sounds
acquired over lungs is typically grouped into the 100 to 250 Hz band, while tracheal sounds have a wider
frequency band, with components extending to about 1,000 Hz.

Asthmatic wheezing is a time-continuous, tonal adventitious sound occurring during a fraction of the
respiratory phase (either inspirium, expirium or both). It can last from tens of milliseconds to several
seconds. Wheezing can be modeled as a single- or multi-component harmonic signal superimposed
on the frequency spectrum of a normal respiratory sound. The harmonic components originating from
wheezing typically appear in the frequency range between 100 and 1,500 Hz [31]. Both the amplitudes
and instantaneous frequencies of the harmonic components of wheezing gradually change throughout
its duration. In the rest of the text, we assume that the signal is divided into segments, short-enough in
order to be considered stationary segment-wise, allowing us to track the temporally-evolving frequency
content of respiratory sounds by STFT.

Figure 2. Time-frequency decomposition of respiratory sounds by short-time Fourier
transform (STFT). (a) Two respiratory cycles of normal breathing; (b) two respiratory cycles
containing wheezing.
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A comparison of STFT time-frequency decompositions of normal respiratory sounds and respiratory
sounds containing wheezing is shown in Figure 2. The harmonic components originating from wheezing
appear as continuous frequency peaks elevated against the noise of normal respiration. The peaks of
wheezing are localized along the frequency axis and spread in the direction of time axis.
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Table 1. Summary of the review of wheeze detection algorithms based on STFT signal decomposition. NN, neural network; SVM,
support vector machine; VQ, vector quantization; GMM, Gaussian mixture model.

Year,
Author

Window,
t/f-res.1

Preprocessing Feature Set Classification Dataset 2 Accuracy 3

1992, [32]
cosine,
25.6/39.0

power spectrum, detrend
(mean), normalization (stdev)

crest modeling
(mean and stdev)

decision tree not reported not reported

1995, [33]
rectangular,
100.0/9.8

amplitude spectrum amplitude spectrum NN 268×Wseg , 209×Nseg ACdur = 91.0− 96.0

1998, [34]
Hann,
42.7/23.5

amplitude spectrogram
t-f continuity of spectral
crests (2D gradient)

decision tree
4×Wsubj , 4×Nsubj ,
24–36 s each

SEdur = 68.0,
SPdur = 70.0

2004, [17]
Hann,
51.2/19.5

power spectrum, detrend (band-
wise
mean), normalization (stdev)

t-f continuity of spectral
crests (mean-based model)

decision tree 16×Wsubj , 15×Nsubj
SEn.r. = 86.2,
SPn.r. = 96.0

2005, [18]
Hann,
32/15.6

power spectrum
t-f continuity of audible spectral
crests (energy based model)

decision tree 4×Wsubj , 12×Nsubj
not reported

2006, [21]
Hann,
11.56/5.4

amplitude spectrogram,
detrend (mean)

centroid frequency,
duration of closed shapes

decision tree
15×Wsubj , 15×Nsubj

(90×Wcycle, 99×Ncycle)
SEevent = 96.7,
SPevent = 90.9

2007, [20]
cosine,
8.2/19.5

detrend (mean), normalization
(stdev), Wavelet denoising

t-f continuity of spectral crests
(modeled by mean and stdev)

decision tree 7×Wsubj (65×Wintv)
SEevent = 95.4

2007, [19]
Hann,
23.2/2.7

zero padding, detrend by
moving average

t-f continuity of spectral crests
(mean-based model)

decision tree
13×Wsubj

(337×Wintv)
SEevent = 95.5±4.8,
SPevent = 93.0± 9.3

2008, [35]
not
reported

amplitude spectrum cross-correlation index
empirical
threshold

6×Wsubj , 7×Nsubj
SEn.r. = 83.0,
SPn.r. = 100.0

2008, [36]
Gaussian,
11.6/86.1

power spectrum
mean distortion between his-
tograms of sample entropy

empirical
threshold

7 × Wsubj , 7 × Nsubj

(86×Wphase, 100×Nphase)
SEn.r. = 83.0,
SPn.r. = 100.0
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Table 1. Cont.

Year,
Author

Window,
t/f-res. 1 Preprocessing Feature Set Classification Dataset 2 Accuracy 3

2009, [37]
Hann,
60/15.6

normalized power spectrum,
maxima

change of Shannon entropy
(ratio, difference)

empirical
threshold

10×Wsubj , 7×Nsubj ACn.r. = 84.4

2009, [38]
Hamming,
26/37.5

amplitude spectrum
f50/f90 + time-domain
zero-crossings, kurtosis and
Renyi entropy

FDA,
Neyman
Paersons

7×Wsubj

(246×Wseg , 246×Nseg)
ACdur = 93.5

2009, [22] 45.5/8.8
spectrogram, Laplacian 2D
filtering, half-thresholding

spectrogram projection NN 40×Wcycle, 72×Ncycle)
SEevent = 86.1,
SPevent = 82.5,
ACevent = 84.3

2009, [15] 170.6/5.9 power spectrum 26 power spectrum sub-bands
NN, VQ,
GMM

12×Wsubj , 12×Nsubj
SEevent = 87.0,
SPevent = 85.0

2011, [23]
Gaussian,
not
reported

spectrogram, spectral dominance
continuity, position,
spread, sparseness

SVM
14 × Wsubj , 7 × Nsubj

(305×Wphase,
284×Nphase)

ACevent = 92.7± 2.9

2011, [39]
cosine,
128/7.8

feature-dependent
kurtosis, f50/f90, Shannon’s
entropy, spectral flatness,
tonality index

SVM 28×Wsubj , 28×Nsubj ACdur = 85.0− 92.0

1 Temporal resolution is reported in milliseconds. Frequency resolution is reported in Hertz/bin. 2 W denotes part of the
dataset with sounds of “wheezing” (containing positives). N corresponds to “non-wheezing” (only negatives). Subscripts
denote the method of reporting the dataset size: subj, number of subjects (patients); cycle, number of respiratory cycles;
phase, number of respiratory phases; intv, number of signal intervals (e.g., uninterrupted intervals of wheezing); seg, signal
segment of the fast Fourier transform’s (FFT) window-length. 3 Accuracy is reported using standard statistical metrics, in
(%): SE, sensitivity; SP , specificity; AC, accuracy. For definitions, see Section 5.4. Subscripts define the fidelity upon
which the accuracy was calculated: dur, duration of wheezing was measured; event, occurrences of sequences of wheezing
are counted; n.r., not reported.



Sensors 2014, 14 6541

3. Review of the STFT-Based Wheeze Detection Algorithms

This section provides an overview of the wheeze detection algorithms based on STFT decomposition.
The employed preprocessing steps, feature extraction and classification methods are discussed. Table 1
summarizes the publications reviewed.

3.1. Signal Decomposition by STFT

The first step of a wheeze detection algorithm is the time-frequency decomposition of the respiratory
sound signal in order to obtain its time-varying frequency content. Discrete STFT is used, because of
the fast execution, despite its known limitations regarding temporal-frequency uncertainty.

