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Abstract: Within the Ambient Assisted Living (AAL) community, Brain-Computer 

Interfaces (BCIs) have raised great hopes as they provide alternative communication means 

for persons with disabilities bypassing the need for speech and other motor activities. 

Although significant advancements have been realized in the last decade, applications of 

language models (e.g., word prediction, completion) have only recently started to appear in 

BCI systems. The main goal of this article is to review the language model applications that 

supplement non-invasive BCI-based communication systems by discussing their potential 

and limitations, and to discern future trends. First, a brief overview of the most prominent 

BCI spelling systems is given, followed by an in-depth discussion of the language models 

applied to them. These language models are classified according to their functionality in 

the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of 

error correction and predictive spelling, and the potential to improve their classification 

performance by using language models. To conclude, the review offers an overview of  

the advantages and challenges when implementing language models in BCI-based 

communication systems when implemented in conjunction with other AAL technologies. 

Keywords: Ambient Assisted Living; Brain-Computer Interfaces; spelling systems; 

electroencephalography; communication systems; language models  
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1. Introduction 

A Brain Computer Interface (BCI) enables a user to communicate with the external world by 

directly translating his/her brain activity into (computer) commands without relying on the brain’s 

normal output pathways. Due to this, BCIs have raised great hopes in providing alternative communication 

means for persons suffering from motor disabilities such as amyotrophic lateral sclerosis (ALS), spinal 

cord injuries or brain paralysis [1–3], and other users targeted by the Ambient Assisted Living (AAL) 

community [4], provided their sensory and cognitive functions are still intact [5]. Since one of AAL’s 

aims is to improve the quality of life of elderly persons with disabilities, BCI systems have become  

 an opportunity to achieve this via different AAL implementations of BCI systems [4,6–8]. A BCI 

system in general (see Figure 1) normally comprises the following components: (i) a device that  

records the brain activity which is either invasive (e.g., electrocorticography) or non-invasive (e.g., 

electroencephalogram (EEG)); (ii) a preprocessor that reduces noise and artifacts, prepares the signals 

for further processing and extracts the relevant information from the recordings; (iii) a decoder that 

classifies the extracted relevant information into a control signal for (iv) an external device that could 

be any type BCI-compatible application (e.g., a robotic actuator, a prosthesis, a computer screen etc.), 

and that provides feedback to the user. This external device could also be used for evoking brain 

activity, thus serving as a stimulation unit (see Section 2 for examples). The feedback to the user is an 

important aspect of the BCI system as it provides the former with information about mistakes (by the 

decoder or the user) and in this way motivates the user to better modulate his/her brain activity and to 

increase attention and engagement in the task, thus adhering to a so-called neurofeedback principle. As 

a result, the BCI can be regarded as a control system with active feedback (closed-loop system). 

Figure 1. Brain-Computer Interface scheme. 

 

The first BCI was presented in the pioneering work of Vidal [9], where the basic requirements  

of a man-machine communication tool and the concepts, feasibility, possibilities and even its  

limitations were already introduced. Since then BCI applications have ramified into different areas  

such as clinical/translational research (from basic research to clinical BCI implementations) [10], 

entertainment [11], ambient assisted living [6], and emerging applications such as bionic assistive 

devices [12], and the detection of covert behavior, among others (see [13] for a review). 

Since invasive BCI requires surgery and faces not only ethical but also technical challenges, it has 

rarely been performed on on humans [14]. It therefore comes as no surprise that the non-invasive 

alternative became widely adopted in human BCI-based communication research. Among all 

noninvasive BCIs, the EEG-based ones are favored above other non-invasive ones such as functional 

magnetic resonance imaging (fMRI) [15], magnetoencephalography (MEG) [16] and functional near 
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infrared spectroscopy (fNIRS) [17,18]. The advantages of EEG led to a rapid increase in the number of 

BCI research groups all over the world[19] as reflected by the share in the number of publications in 

the field in the last decade[20,21], and have spurred the interest in developing feasible and practical 

BCI systems, as covered in several review papers [3,21–25], and some of which have been 

implemented within AAL applications as control environment [6] and social interaction[4]. More 

specific reviews focus on communication issues [13,22,26–28], signals related issues such as their 

processing [29–31], feature extraction [18,32], brain potentials [33], neuroimaging-based BCI [34], 

handling artifacts [31] and decoding methods for BCI systems [35,36]. Nonetheless, to the best of the 

authors’ knowledge, there is no comprehensive review of the applications of language models in BCI 

systems despite of the increasing research interest in this direction (see [3,25,29,37] for more detailed 

reviews of BCI systems). 