Discrete STFT X[m, k] defined in Equation (1) calculates the k-point discrete Fourier transform of
discrete-time windows w, sliding by step m over the signal, x. The non-rectangular window function is
used to prevent spectral leakage due to finite window length N . Commonly, cosine window functions,
such as Hann’s or Hamming windows, are used. Furthermore, the overlap between successive windows
may be used to show transients of a short duration in the signal [15].

X[m, k] =
∞∑

n=−∞

x[n]w[n−m]e−j2πnk/N (1)

Most of the wheeze detection algorithms operate on power spectrum P [m, k] (Equation (2)) or
amplitude spectrum A[m, k] (Equation (3)). In comparison to the amplitude spectrum, the power
spectrum causes the attenuation of lower magnitude frequency components potentially containing the
high-frequency harmonics of wheezing, due to the omission of the square root. Information from phase
spectrum Φ[m, k] (Equation (4)) may also be used.

P [m, k] = |X[m, k]|2 = Re(X[m, k])2 + Im(X[m, k])2 (2)

A[m, k] =
√
|X[m, k]|2 (3)

Φ[m, k] = arctg
Im(X[m, k])

Re(X[m, k])
(4)

3.2. Preprocessing of the Spectrum

Preprocessing may include the following steps: equalization of the amplitude (or power) spectrum,
spectral denoising and enhancement of the frequency resolution.

Equalization of the spectrum is performed for the compensation of individual patient and
measurement site variations. The equalization step is implemented by detrending the spectrum of
normal respiratory sound, thus leaving only high-magnitude spectral peaks standing out. Depending
on later processing steps, it may be accompanied by the normalization of the spectrum in order to
make it independent of respiratory flow. Early wheeze detection algorithms implemented equalization
by subtracting the mean value from the power spectrum and, afterwards, normalization by dividing



Sensors 2014, 14 6542

the spectrum by the standard deviation [32]. The equalization step was refined in [17] by dividing
the spectrum into equidistant bands and performing band-wise detrending by the mean, followed by
normalization using the band-wise standard deviation. In [19], the authors implemented equalization by
point-wise detrending using a moving average filter.

Spectral denoising is used in order to reduce the number of isolated transient peaks (potentially
producing false positives), but preserving spectral crests originating from wheezing. Wavelet denoising
was proposed for this task by [20]. Some authors applied 2D image processing tools, such as bilateral
edge preserving filtering [21] and Laplacian edge enhancing filtering [22], in order to enhance wheezes
against the background noise in the spectrograms.

Enhancement of the frequency resolution of the STFT improves the frequency-localization of the
spectral peaks originating from wheezing. Zero padding is the most straight-forward approach to
increasing the frequency resolution [19]. Spectrogram reassignment and temporal-spectral dominance
techniques of enhancement of the STFT time-frequency resolution were compared in [23].

3.3. Feature Extraction

Wheezing is discriminated from normal respiratory sound using spectral and temporal features
extracted from STFT. The most commonly used are the features describing the shapes of the wheezing
peaks in the time-frequency plane. Most algorithms using such features operate segment-wise, iterating
two steps: (a) an extraction of spectral features (frequencies, the number of wheezing peaks, etc.) from
the current signal segment, followed by; (b) tracking the temporal features (continuity, duration, etc.)
using information from prior segments. In order to reduce the number of temporal features processed
in Step (b), several approaches are proposed in Step (a) for the discrimination of the spectral shapes
originating from wheezing, from the isolated peaks of the noisy respiratory spectrum.

Due to signal windowing, the discrete frequencies of wheezing are smeared across a band occupying
several frequency bins in the amplitude (or power) spectrum, appearing as flattened “spectral crests”,
rather than isolated discrete spectral peaks. A common approach of modeling the shape of such spectral
crests is by low order statistical moments: the mean and variance (or standard deviation). This approach
was first introduced in [32] by posing a set of relations between the mean value of different subsets of
neighbor frequency bins surrounding each spectral maximum and the standard deviation of the whole
spectrum. It was further refined by [17,20]. Both authors noticed that, if the spectrum has already been
normalized (by the standard deviation) in the preprocessing step, the independence of the classification
results from respiratory flow can be achieved by excluding the standard deviation from the spectral crest
model. A different means of achieving flow independence was shown by [19]. There, due to the absence
of the spectrum normalization step from preprocessing, the features describing spectral crests included
both the mean and standard deviation, calculated locally around spectral maximums.

An alternative model of spectral crests was proposed in [18] with the aim of detecting only the
audible sounds of wheezing. The audibility of a tonal signal masked in the noise of normal respiration
was modeled by the ratio of the energy contained in the spectral crest to the energy contained in
the noise of the normal respiratory sound. The bandwidth of such a wheezing crest was considered
frequency-dependent, as analytically described by the psychoacoustic model.
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The extraction of the spectral and temporal features describing wheezing crest shapes can also be
performed simultaneously in time and frequency (on 2D spectrograms) by using image processing
techniques. In [34], the detection of time-frequency plane crests was performed by gradient filtering.
In [21], features describing centroid frequencies and the duration of spectral crests were calculated using
edge detection Prewitt filtering, image closing and opening steps.

Apart from the features related to wheezing crest shapes, a variety of alternative STFT features were
proposed in recent publications. One of the commonly used features is entropy, measuring the degree of
grouping (clustering) of spectral components. Several variations are proposed. The difference and ratio
between Shannon’s entropy of probability mass functions of power-spectra maximums in successive
time-windows were evaluated for single-feature classification in [37,40]. The mean distortion among
sub-band histograms and the mean histograms of the sample entropy was evaluated in [36]. Rényi
entropy was proposed in [38] as a measure of the time-domain signal’s distribution uniformity. In
addition, [38] evaluates the statistical parameters of kurtosis and the f50/f90 ratio as spectral features.
These features were later compared in [39] to the spectral features describing signal tonality: spectral
flatness and tonal index. This work has been extended in [41] in the direction of selecting the most
discriminating feature set for wheeze detection by applying the minimal redundancy, maximal relevance
technique, affirming the potency of spectral tonality. Of the other features, the cross-correlation index of
successive spectra was proposed in [35]. Furthermore, an integral of time-varying power spectral content
was used as a feature in [22].

3.4. Classification

Decision tree classifiers have most commonly been used in algorithms using features describing
(tracking) the shapes of wheezing crests [17–20]. The tree structure is designed to track features
describing spectral crests originating from wheezing in the time and frequency plane.

By employing a precise formalism, a linear support vector machine (SVM) classifier was used with
wheezing crest shape features in [23]. A SVM was also utilized in [39] with spectral features describing
tonality, spectral flatness, f50/f90, kurtosis and entropy.

Some authors used features derived from STFT as an input to a neural network (NN). The initial study
of [33] investigated the usage of all STFT amplitude spectrum samples directly as NN input coefficients,
identifying the need for input vector dimensionality reduction. This was addressed in [22] by using the
projection of the spectrogram to frequency axis as features (NN). In a comprehensive study [15], neural
networks were compared to vector quantization (VQ) and Gaussian mixture model (GMM) classification
systems, with the average magnitudes of power spectral bands as features.

3.5. Review Summary

Table 1 summarizes the review of wheeze detection algorithms. Representative algorithms can be
grouped into two groups. The first group is comprised of algorithms using features describing the shapes
of wheezing crests, and the second group contains algorithms performing classification on alternative
features. Several difficulties arise when comparing the results reported by different authors. First,
it is unclear whether the features, other than those directly describing wheezing crest shapes, can
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provide sufficient information for accurate classification. Secondly, a variety of different datasets is used
among the authors, as no publicly available standard dataset exist, containing normal and pathological
respiratory sounds. Thirdly, classification accuracy testing methodologies and the associated accuracy
reporting metrics vary. Nevertheless, two operating scenarios are commonly referred to: (1) the detection
of the occurrence of sequences of wheezing; or (2) a wheezing sequence duration quantification. Finally,
the execution speed of the proposed algorithms is seldom analyzed and reported.

4. Analysis of Implemented Algorithms

Following the presented review, we compare wheeze detection implemented using four algorithms,
offering different levels of detection fidelity. The first two are the spectral crest shape tracking
algorithms. The assumption is that such algorithms may provide the highest fidelity of wheeze
classification, including estimation of the durations, number and frequency of the individual harmonic
components composing the sound of wheezing. The algorithms differ by their spectral features: the first
algorithm models the spectral crests using low-order statistical moments (mean and variance), building
upon [17,19,20], and the second using energy (inspired by [18]).

The third algorithm also enables the estimation of the duration of wheezing, but does not enable
distinguishing between individual frequency components. We implement the algorithm, tracking the
duration of tonal intervals within the respiratory signal, facilitating a tonality feature recently proposed
by [39].

The lowest fidelity algorithm is aimed solely at the detection of the occurrence of wheezing, without
any prospect of estimating the duration of wheezing. We implemented the most representative of
such algorithms, the one using Shannon’s entropy of spectral peaks (as in [37]) to detect uniformity
in the spectrum.

Figure 3. Program blocks used for features extraction from the respiratory sounds.
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The complete set of features used in our work is shown in Figure 3. Features denoted as spectral
are related to individual signal segments, while those denoted as temporal describe wheezing along the
temporal axis in the time-frequency plane. The following sections describe the implementation of each
program block and analyze their a priori computational complexity.

The analysis of computational complexity is performed by estimating the worst-case number of
multiplications and additions, including multiplicative constants (additive constants are omitted from
the analysis). No assumptions are made regarding any architectural specifics of the target DSP.
Common elementary mathematical functions, listed in Table 2, are assumed to be implemented using
the approximation methods listed in the column “Implementation”. Approximation methods are chosen
to match the ones used in the experimental DSP implementation [42]. Their computational complexity,
described by the associated variables, NitNR, NitN , NitTL, NitTS , NitTC , NitTA, defining their numerical
precisions, is used throughout the analysis.

Table 2. The computational complexity of elementary mathematical functions.

Function Implementation Multiplications Additions

x/y Newton–Raphson method, in NitNR iterations 3NitNR NitNR√
x Newton’s algorithm, in NitN iterations 2NitN 2NitN

log2(x) Taylor series, in NitTL terms NitTL(NitTL + 1)/2 NitTL

sin(x) Taylor series, in NitTS terms (2NitTS − 1)2 NitTS

cos(x) Taylor series, in NitTC terms (2NitTC−2)(2NitTC−1) NitTC

arctg(x) Taylor series, in NitTA terms (2NitTA − 1)2 NitTA

Table 3. The computational complexity of the signal decomposition program blocks.

Program Block Comment Multiplications Additions

Windowing and STFT,
Equation (1)

calculated for the signal segment of length
N by radix-2 decimate-in-time FFT

2N log2(N) 3N log2(N)

Power spectrum,
Equation (2)

calculated for Nb < N bins corresponding
to the bandwidth of respiration

2Nb Nb

Amplitude spectrum,
Equation (3)

calculated on Nb bins, the square root
is implemented as in Table 2

2NbNitN 2NbNitN

Phase spectrum,
Equation (4)

calculated on Nb bins, division and arctg
implemented as in Table 2

Nb((2NitTA−1)2+

3NitNR + 1)

Nb(NitNR +

NitTA − 1)

4.1. STFT Decomposition and Preprocessing of the Spectrum

Firstly, signal segments are windowed using the Hamming’s cosine windowing function, and STFT
is calculated according to Equation (1). Depending on the features to be extracted, STFT is followed
by one or several of the following preprocessing steps. The power spectrum of the signal segment is
calculated as in Equation (2). From the power spectrum, the amplitude spectrum (module) of the current
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signal segment is derived according to Equation (3). The phase spectrum is calculated according to
Equation (4). The estimates of the a priori computational complexity of the signal decomposition and
preprocessing program blocks are shown in Table 3.

4.2. Feature Extraction

4.2.1. Signal Segment Energy

The energy of current signal segment E[m], defined in Equation (5), is used as the feature for the
identification of respiratory pauses. The energy is calculated by the summation of the power spectrum
components of the current segment.

Minimal and maximal energies Emin and Emax, given in Equation (6), are used as thresholds. They
are obtained from the stored history of the previous segments’ energies. The number of stored segment
energies, ME , is chosen to cover the time-interval of at least one respiratory cycle.

E[m] =
∑
k

P [m, k] (5)

Emin = min(E[m−ME]...E[m]), Emax = max(E[m−ME]...E[m]) (6)

4.2.2. Spectral Tonality

Spectrum tonality is a feature describing the existence of the harmonic content within each signal
segment. It is calculated as proposed in [40]. Firstly, the amplitude and phase spectra, extracted
as defined in Equations (3) and (4), are stored for the history of two preceding signal segments (at
time-instants m − 1 and m − 2). Based on this, the current signal segment’s amplitude, Â[m, k], and
phase, ϕ̂[m, k], spectra estimates are calculated, as shown in Equation (7):

Â[m, k] = 2A[m− 1, k]− A[m− 2, k], ϕ̂[m, k] = 2ϕ[m− 1, k]− ϕ[m− 2, k] (7)

The amplitude and phase spectrum estimates are used for the calculation of weight coefficients
W [m, k], defined in Equation (8). W [m, k] is proportional to the estimation error of each frequency
component, k, in the current signal segment, m.

Re(X̂[m, k]) = Â[m, k]cos(ϕ̂[m, k])

Im(X̂[m, k]) = Â[m, k]sin(ϕ̂[m, k])

W [m, k] =

√
(Re(X[m, k])− Re(X̂[m, k]))2 + (Im(X[m, k])− Im(X̂[m, k]))2

A[m, k] + |Â[m, k]|
(8)

W [m, k] is then used to calculate the weighted segment’s energy, Ew[m], shown in Equation (9):

Ew[m] =
∑
k

W [m, k]P [m, k] (9)
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Finally, by comparing the weighted and unweighted segment’s energy, tonal index T [m], related to
the current signal segment, is defined in Equation (10). Based on this, the temporal feature, δmtonal,
describing the duration of tonal sections, is extracted.