The aim of this article is to review the available literature that combines language models with BCI 

systems for communication applications. Since research in this direction has been performed only for 

EEG-based BCI, we also limit ourselves to this case. Nevertheless, all language modeling strategies 

discussed below could in principle also be used in other BCI types, including different AAL 

applications (e.g., controlling environment). The focus of this paper is on BCI spellers (which are 

systems allowing users to type individual characters, words or even sentences by decoding their brain 

activity) combined with applications such as word prediction, completion, error correction, and so on, 

which may increase the communication speed without increasing the user’s cognitive load. These new 

approaches offer a significant advantage over other augmentative and alternative communication 

(AAC) devices, which at least require some degree of motor activity [38,39]. 

2. Paradigms for BCI Communication Systems 

One of the main applications for BCI is spelling. These spelling systems are mainly based on one of 

three BCI paradigms, exploiting different types of brain responses: event-related potentials (ERP), 

steady state evoked potential (SSVEP) or frequency visual evoked potential (f-VEP) and motor 

imagery (MI). 

2.1. ERP-Based BCI 

The most known representative of this group is the so-called P300-speller. The idea behind it 

derives from the observation that a stereotypical component of brain potential is evoked in response to 

an infrequent stimulus attended by the user, while it is absent for a frequent but non-attended stimulus. 

The main difference in responses is seen in a positive deflection around 300 ms following onset of the 

stimulus, the so called P300 component, which is primary generated above the parietal and central 

cortices [40]. This phenomenon is present for visual [1], auditory [41] or tactile stimulations [42,43], 

which led to different BCI interaction modes. A first speller of this type was a visual one, proposed in [40]. 

In such visual P300-spellers a 6  6 matrix with characters is displayed with rows and columns 

intensified in random order (see Figure 2) with about 5–6 intensifications per second [40,44]. The user 

attends to one of the symbols he/she wishes to communicate. The intensification of the row/column 

that contains the desired character evokes an enhanced P300 component [40]. The trained (in advance) 

classifier detects the row-column combination for which the P300 response is present and selects the 
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character accordingly. The recorded signal is a superposition of the activity related to the stimulus and 

all other ongoing brain activity together with noise, which makes single-trial ERP detection very 

difficult. In order to more robustly detect ERPs, recordings over several row/column intensification 

rounds need to be averaged. By averaging the activity that is time locked to a known event (e.g., the 

onset of the attended stimulus) is extracted as an ERP, whereas the activity that is not related to the 

stimulus onset is expected to be averaged out. The speed with which characters can be typed therefore 

heavily depends on the number of rounds needed to extract the P300 component accurately. Although 

such BCIs are mainly regarded as P300-based, other components of evoked potentials also play 

important role in decoding [45]. 

Figure 2. Example of typing matrix in P300-speller. Rows and columns are intensified in 

random order. The intensification of the second column (Left panel) and the third row 

(Right panel) are shown. One round consists of the intensification of each one of the six 

columns and six rows. 

  

BCIs based on rapid serial visual presentation (RSVP) [46–49] could also be categorized as  

ERP-based BCI. RSVP-based BCI uses visual stimuli presented with a rate of about 10 stimuli per 

second [46–48], among which user attends to the only stimulus he/she wish to communicate. Stimuli 

are rapidly displayed in a one-by-one basis in the same predefined position known to the user in order 

to avoid necessity for their search and eye movements, as they could produce artifacts in the EEG 

recordings. The user has to attend the desired stimulus and mentally count the number of times it is 

presented. The decoding procedure is similar to the P300-based case. 

BCI based on motion-onset [50–53] and transient visual evoked potentials (t-VEP) BCI [54] also 

fall in this BCI category and utilize quite similar processing and decoding techniques. Motion-onset 

VEP is evoked by the presentation of motion stimuli [55], and its main components have been 

described as P100, N200 and P200 [56]. The t-VEPs are the responses recorded from the visual cortex 

after a visual stimulus has been displayed [57] and the amplitude of the visual response increases every 

time the target is closer to the subject’s central visual field [58]. 

Much research has been directed towards achieving a higher detection accuracy of brain evoked 

responses to target stimuli for an equal or lower number of intensification rounds. This research was 

primary performed in the preprocessing component (see Figure 2), searching for a better spatial  

and frequency filtering or a better feature selection and construction methods [59–62], on the  

classifier component [63], and in the design of the external-stimulation device, e.g., by adapting the 

inter-stimulus interval [40], the size of the matrix [1] and the intensification protocol [64–66]. 
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ERP-based BCIs are also known by the fact, that those systems do not necessary depend on the 

gaze direction, i.e., they could rely on covert attention instead [41,49,67]. 

2.2. BCIs based on Frequency and Code Modulation of VEP 

The steady-state visual evoked potential (SSVEP) or frequency visual evoked potential (f-VEP) [68], 

recorded above the occipital cortex, is the response to a periodic presentation of a visual stimulus (i.e., 

a flickering stimulus). When the stimulus is flickering at a sufficiently high rate (starting from 6 Hz), 

the individual evoked responses to each stimulus flash will overlap, leading to a steady-state signal 

resonating at the stimulus flicker rate and its integer multipliers (harmonics) [69]. With such a 

paradigm it is possible to detect whether a subject is looking at a stimulus flickering at frequency f, by 

verifying the saliency of the frequency f and possibly also its harmonics, 2f, 3f, … in the spectrum of 

the recorded EEG signal. Similarly, one can detect which stimulus, out of several of them (each one 

flickering at a different frequency), is gazed at by the subject, by checking the corresponding 

frequencies and their harmonics. Linking each flickering stimulus to a particular command, a  

multi-command frequency-coded SSVEP-based BCI can be implemented. For example, one can 

construct a speller by dividing the screen into quadrants, flickering at different frequencies, which 

contain different subsets of characters (Figure 3). The user gazes at the quadrant that contains the 

desired character [70], allowing the selection of any character (here out of 64) by performing 

consecutive quadrant selections (three for Figure 3). 

Figure 3. Three consecutive stages to select symbol ―w‖ in a SSVEP speller. 

   

Since in the spectral domain the EEG amplitude decreases as the frequency increases, the higher 

stimulus frequencies and harmonics become less prominent. Furthermore, the SSVEP is embedded in 

other ongoing brain activity and (recording) noise [70]. Thus, when considering a recording interval 

that is too small to reliably extract the frequency components, erroneous detections are quite likely to 

occur. To overcome this problem, averaging over several recording intervals [71], or recording over 

longer time intervals [58] are often used together with a spatial filtering strategy [72–74] to increase 

the signal-to-noise ratio (SNR). An efficient SSVEP-based BCI speller should be able to reliably detect 

several frequencies, which makes the detection issue even more complex, calling for efficient signal 

processing and decoding algorithms. This has primary led to modifications in the preprocessing and 

classifier components of Figure 1. 

An additional limitation arises from the stimulation side: only stimulation frequencies within a 

particular frequency range evoke a reasonable SSVEP response [75]; the harmonics of some 

stimulation frequencies could interfere with one another, leading to a deterioration of the decoding 

performance [76], even more so when the stimulation frequencies depends on the refresh rate of the 
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screen [76] (in the case of stimulation on a computer screen). This encouraged the search for 

alternative stimulation methods in computer screen based SSVEP BCIs [77] or other encoding 

methods [75,78,79], thus, modifying the stimulation (external) device block in Figure 1. 

Another VEP-based technique adopted by BCIs is called code modulated VEP (c-VEP) originally 

proposed by Sutter [80] and further developed by others [68,81,82]. Following c-VEP approach to 

induce most distinguishable visual responses to different target stimuli, the intensity of the stimuli is 

modulated by a special pseudorandom binary sequence, so-called m-sequence, which is designed to be 

nearly orthogonal with respect to its shifted versions. This m-sequence and its (circularly) shifted 

versions are then used to modulate visual stimulation to induce discernible brain responses. The 

processing of the c-VEP responses involves averaging across several epochs, where each epoch 

corresponds to one full presentation of the m-sequence during stimulation. The decoding step usually 

relies on simple template matching technique: the preprocessed (filtered and averaged) c-VEP response 

is matched against several pre-computed templates, corresponding to the target stimuli, and the winner 

is selected as the best matching one. Some other classification methods (e.g., one class SVM, canonical 

correlation analysis) have been proposed [82] to improve the performance of c-VEP BCIs. 