T [m] = log2
Ew[m]

E[m]
(10)

4.2.3. Power Spectrum Peaks

Within each signal segment, m, the potential locations of frequency components originating from
wheezing are first identified by searching the segment’s power spectrum, P [m, k], for indices at
which local maxima (peaks) occur. The peaks’ magnitudes, Ppeak[m, p], their total number, Np[m]

Equation (11), and their frequencies, kpeak[m, k] Equation (12), are extracted:

Ppeak[m, p] = {P [m, k] : P [m, k] > P [m, k + 1], P [m, k − 1]}, p = 1...Np[m] (11)

kpeak[m, p] = {k : P [m, k] = Ppeak[m, p]} (12)

4.2.4. Entropy of Power Spectrum Peaks

Due to its property of expressing signal complexity, we evaluate Shannon’s entropy as a detector
of grouping in the spectrum, thus indicating the occurrence of wheezing. We calculate it similarly as
proposed in [37].

First, extracted power spectrum peaks Ppeak[m, p] are rescaled according to Equation (13) to produce
normalized spectral peaks Pnorm,peak[m, p]:

Pnorm,peak[m, p] =
Ppeak[m, p]∑
p Ppeak[m, p]

(13)

Then, the signal segment’s entropy, En[m], is expressed as in Equation (14):

En[m] = −
∑
p

(Pnorm,peak[m, p] · log2(Pnorm,peak[m, p])) (14)

The most noticeable changes in entropy are expected upon the transition between signal segments of
the normal respiratory sound and segments containing wheezing. Thus, a temporal feature, Enratio[m],
defined in Equation (15), describing the ratio of entropies of two successive signal segments, is extracted.

Enratio[m] =
En[m]

En[m− 1]
(15)

4.2.5. Spectral Crests Modeled by Low-Order Statistical Moments

The first approach to spectral crest modeling is based on the first- and second-order statistical
moments (mean, standard deviation) describing the distribution of the magnitudes of the subset of power
spectrum components, Pband[m, p], forming a band around the central frequency, kpeak[m, p], of the each
of the Np power spectrum peaks (see Equation (16)). Bandwidth Bcrest (see Figure 4, left) is chosen
during algorithm training.
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The mean value and the standard deviation of all power spectrum components within each of
p bands Pband[m, p] are calculated. Those peaks, Ppeak[m, p], the magnitudes of which exceed the
condition defined in Equation (17), are declared to be the peaks of the spectral crests, Pcrest[m, c],
potentially originating from wheezing. The constants, Cm, Cs, are obtained during the training phase.
Crest-peak frequencies kcrest[m, k] and the number of crests, Nc[m, k], are also extracted, as shown in
Equations (17) and (18):

Pband[m, p] = {P [m, kpeak[m, p]− Bcrest

2
]...P [m, kpeak[m, p] +

Bcrest

2
]} (16)

Pcrest[m, c] ={Ppeak[m, p] : Ppeak[m, p] > Cmean ·mean(Pband[m, p])

+ Cstd · stdev(Pband[m, p])}, c = 1...Nc[m] (17)

kcrest[m, c] = {k : P [m, k] = Pcrest[m, c]} (18)

Figure 4. (Left) Low-order statistical model of the crest shape; (Right) Crest shape
modelled by energy.
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4.2.6. Spectral Crests Modeled by Energy

An alternative approach to spectral crest modeling is to measure the distribution of energy localized
around each identified spectral peak. This model is a modified version of the work presented in [18],
with the omission of psychoacoustic auditory modeling.

For each of the identified peaks, Ppeak[m, p], three bands are defined, concentrically spanning around
the peak frequency, kpeak[m, p]: Bcrest < Bnarrow < Bwide (see Figure 4, right). Bcrest is the bandwidth
containing the main lattice of a single harmonic represented using a combination of the used signal
window (e.g., Hamming) and the time-frequency resolution of STFT. Bnarrow and Bwide define the
surroundings of each spectral peak and are empirically set to 80 or 120 Hz, respectively. Those spectral
peaks for which Equation (19) holds are proclaimed crest peaks Pcrest[m, c]. Band energies Enarrow[m, p]

and Ewide[m, p] are calculated analogously to Ecrest[m, p]. Constants Cnarrow and Cwide are obtained
during training.
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Pcrest[m, c] = {Ppeak[m, p] :
Ecrest[m, p]

Enarrow[m, p]
> Cnarrow and

Ecrest[m, p]

Ewide[m, p]
> Cwide} (19)

Ecrest[m, p] =

kpeak[m,p]+Bcrest/2∑
kpeak[m,p]−Bcrest/2

P [m, k]

4.2.7. Temporal Features of Crests

Two temporal features of spectral crests are derived in order to discriminate longer spectral crests
originating from wheezing from the short, isolated transients in the time-frequency plane.

The first feature is the continuity of the spectral crests in the time-frequency plane. Continuity is
described by extracting the deviations of each crest’s peak frequency, kcrest[m, c], along the temporal
axis, as shown in Figure 5. Deviations δkcrest[1...Mcont, c] are extracted pairwise between the current
signal segment, m, and each of its Mcont preceding neighbor segments, as shown in Equation (20). The
second temporal feature is the duration, δmcrest[c], of each continuous spectral crest.

Figure 5. Tracking spectral crests in the temporal plane for continuity and duration.
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δkcrest[1, c] =|kcrest[m, c]− kcrest[m− 1, c]|
... (20)

δkcrest[Mcont, c] =|kcrest[m, c]− kcrest[m−Mcont, c]|

The computational complexity of each feature extraction program block is listed in Table 4.
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Table 4. The computational complexity of feature extraction program blocks, with variables
defined in Table 2.

Feature Multiplications Additions

Segment energy,
Equations (5)–(6)

Nb 3Nb

Tonality,
Equations (7)–(10)

Nb((2NitTC − 2)(2NitTC − 1) + (2NitTA − 1)2

+ t2NitN + 3NitNR + 5) +NitTL(NitTL + 1)/2

Nb(NitTC + NitTA + 2NitN +

NitNR +1) +NitNR +NitTL

Power spectrum peaks,
Equation (11)

- 2Nb +N2
p

Entropy,
Equations (13)–(15)

Np(NitTL(NitTL + 1) + 3) + 3NitNR
Np(2(NitTL − 1) +NitNR + 1)

+NitNR

Spectral crests (moments),
Equation (17)

Np(3Bcrest + 2NitN + 2) Np(3Bcrest + 2NitN − 2)

Spectral crests (energy),
Equation (19)

Np(Bcrest +Bnarrow +Bwide + 2(3NitNR + 1))
Np(Bcrest + Bnarrow + Bwide +

2(NitNR + 1)− 3)

Crests continuity and
duration, Equation (20)

- McontN
2
c + 3Nc

4.3. Decision Tree Classification

A total of four wheeze detection algorithms are developed, by organizing subsets of features from
Section 4.2 into decision trees, shown in Figure 6: two crest tracking algorithms sharing the analogous
decision trees (labeled Algorithms 1 and 2), a tonality tracking algorithm (Algorithm 3) and an entropy
change detector (Algorithm 4). All decision trees share the same root, evaluating the segment energy,
in order to decide whether the segment is part of a respiratory cycle or an inter-respiratory pause,
enabling early termination. The remaining branches are algorithm-specific. The classification operates
segment-wise, assigning each signal segment to one of two classes: “non-wheezing”, or “wheezing”.

Figure 6. Decision trees of the implemented wheeze detection algorithms.
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E[m] > CE � Emin

E[m] > CE · Emin

E[m] > CE · Emin

δkcrest,j < Ccont,jNcrests > Ccrests

Mdur,min < δmcrest[c] < Mdur,max

Mdur,min < δmtonal < Mdur,max

T[m] > CT

Enratio[m] > Cent
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4.3.1. Algorithms 1 and 2: Crest Tracking

First, the existence of spectral crests is determined by modeling the surroundings of the power
spectrum peaks, either using statistical moments as in Algorithm 1 (see Equation (17)), or as in
Algorithm 2, using energy (see Equation (19)). Extracted crests are counted in order to check that
feature Nc satisfies 1 < Nc < Ccrests. Next, the temporal features of crests are evaluated.

First, the continuity describing features δkcrest[1, c]...δkcrest[Mcont, c] are checked against Mcont

thresholds Ccont[1]...Ccont[Mcont] according to Equation (21). Those spectral crests satisfying the
condition are considered continuous. For Mcont > 1, individual deviation thresholds may be chosen.
Constants Ccont[1]... Ccont[Mcont] are acquired during training.

δkcrest[1, c] < Ccont,1 and δkcrest[2, c] < Ccont,2 ... and δkcrest[Mcont, c] < Ccont,M (21)

Finally, the duration, δmcrest[c], of each spectral crest is evaluated to lie between the minimal and
maximal durations, Mdur,min, and Mdur,max, respectively. Mdur,min is adjusted to the duration defining
continuity, Mdur,min = Mcont. Mdur,max is chosen to reflect the maximal expected uninterrupted duration
of wheezing, typically being a duration of the respiratory cycle.

4.3.2. Algorithm 3: Tonality Tracking

The tonality tracking algorithm calculates the tonality of each signal segment according to
Equations (7)–(10). Segments satisfying T [m] > CT are considered tonal. Constant CT is acquired
through training. In the final decision tree branch, the duration of the successive signal segments marked
as tonal, δmtonal, is compared against constants Mdur,min and Mdur,max.

4.3.3. Algorithm 4: Entropy Change Detection

The algorithm is designed to detect transitions between the interval of normal respiration and the
interval containing wheezing. It compares the ratio of entropies, Enratio[m] (see Equations (13)–(15)),
against a threshold, Cent. The threshold is acquired during training.

Table 5. The total computational complexity of each implemented algorithm. For definitions
of the variables, see Table 2.

Algorithm Multiplications Additions

Algorithm 1 N(2log2N + 1) + 3Nb +Np(3Bcrest + 2NitN + 2)
3Nlog2N+6Nb+N2

p+Np(3Bcrest+2NitN−
2) +Nc(Mcont + 1)

Algorithm 2
N(2log2N + 1) + 3Nb +Np(Bcrest +Bnarrow+

Bwide + 6NitNR + 2)

3Nlog2N + 6Nb + N2
p + Np(Bcrest +

Bnarrow + Bwide + 2(NitNR + 1) − 3) +

Nc(Mcont + 1)

Algorithm 3
N(2log2N +1)+Nb(2(2NitTA− 1)2+(2NitTC −
2)(2NitTC − 1) + 4NitN + 6NitNR + 9) +

NitTL(NitTL + 1)/2

3Nlog2N +Nb(4NitN +NitTC +NitTA+

NitNR + 5) +NitNR +NitTL

Algorithm 4
N(2log2N + 1) + 3Nb +Np(NitTL(NitTL + 1) +

3) + 3NitNR

3Nlog2(N)+6Nb+N2
p +Np(2(NitTL−1)+

NitNR + 1) +NitNR
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The total computational complexity estimates of all algorithms are shown in Table 5. They are
obtained by summing the complexities of those program blocks from Tables 3 and 4, participating in
each algorithm according to Figure 6.

5. Experimental Evaluation Methodology

5.1. Hardware Platform and Implementation

The algorithms described in Section 4.3 were first implemented in MATLAB and afterwards ported
to DSP. A development board EZDSP-C5505-USB (Texas Instruments) [43] was used for prototyping
of the wheeze detection sensor node. The board features an analog audio input/output interface,
a TLV320AIC3204 analog to digital converter (ADC), a TMS320C5505 DSP core, an universal
asynchronous receiver/transmitter (UART) and a debugging interface XDS-1000. The signal was
digitized at the ADC’s sampling frequency of fs = 8, 000 Hz. The Inter-integrated circuit sound bus
(I2S) was used for the signal transport from the ADC to the DSP. The direct memory access (DMA)
units’ interrupts were used for the synchronization of the main processing tasks: (a) the signal acquisition
task; and (b) the classification task; shown in Figure 7.

Figure 7. The organization of the processing task on the digital signal processor (DSP).

1 ... NN/2 ...

1 ... NN/2 ...
1 ... NN/2 ...

Ncycl,tot

The classification task operated on fixed-sized signal segments of N = 512 samples, corresponding
to 64 ms. The task resulted in declaring each segment to either be the “wheezing” or “normal” class.
The result was output by UART. To compensate for the signal attenuation around the cosine window
edges, segments were overlapped by 50%, resulting in a total of 32 ms available for the processing of
each signal segment. With the DSP core operating at a 100 MHz clock, this sufficed for maximally
Ncycl,tot = 3.2 × 106 single-cycle instructions for the processing of each segment, and this yields a
power consumption of approximately 22 mW. For the remainder of the cycle, the DSP is kept in standby
state, while the DMA periphery performs the acquisition task, while consuming only 0.4 mW. The DSP
is woken up upon the DMA’s interrupt.

Texas Instruments “DSPlib” library functions [42] were used for the implementation of the common
signal processing functions, such as algebraic operations on vectors, trigonometric, logarithmic
functions, statistical functions, FFT, etc., in 16-bit fixed-point arithmetic. This ensures the reproducibility
of the results and optimizes the execution performance by exploiting C5505’s architectural features, such
as two multiply-and-accumulate (MAC) units and the FFT coprocessor.
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5.2. Test Signals

The wheeze detection algorithms were tested on a database of prerecorded respiratory sounds. Our
database consisted of a total of 26 recordings. Thirteen of them were of normal breathing (N01...N13),
and each of the other 13 audio recordings, labeled W01...W13, contained more than one uninterrupted
interval of wheezing. The number of recordings used in our study corresponds to the dataset sizes
used throughout the literature (see Table 1, column “Dataset”). Due to the lack of a single standard
respiratory sound database, the recordings used in our study were drawn from multiple commonly
referenced Internet sources [44–48], and some were recorded in the course of previous research [49].