More detailed descriptions of c-VEP techniques as well as RSVP, motion-onset, and t-VEP 

techniques can be found in [46,50,54,68,83]. 

2.3. MI-Based BCI 

A motor imagery (MI) BCI is based on changes in neural populations in the motor cortex when 

performing an actual or imagined limb movement. These changes are hypothesized to be due to 

decrease (event-related desynchronization, ERD) or an increase (event-related synchronization, ERS) 

in the synchrony of the underlying neuronal populations [84,85].In spectra of EEG, recorded above 

motor cortex contralaterally to moved (or imagined to be moved) body part (e.g., left arm), this 

(imaginary) movement produces a decrease in power (ERD) in the mu (8–13 Hz) and beta (13–26 Hz) 

band in comparison to the absence of such movement or its imagination [86]. As such, by determining 

changes in spectral amplitudes in the corresponding frequency bands or, equivalently, in the variance 

of the EEG signal filtered in the same band one can determine the subject’s intentions [87]. In addition to 

ERD/ERS, the readiness potential (Bereitschaftpotential) has also been used for the decoding of motor 

imagery [88,89]. By involving two or more different limbs, for example, the right and left hands, and 

relying on the fact that different parts of the motor cortex are responsible for different limbs (i.e., they 

are spatially distributed), one can build a BCI system. In order to enhance the detectability of the MI, 

different fixed- [90], data-driven [91–93], multi-class [94] spatial filtering approaches have been 

proposed, as well as different classifiers [95], thus mainly modifying the Preprocessor and Decoder 

blocks of Figure 1. A detailed review of spatial filtering and classification techniques for MI-based 

BCIs can be found in [96,97]. 

Several MI-based spelling devices have been proposed. For example, D’Albis in [98] used a typing 

interface consisting of 26 characters of the English alphabet and a ―space‖ (thus, 27 symbols in total) 

equally divided into three groups (see Figure 7b). The user selects one of those three groups or the 

―undo‖ command by imagining the movement of the corresponding body part(s) (in their case the right 

hand, left hand, both hands or both feet). By selecting one of these groups, the nine characters are 
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divided into three new groups of three characters. And so on. Thus, typing one character takes three 

consecutive selections, similar to the SSVEP speller described above in Section 2.2. 

Another MI-based BCI-speller is the so-called Hex-o-Spell [99], with which 30 different characters 

can be typed by imagining one of two movements (right hand and foot) (see Figure 4). The characters 

are shown in six adjacent hexagons distributed around a circle. Each hexagon contains five characters 

and a ―go back‖ command. For the selection of the hexagons, there is an arrow in the center of the 

circle. Right hand movement imagination controls the rotation of the arrow clockwise. The 

imagination of the foot movement extends the arrow until it reaches one of the hexagons after which it 

is selected. After this, the characters in all hexagons, except for the selected one disappear, while the 

remaining characters and the ―go back‖ command are mapped into six hexagons around the circle, i.e., 

the same layout as in the beginning. Using the same arrow-based strategy, the user selects the desired 

character or decides to go back to the previous level of the interface to correct a mistake.  

Figure 4. Two different types of imaginary movements allow the user to control the rotation 

and extension of the gray arrow in the Hex-o-Spell interface. In this example the last letter 

in the word ―BELARUS‖ is selected. Adapted from [99]. 

→ → →

 

3. Language Model in BCI Spellers 

As discussed before, the conventional approach to improve the communication speed and accuracy 

of a BCI speller is to search for new and better signal processing and classification algorithms, or to 

change the stimulation mode or stimulation parameters, thus, modifying the blocks in Figure 1. Albeit 

successful to some extent, BCI spellers still cannot compete with their assistive technology counterparts. 

This prompts for alternative solutions beyond the ones covered by traditional BCI research. One such 

solution was indicated by Donchin and coworkers in [100]: ―It is well known that there are substantial 

sequential dependencies in English. It is our intent to incorporate information about the sequential 

structure of the language in the next phase of the development of the BCI. Similarly, it is possible to 

incorporate spelling correction software so that spelling mistakes can be managed even as increases 

in the operational speed may be associated with increased number of errors.‖ While this was proposed 

already in 2000 and seemed quite promising, until recently there were no attempts to adopt language 

model strategies. In the following subsections, we describe recent developments and implementation 

of language models for BCI spellers. 
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3.1. Language-Driven Design of Static User Interfaces 

As a basic implementation of language models in BCI spellers, one can mention the way characters 

are arranged in the spelling interface. The characters’ layout could rely on the initial probability of 

occurrence of a character in a particular language or on the aim to minimize typing mistakes with 

respect to some dictionary. Such a layout is fixed and does not change during typing (whence ―static‖). 

The corresponding interfaces are dependent on the BCI paradigm adopted. 

An example that accounts for the relative frequency of character occurrence in a language, consider 

the interface of the Bremen SSVEP-based BCI-speller [101]. It has in the middle of the screen a virtual 

keyboard with 32 symbols (see Figure 5) surrounded by five boxes flickering at different frequencies. 

These boxes correspond to commands for navigating the cursor (indicated by red color) ―left‖, ‖right‖, 

‖up‖, ―down‖, and for selecting the intended character. The application starts with a cursor in the 

central position corresponding to the most frequent character in English (―E‖, in Figure 5). By gazing 

at the command boxes, the user can navigate the cursor to the desired letter and confirm his/her choice 

with the ―select‖ command. The further the character is located from the center, the more command 

selections (cursor movements) are required. Letters with the higher frequency of occurrence are 

positioned closer to the center while the less frequent ones are further away. 

Figure 5. Layout of the Bremen SSVEP-based BCI-speller. Adapted from [101]. 

 

Moreover, attentional switches are also taken into account. For example, two commands (left-left) 

are required to reach the letter ―A‖ and the same amount of commands (left-up) to reach the letter ―M‖. 

But in the latter case the user has to redirect his/her gaze from the command box ―left‖ into command 

box ―up‖, while in the former case such a redirection of the gaze is not required, which is more easy 

for the user. Considering this, the more frequent letter ―A‖ (8.167% according to [102]) is positioned 

in a more easily reachable position than the less frequent letter ―M‖ (2.406% according to [102]). By 

accounting for the initial letter probability in a language the user can more easily and much faster 

select the intended characters with this interface, which in turn results in a higher throughput of  

the system. 

Another way to place characters in static interface, but this time for a P300 row-column speller, was 

proposed in [103]. The authors tried to modify the spelling matrix by taking into account the notion 
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that the majority of errors in a row-column paradigm occur either by wrongly selecting a row or a 

column [63]. The idea was to displace as much as possible letters which are different in similar words 

proved by a dictionary attached to the speller. For example, the words HINT and HUNT are similar, 

since they differ only in the second letter. While using the conventional interface of Figure 6a, one can 

see that letters ―I‖ and ―U‖ are in the same column. In the modified interface of Figure 6b neither the 

row, nor the column for the letters ―I‖ and ―U‖ coincide. In this way, with a conventional interface, 

while typing the word HINT and making mistakes in the second letter, one could end up in the wrong 

word HUNT, even when the column is identified correctly (but not the row), but in the case of the 

modified interface, a row or column misclassification during the selection of the second letter in the 

word HINT will not lead to a conventional English word. This could be an indication that a decoding 

mistake was made, which could be rectified, e.g., by using the algorithm described in Section 3.5. 

Figure 6. Conventional (a) and modified (b) P300-speller interfaces used in the study of 

Ahi and colleagues [103]. Adapted from [103]. 

  
(a) (b) 

3.2. Dynamic Adaptation of User Interface 

The user interfaces discussed in Section 3.1 are static ones, i.e., they do not change during the 

spelling process. However, it is known that the probability of a letter in a word depends on the 

previously typed ones. For example, if one has already typed ENGL, it is not likely to have X as the 

next letter , while it is quite probable to have I as the next letter (for example, the word ENGLISH). 

Thus, the probability of each letter in a language is not fixed a priori, but varies during spelling. This 

idea was employed in the group of methods described below, all of which perform dynamic 

adaptations of the user interface, depending on the already (partially) spelled text. 