Table 6 provides the details of each recording. “Dur.” is the duration of the recording in seconds.
“Seg.” refers to the number of 50%-overlapped 64-ms signal segments. “Resp. phases” is the total count
of inspiratory and expiratory phases. “Seg.” and “Resp. phases” define the number of samples used in the
statistical evaluation of results. “Wheeze intervals” are the count numbers of the intervals of wheezing
within each recording. “Sample rate” is the frequency at which the recording was originally digitized.

Table 6. Database of respiratory signals. “Dur.” is the duration of the recording in seconds.
“Seg.” refers to the number of 50%-overlapped 64-ms signal segments. “Resp. phases”
is the total count of inspiratory and expiratory phases. “Seg.” and “Resp. phases” define
the number of samples used in the statistical evaluation of results. “Wheeze intervals” are
the count numbers of the intervals of wheezing within each recording. “Sample rate” is the
frequency at which the recording was originally digitized. In the labels column, N stands for
normal breathing, while W stands for wheezing.

Normal Respiratory Sounds Pathological Respiratory Sounds

Label
Dur.
(s)

Seg.
Resp.
Phases

Sample
Rate (kHz)

Label
Dur.
(s)

Seg.
Resp.
Phases

Wheeze
Intervals

Sample
Rate (kHz)

N01 12.76 398 8 44.1 W01 11.89 371 11 7 44.1
N02 13.48 421 8 44.1 W02 26.73 835 10 5 22.05
N03 10.09 315 6 11.025 W03 15.83 494 16 7 22.05
N04 6.48 202 4 11.025 W04 4.60 143 4 3 11.025
N05 3.12 97 2 11.025 W05 8.04 251 7 3 11.025
N06 6.32 197 4 11.025 W06 10.10 315 9 4 11.025
N07 5.33 166 4 11.025 W07 20.00 625 12 6 8
N08 5.34 167 4 11.025 W08 7.52 235 6 3 11.025
N09 12.86 402 6 8 W09 9.48 296 6 3 44.1
N10 10.09 315 11 11.025 W10 10.15 317 8 4 8
N11 20.00 625 10 8 W11 29.96 936 30 15 44.1
N12 9.99 312 4 11.025 W12 10.60 331 6 2 8
N13 25.76 805 11 44.1 W13 9.70 303 6 3 8
Total 141.62 4,422 82 Total 174.60 5,452 131 65
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5.3. Testing Environment

An environment for signal annotation, algorithm training and testing was designed in MATLAB
(see Figure 8). The annotation of the referent classification results was performed by an expert’s
audio-visual inspection of the signals’ waveforms and spectrograms. Intervals containing normal
respiratory sounds were annotated as negative (N) and intervals containing wheezing as positive (P). The
number of annotated intervals of wheezing is provided for each signal, W01...W13, in column “Wheeze
intervals” of Table 6. The temporal resolution of the annotations is adjusted to the segment size upon
which the wheeze detection algorithm was running on the DSP (determined by the signal segment size,
the overlap and the development board’s ADC sampling frequency).

Figure 8. The test environment used for the automated assessment of the classification
accuracy of the algorithms running on the DSP. ADC, analog to digital converter.

Input: PC audio-out to ADC

Output: UART

Dataset:
Respiratory sounds 
N01...13, W01...13

Referent annotation
(positives, 
negatives)

C5505-EZDSP 
development board

Test results
TP/TN/FP/FN

To simulate a realistic signal chain, training and testing was conducted by outputting test signals
through the PC sound-card line-out to the C5505-EZDSP development board’s ADC input. The results
of the segment-wise two-class classification (“normal” or “wheezing”) were returned from the DSP
to the PC through UART. Comparing each classification result of each (64 ms) signal segment to the
referent annotation, each segment was designated into one of four categories, true positive (TP), true
negative (TN), false positive (FP) or false negative (FN), enabling the calculation of the number of
classification results belonging to each category (NTP , NTN , NFP and NFN ).
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5.4. Experiments

5.4.1. Testing of Classification Accuracy

Classification accuracy was tested in two operating scenarios:

1. Wheeze duration tracking scenario. In this scenario, the dataset used for statistical evaluation
consisted of a total of 4,422 segments of normal respiratory sounds, N01...N13, and 5,452
segments containing wheezing (W01...W13), each segment corresponding to 64 ms of sound. For
details, please refer to column “Seg.” in Table 6. NTP , NFP , NTN and NFN were calculated
segment-wise.

2. Detection of the occurrence of wheezing in a respiratory phase. For this scenario, the annotations
of the test-signals were readjusted for the classification results evaluated respiratory phase-wise.
Whole respiratory phases containing more than one interval of wheezing were annotated as referent
positives, and the phases without the occurrence of wheezing as referent negatives. Thus, the
dataset consisted of a total of 65 positives (found throughout W01...W13) and 148 negatives
(of those 66 in W01...W13 and the 82 in N01...N13), as seen from column “Resp. phases” in
Table 6. NTP , NFP , NTN and NFN were calculated based on the classification results obtained
for each respiratory phase. Due to the DSP still operating segment-wise, the following mapping
is introduced: the respiratory phase containing wheezing (annotated positive) was considered TP
if containing at least one positively classified signal segment. Furthermore, the respiratory phase
was categorized as FP in the case of the existence of positively detected signal segments in the
respiratory phase lacking the occurrence of pathology. This is analogously so for TN and FN.

From NTP , NTN , NFP and NFN , sensitivity SE, specificity SP and accuracy AC were calculated as
defined in Equation (22). Sensitivity measures the fraction of correctly classified samples of wheezing
(from the subset of test samples composed only of positives). On the other hand, specificity measures
the percentage of correctly classified samples of normal respiration (in a signal containing exclusively
negatives), while accuracy measures the overall performance.

SE =
NTP

NTP +NFN

, SP =
NTN

NTN +NFP

, AC =
NTP +NTN

NTP +NFP +NFN +NTN

(22)

For both operating scenarios, the leave-one-out method was used for training and testing, due to the
limited size of the test signal database. The method tested each of N = 26 signals from the database,
using the classification thresholds obtained through training on the remaining 25 signals. The training
of the algorithm thresholds was performed by a grid-search hyper-parameter optimization procedure in
which the goal function, shown in Equation (23), was chosen similarly to [15], as the maximum of
the area under the curve, AUCmax, of the receiver operating characteristic (ROC), comparing the true
positive rate (TPR = SE) against the false positive rate (FPR = 1− SP ).

AUCmax = max(SE · SP ) (23)

After completing the leave-one-out procedure on all test signals, SE, SP and AC were calculated
separately, both for test signals containing intervals of wheezing (W01...W13), for normal signals
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(N01...N13) and for the whole database, for each of the four algorithms. Training and testing were
analogously repeated for both wheeze duration tracking and the wheeze occurrence detection operating
scenario, resulting in SEdur, SP dur, ACdur and SEevent, SP event, ACevent, respectively.