In addition to their standard interface (see Section 2.3 for a description), D’Albis [98] also foresaw 

dynamic modifications by incorporating a language model for taking into account the changing 

probability of the next letter ln in the currently typed word, based on the already typed characters of the 

same word l1,…, ln−1 ( prefixes) and the two typed preceding words w1 and w2. These modifications are 

based on an algorithm that extracts from the corpus (corpus is a large set of texts used for linguistic 

analysis), attached to the speller, all possible distinct triples of words, where the first two words are w1 

and w2, and the first n – 1 letters in the third word are l1,…, ln−1. When estimating the probability of 

having the next letter ln, the number of selected triples goes to the denominator while the numerator is 

equal to the number of triples, among the selected ones, where additionally the n-th letter in the third 
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word is ln. As an example, let us assume one wants to type the phrase ―what a wonderful day‖, and the 

two first words ―WHAT‖ (w1) and ―A‖ (w2) were already typed. In the third word, the first letter ―W‖ 

(l1) was also typed, and the user intends to type the second letter (l2) (see Figure 7). The algorithm 

scans the corpus in order to find all triples following ―WHAT A W…‖ (where the dots represent any 

further characters within the third word, starting with the letter ―W‖) and estimates the number N of 

such triples. Among the found ones, the algorithm also estimates the number of those that take the 

form of ―WHAT A WA…‖ (for l2 = ―A‖), ―WHAT A WB…‖ (for l2 = ―B‖), and so on. By dividing 

these numbers by N, the algorithm generates an estimate of the probability for any letter l2 to be the 

next one. All letters with nonzero probability were enabled in the interface (see [98] for further 

explanation). In the example in Figure 7, after typing ―WHAT A W‖ the algorithm detected a nonzero 

probability only for the letters ―A‖, ―E‖, ―H‖, ―I‖, ‖O‖, ―R‖ (ranked by their estimated probabilities), 

which are considered as the only likely choices for the next character. 

Figure 7. Dynamic (a) and static (b) interfaces for a system, that considers previously 

typed text ―what a w‖ for spelling the next letter. Adapted from [98]. 

  

(a) (b) 

The dynamic interface (Figure 7a) then rearranges the candidate characters in descending probability 

(where the first three most probable letters are grouped together, and so on) in order to minimize the 

number of subsequent group expansions. The static interface (see Figure 7b) does not change the 

character layout, but instead disables the ones with zero estimated probability. This interface could be 

regarded as more comfortable for the subject, since it does not require attentional shifts. Both 

interfaces enables the user to pick the next letter ―O‖ just by two selections (instead of three in the 

normal mode), thus making spelling faster. 

Another strategy that accounts for the previously spelled characters in BCI speller can be based on 

the Dasher interface [104], which originally employed 2D control. When the pointer (black arrow) is at 

the center of the screen (indicated by the crosshair), nothing is happening. As soon as the user moves 

the pointer to the right, the letters on the right hand side of the screen start to zoom in (see Figure 8, 

showing consecutive screenshots while typing the string ―Hello‖). The vertical position of the pointer 

controls the direction in which zooming is performed and the pointer’s horizontal position controls the 

speed of zooming. If one moves the pointer back to the center of the screen, the spelling process 

pauses, when moving the pointer to the left side of the screen mistakes can be corrected by moving 

back in the already typed sequence. 
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Figure 8. Five successive stages when entering ―Hello‖ with the Dasher interface. 

     

The Dasher interface shows symbols that are more probable in the current context by enlarging the 

square region around them. In the initial stage, the probabilities (size of the squares) of each symbol 

are taken from the frequencies of each symbol in an adjusted corpus. This makes the Dasher interface 

different from the one from [98], since it additionally incorporates the strategy discussed in Section 3.1. 

Probabilities of consecutive symbols are estimated with the use of an n-gram (n-gram is an adjacent 

sequence of n item from a whole sequence.) language model on character’s basis; by assessing from 

the attached corpus and based on previously typed text the probabilities c1c2…cn−1c, where c is the next 

symbol to be typed, and ci are the previously typed symbols. An additional difference with the 

approach from [98] is also the fact that all symbols (not only letters) are considered, i.e., ―space‖, 

punctuations and other symbols are assumed to be ci’s. In this way, the sequence c1c2…cn−1c could also 

have symbols not only from the word currently being typed (as in [98]), but also from the ones that are 

part of the preceding word(s), and spaces and other punctuation symbols between those words. 