5.4.2. Execution Duration

Verification of the execution duration was performed using code profiling tools of the Code Composer
Studio development environment (Texas Instruments). Algorithms were running on the DSP in debug
mode. The time intervals of interest were measured using manually set breakpoints in the number ticks
of the DSP core clock running at 100 MHz. A common, representative segment chosen from an interval
of wheezing contained in test signal W08 was used throughout all execution duration measurements,
yielding the worst case execution time for all algorithms. All measurements were repeated 10 times
and averaged.

Using such a setup, the durations of the execution of each program block from Figure 3 were
measured. Furthermore, the total time required for the execution of the classification task over the single
signal segment, N cycles,total, was measured.

5.4.3. Code Execution Efficiency

In order to evaluate the suitability of the implemented algorithms for long-term wheeze monitoring
using a low-power wearable sensor, we assessed their execution efficiency. Therefore, we propose
metrics, defined in Equation (24) as µSE , µSP and µAC , comparing, respectively, overall classification
sensitivity SE, specificity SP or accuracy AC for the processing duty-cycle, Dexec. Processing
duty-cycle Dexec is defined as the ratio between the average number of DSP instructions required for
the execution of classification task over a single signal segment, Ncycl,exec, and the total number of clock
cycles between two successive signal segments (e.g., Ncycl,tot = 3.2× 106 when the DSP core is running
at 100 MHz and the time between successive signal segments equals 32 ms). Dexec is directly related
to the portion of time the DSP has to spend in the active state. The efficiency is measured for each of
two operating scenarios: wheeze duration tracking (labeled as µSE,dur, µSP,dur and µAC,dur) and wheeze
occurrence detection (labeled as µSE,event, µSP,event and µAC,event).

µSE =
SE

Dexec

, µSP =
SP

Dexec

, µAC =
AC

Dexec

, with Dexec =
N cycl,exec

N cycl,tot

(24)

6. Results

6.1. Accuracy of Classification

The receiver operating curves averaged through all N = 26 iterations of leave-one-out training of each
of four algorithms are compared in Figure 9. The maximal areas under the curves, AUCmax, and the
associated set of trained classification parameters by which they are obtained, are shown on each graph.

Figure 10 shows examples of the classification results overlaid onto signal spectrograms. Gray
markings represent referent intervals of wheezing annotated by an expert (referent positives), while
black markings are signal segments classified as wheezing (classified as positive). Figure 10a–d shows
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examples of accurate classification by all four algorithms suitable for wheeze duration tracking. On the
other hand, Figure 10e shows an example of a less successful classification by Algorithm 3, containing
a high number of false negative signal segments. Similarly, Figure 10f shows an example containing a
high number of false positive signal segments obtained on normal a respiratory signal by Algorithm 4.

Overall SEdur, SP dur, ACdur, obtained in wheeze duration tracking operating scenario, are shown
in Table 7. The values listed in column “Thresholds” refer to the trained threshold values of the
classification parameters from Table 8. “W” denotes the results obtained only on W01...W13 and “N”
on N01...N13. Event detection accuracies are compared in Table 9, listing only the overall results for
brevity. The best results are highlighted in green, and the worst are colored red.

Figure 9. Receiver operating curves of the implemented algorithms. (a) Algorithm 1:
tracking of crests (stat.moments); (b) Algorithm 2: tracking of crests (energy);
(c) Algorithm 3: tonality tracking; (d) Algorithm 4: peak entropy change detection. AUC,
area under the curve; TPR, true positive rate; SE, sensitivity; FPR, false positive rate; SP,
specificity.
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Figure 10. Examples of the classification results (black markings) overlaid onto
spectrograms of the test signals and compared to the referent annotation (gray markings).
(a) Signal W04 classified by Algorithm 1; (b) Signal W09 classified by Algorithm 2;
(c) Signal W07 classified by Algorithm 3; (d) Signal W10 classified by Algorithm 4; (e)

Signal W01 classified by Algorithm 3; (f) Signal N03 classified by Algorithm 4.
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Table 7. Comparison of wheeze duration tracking accuracy. Threshold values relate to
the parameters from Table 8 and were trained according to the procedure described in
Section 5.4.

Algorithm Thresholds
SEdur (%) SP dur (%) ACdur (%)

W N overall W N overall W N overall

Algorithm 1 80, 1.5, 1.0 84.41 - 86.30 91.19 88.24 89.50 91.32 88.24 89.01
Algorithm 2 0.9, 1.6 85.90 - 87.51 92.71 94.36 93.42 92.42 94.36 92.53
Algorithm 3 27500 61.36 - 80.10 100 99.76 70.56 70.36 99.76 71.98
Algorithm 4 12600 78.69 - 82.54 80.89 84.59 83.64 82.30 80.89 83.79

Table 8. Definitions of the training parameters.

Algorithm Parameters Description Equation

Algorithm 1: crests (moments) Bcrest, Cm, Cs crest width, mean, standard deviation Equations (16) and (17)
Algorithm 2: crests (energy) Cwide, Cnarrow crest/band energy ratios: wide; narrow Equation (19)
Algorithm 3: tonality tracking CT segment tonality threshold Equation (10)
Algorithm 4: entropy change Cent entropy ratio threshold Equation (15)

Table 9. Comparison of the overall event detection accuracy.

Algorithm Thresholds SEevent (%) SP event (%) ACevent (%)

Algorithm 1 100, 3.0, 1.5 98.46 81.08 86.39
Algorithm 2 1.2, 1.5 96.92 91.21 92.96
Algorithm 3 13,200 76.92 89.86 85.92
Algorithm 4 10,000 87.69 73.28 76.52

6.2. Execution Duration and Efficiency

Execution duration estimates, obtained by calculating expressions from Tables 4 and 5, for a
characteristic set of variable values (e.g., N = 512, Nb = 57, Np = 20, Bc = 6, Nc = 7, Mcont = 4,
Bnarrow = 8, Bwide = 12 and NitNR = 3, NitTA = 3, NitTA = 3, NitTC = 3, NitN = 5, NitTL = 5), are shown
in Figure 11. The results are expressed in the number of operations (multiplications and additions) per
signal segment. Figure 11a compares the execution duration estimates feature-by-feature, while the total
number of operations per each wheeze detection algorithm is given in Figure 11b.

Figure 12 shows the experimental results of the DSP execution time profiling of each implemented
program block, enabling the identification of bottlenecks. Arrows show the execution order and the
inclusion of particular program blocks into each of the four implemented algorithms. The values express
the average number of DSP cycles required for a single execution of the corresponding program block.
The total number of DSP clock cycles required for the worst-case execution of classification task N clk,exec
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and the associated processing duty-cycle based on 32 ms between the processing of successive segments
is shown in Table 10. The associated code execution efficiencies are compared in Table 11.

Figure 11. Estimates of the execution durations based on the analysis of a priori
computational complexities, measured in the number of operations. (a) Execution duration
estimate of each program block; (b) total execution duration estimates.
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Figure 12. Profiling of the experimentally obtained execution time. Numbers in bold
indicate the average number of clock cycles required for each program block.
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Table 10. Average experimentally obtained execution durations and processing duty-cycle.

Algorithm Nclk,exec Dexec (%)

Algorithm 1 77,287 2.42
Algorithm 2 82,888 2.59
Algorithm 3 98957 3.09
Algorithm 4 59998 1.87
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Table 11. Execution efficiencies in wheeze duration tracking and event detection scenarios.