The idea of using a Dasher interface in a BCI-speller was first mentioned by Wills and MacKay [105] 

in 2006, but no real BCI application was presented in the paper. Nevertheless, in their paper they 

acknowledged a potential problem with the inferior 2D control in BCIs, and discussed ways to perform 

1D control instead. They suggested either using a special mapping of 1D input into 2D, as required in 

Dasher, or to fix the zooming speed and allow for only vertical control with the BCI interface. With 

the latter strategy, one can divide the Dasher interface into several vertically distributed zone-stimuli 

(as for the case of SSVEP or P300 BCI), and when one of those zones is selected, the pointer will 

move into the corresponding region for zooming [105]. In real on-line typing, Dasher was evaluated 

when using motor imagery BCI and the 1D to 2D mapping strategy [39], and when using SSVEP-based 

BCI (with constant horizontal speed) constructed around only one flickering stimulus for vertical 

control, where gazing at the stimulus is associated with moving upwards, while no gazing leads to 

moving downwards [106]. 

The approaches mentioned so far in this subsection are based on a probability assessment of the 

next symbol by aggregating statistics from the attached corpus. As an alternative approach [107], one 

can try to exclude any statistical information and construct in advance a trie (trie, derived from 

retrieval, is an ordered tree data structure used mainly for managing strings in memory) lexicon 

structure from the corpus. Mathis and Spohr [107], using all words from the corpus, constructed the 

trie, where starting from the root node (associated with an empty string) and by moving down to 
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descendant nodes and further on, one can ―read‖ all words from this corpus. When constructed in this 

way, a trie is another representation of all words from a corpus. When used in a BCI-speller, when the 

user is typing, any entered string is monitored and associated with the corresponding node in the trie. If 

the current node has only a single edge exiting from it, the corresponding next character (associated 

with this edge) is incrementally added to the already typed text. Thus, such a strategy allows adding a 

uniquely determined next character, speeding up the text spelling process. For example, if one wants to 

type the word UNIQUE, after spelling UNIQ the next letter ―U‖ will be added automatically, since it is 

the only possible continuation of the previously typed sequence in English. Mathis and Spohr in [107] 

used this strategy in a simulated P300 speller and found that, on average, every eighth character was 

added automatically, allowing to speed up the typing process, while retaining a very low rate (0.84%) 

of wrong word completions. 

3.3. Minimization of Command Selections by Using T9-Like Interface 

T9, which stands for Text on 9 keys [108], is a language interface developed by Tegic 

Communications [109] for text entering on mobile phones. This system was designed to enable typing of 

more than 30 different characters with only numerical keys on a mobile phone’s keypad. Each key 

corresponds to several characters. For example, if one wants to type HOME then, with the T9 interface, 

where key ―4‖ corresponds to ―G‖, ―H‖, ―I‖, key ―6‖ to ―M‖, ―N‖, ―O‖ and key ―3‖ to ―D‖, ―E‖, ―F‖, 

he/she needs to select keys 4663. After this, T9 looks through an attached dictionary in order to find all 

words corresponding to this sequence of key presses, and ranks them by their frequency of use. For 

example, 4663 corresponds to HOME, GOOD, GONE… The most frequent words are presented to user 

for selection (the exact number of those words depends on interface). The T9 system modifies the word 

frequencies depending on the user, by increasing word frequencies according to the history of typing, 

and also allows for typing new words that are subsequently added to the dictionary. Thus, the T9 

interface minimizes the number of key strokes, which is a big advantage for BCI-spellers with limited 

number of commands to select from (i.e., stimuli). While the system initially was called T9, it actually 

uses 12 keys: keys 2–9 for letters, other keys for punctuation, space and other characters. 

Höhne and co-workers in [41] used the T9 system for an auditory ERP-based speller, where a 3 × 3 

spelling matrix was encoded by three levels of sound pitches (high, medium and low) for the rows and 

three directions of sound (left, middle and right) for the columns. They changed the original T9 

interface in order to use only nine keys instead of 12. In spelling mode, keys 2–9 were connected to 

letters, as in an ordinary T9, but key 1 was for switching the interface to a mode in which keys 4–8 

encode five most frequent words suggested by T9, and keys 1–3 and 9 correspond to punctuation, 

backspace, delete and exit, respectively. 