Algorithm µSE,dur µSP,dur µAC,dur µSE,event µSP,event µAC,event

Algorithm 1 35.66 36.98 36.78 40.68 33.50 35.70
Algorithm 2 33.78 36.07 35.72 37.42 35.22 35.89
Algorithm 3 25.92 22.83 23.29 24.89 29.08 27.81
Algorithm 4 44.14 44.73 44.81 46.89 39.19 40.92

7. Discussion

7.1. Accuracy of Wheeze Duration Tracking

The receiver operating curves of both crest tracking algorithms (Algorithms 1 and 2) exhibit
the highest maximal area under the curve (AUCmax). Additionally, by featuring a clear inflection
point, they enable the unambiguous setting of the classification parameter thresholds, which yield
the combination of the highest true positive rate (highest sensitivity) at the lowest false positive rate
(highest specificity). Good wheeze duration tracking capability can be observed by the examples of
the test results in Figure 10a,b and is supported by the highest overall sensitivities, specificities and
accuracies. Both algorithms feature, on average, 3%–6% higher specificity than sensitivity (tracking
normal signals slightly better than wheezing). Of two versions of the algorithms, Algorithm 2, featuring
the energy-based crest model, shows a 1.21% advantage in sensitivity, 3.92% in specificity and 3.52% in
accuracy over Algorithm 1, which models spectral crests by low-order statistical moments.

Even though Algorithm 4 (the entropy change detector) also features a receiver operating curve with
a clear inflection point, its AUCmax is approximately 15% lower than those of Algorithms 1 and 2. Its
maximal sensitivity is limited to 85%, and the specificity converges to less than 90%. Compared to the
crest tracking algorithms, Algorithm 4 achieves a lower overall SEdur, SP dur and ACdur, all equaling
around 83% in the wheeze duration tracking scenario.

Algorithm 3 (tonality tracking) features the most shallow receiver operating curve without a clear
inflection point. Thus, the algorithm can be adjusted either for high sensitivity at the cost of low
specificity (e.g., efficient tracking of wheezing, but a high number of additional false positives in signal
segments of normal respiration), or on the other hand, it may be set for high specificity, at the cost of
a high count of false negatives during the occurrence of wheezing (a weaker wheeze duration tracking
performance, as seen in Figure 10c). When the classification threshold is set in-between, in the ROC’s
“ramp” region, the results contain a significant amount of both false positives and negatives, keeping the
overall accuracy around 70%.

7.2. Accuracy of Event Detection

Due to the invariance of the event detection metrics to the occurrence of individual signal segments
classified as false negative in the intervals of wheezing (see Section 5.3 and Figure 10e), most
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successful event detection is expected of those algorithms featuring the receiver operating curves with the
highest specificity.

Thus, Algorithms 1 and 2 provide the best overall results in the wheeze-event detection scenario.
According to Table 9, Algorithm 1 features the highest sensitivity (SEevent = 98.46%). Algorithm 2
shows the highest event detection specificity (SP event = 91.21%) and accuracy (ACevent = 96.92%).
Generally, crest tracking algorithms feature greater sensitivity than specificity of event detection (better at
identifying respiratory cycles containing wheezing). Tonality tracking (Algorithm 3) offers comparable
specificity and accuracy to crest tracking algorithms, but lacks sensitivity, meaning that it performs better
at identifying respiratory cycles containing only normal breathing. Furthermore, tonality showed 9.4%
better accuracy in event detection than the worst performing entropy-based Algorithm 4.

7.3. Execution Duration and Efficiency

The results of experimental DSP implementation shown in Table 10 and the a priori analysis of
the computational complexity shown in Figure 11b agree on the relative relations between the total
execution durations of all the algorithms. The differences in the results obtained in the per-feature
profiling (Figures 11a and 12) clearly indicate the benefits of the exploitation of DSP’s architectural
features, which accelerate numerically intensive operations (the FFT coprocessor and dual MAC unit).

According to the experimental results, Algorithm 4 (peak entropy) features the shortest overall
execution duration, with the power spectrum peak detection program block being its bottleneck.
Algorithms 1 and 2 are slower in execution than Algorithm 4, for 21% and 28%, respectively. They
differ only in crest modeling blocks (labeled as “Crest freq.” in Figure 12), with the model based on
crest energy being about 7% slower. Tonality tracking tends to be the slowest (a 65% longer execution
than Algorithm 4). Its main bottleneck is the numerically intensive calculation of tonality. Furthermore,
additional preprocessing blocks (the calculation of the amplitude and phase spectrum) contribute to its
total execution time.

According to Table 10, algorithms implemented on the TMS320C5505 DSP range between a
1.87% and 3.09% processing time occupancy (Dexec) for a clock set to 100 MHz. Thus, the
remaining 96.91%–98.13% of time may be spent in a low power state, minimizing the DSP core
consumption. According to Figure 12, on average, 38,573 clock cycles are spent on common signal
preprocessing tasks: signal segment windowing, FFT, energy and power spectrum calculation. The rest
is algorithm specific.

In spite of its medium classification accuracy, Algorithm 4 (the spectral peaks entropy change detec-
tor) turns out to be the most efficient in both operating scenarios, thanks to its very short execution time
(see Table 11). In comparison, crest tracking algorithms feature similar execution efficiencies. Compared
to Algorithm 4, they are only about 9% lower in the wheeze duration tracking scenario (see µAC,dur in
Table 11), and µA,event is only 5% lower in the event detection scenario. On the other hand, the absolute
accuracies of Algorithms 1 and 2 are significantly higher than those of Algorithm 4 (see the associated
ACdur in Table 7 and ACevent in Table 9), making them suitable if higher classification accuracy is
required. Algorithm 3 (tonality tracking) tends to be the least efficient, about 50% less than Algorithm 4,
due to the low accuracy and high execution time.
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8. Conclusions

In this article, we evaluated the computational complexity, the execution time and the accuracy of
the wheeze detection algorithms for optimizing the active time of the DSP of the wearable sensor for
real-time asthmatic wheeze detection. Efficiency metrics were introduced comparing the experimentally
obtained accuracies and execution durations of four representative algorithms in wheeze occurrence
detection and duration tracking scenarios.

The higher classification accuracies of crest tracking algorithms, obtained in both operating scenarios,
have shown the advantage over the tonality or entropy-based ones. Though being the least accurate in
the wheeze duration tracking scenario, tonality tracking proved more accurate than the entropy-based
algorithm and comparable to the tracking of spectral crests modeled using statistical moments, in the
event detection scenario.

The implementation of each algorithm required the DSPs activity to be less than 3% of the time, for
real-time operation. The highest execution speed was obtained for the entropy-based algorithm and the
lowest for tonality tracking (65% lower).

While a general purpose DSP proved valuable for the comparison of different algorithms, it does not
define the absolute boundaries of the energy consumption cost of wheeze detection. Nevertheless, such
an analysis provides the information necessary for the optimization of the architectural requirements of
the DSP unit in future work.
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