A similar system was also implemented in the visual P300 Chinese speller [110]. In this system, 

each symbol can be spelled with five strokes used for writing any Chinese symbol. After typing the 

intended sequence of strokes, the seven most frequent Chinese words were presented to the user  

for selection. 
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3.4. Predictive Spelling Module in BCI Spellers 

This approach is based on the psycholinguistic cohort model proposed in [111]. The model states 

that when a person hears or reads a segment (consisting of several consecutive letters) of a word, all 

words from his/her lexicon starting from this segment are ―activated‖ in his/her brain. The more letters 

are added to the segment, the fewer words remain ―activated‖. Thus, by adding more and more letters 

to the segment, the ―activation‖ is narrowing down to only one word, i.e., the one that coincides with 

the word being read or heard.  

Such a psycholinguistic model could be used for a spelling interface when the interface is connected 

to some dictionary or corpus (i.e., the user’s lexicon is replaced by words from this dictionary or 

corpus). When the user has typed the first letters of the intended word, all words from the attached 

dictionary that share the same first letters are ―activated‖, and the most frequent words among them are 

presented to a target list from which the user can select. The user then can either further type the 

intended word letter-by-letter with the BCI speller, or select the intended word as soon it appears in the 

list. In this way, one expects the user to be able to spell faster, since not always the whole word needs 

to be typed character-by-character. 

Depending on the interface, the word suggestion list could be presented either on separate layout, 

than the one for character-by-character spelling [112,113], which requires an additional BCI command 

to switch between those two layouts, or it could be incorporated into the ordinary layout, thus not 

requiring any additional switches, which saves time [114,115]. 

Similar to other alternative and augmentative communication (AAC) devices [116,117], a BCI 

predictive spelling may increase the user’s cognitive workload [113,114]. This was observed in P300 

spellers, where a list of suggested words was displayed, but they were not used directly as a stimuli for 

selection, but the words were labeled by numbers 1–7, and the subject had to type the corresponding 

number in order to select one of those words (see Figure 9a) [114]. By modifying the interface, so that 

words from the list are integrated directly into interface, thus they are used as the stimuli, the above 

mentioned problem could be alleviated (see Figure 9b) [115].  

Figure 9. Two different layouts designed for predictive spelling. (a) The predicted words 

are displayed on the left side of the screen over an ―extra‖ window in the interface, thus 

requiring keeping them in the user’s memory, which could increase the cognitive 

workload. Adapted from [114]. (b) The solution proposed to alleviate the cognitive 

workload by integrating the suggested words into the interface as selectable stimuli. 

Adapted from [115]. 
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When word suggestions are shown to the user, they are visualized by presenting only a few of the 

most likely ones based on the system’s lexicon. Those frequencies could initially be equal for all words 

in the lexicon and change according to the typed text [112,114], or they could be different and depend 

on word frequency, derived from the corpus used for compiling the lexicon [115]. Moreover, the word 

frequencies could be estimated for each word separately [115], i.e., not taking into account the context, 

or by also accounting for one or more preceding words [98], i.e., an n-gram model on words basis. 

3.5. Spelling Error Correction 

While typing with a BCI, it could happen that the interface misclassifies and consequently mistypes 

the symbol intended by the user. As a result, for an ordinary BCI speller, one needs to foresee a 

―backspace‖ command for correction, or to use some brain potential connected to the subject’s 

realization of an error (Error-related Potential) followed by some smart algorithm for correcting the 

mistyped character [118]. As yet another alternative, one might not perform any correction, but 

continue to type while relying on an incorporated language model that performs the correction 

automatically at a later stage. 

The latter was explored in [103] for the P300 speller thereby assuming that for each spelled word 

the start and end points are determined correctly (i.e., number of letters in typed word is correct). 

While typing each letter, BCI speller estimates probabilities of each letter to be intended by subject 

according to classifier outcomes, and rank them in descendent order according to these probabilities. 

When a whole word is spelled, a search through the attached dictionary is performed, and for each 

candidate word the sum of the above mentioned ranks of each letter in this word is computed. The 

word with the smallest sum of ranks is then selected as the mostly likely intended (―corrected‖) word. 

 Other systems also allow for a correction of misspelled words to some extent. The word prediction 

module described in [114], which was discussed in the previous section, is based on the word 

prediction software WordQ2 [119], developed by Quillsoft Ltd. [120]. This software allows, for 

example, for the wrongly typed word ―PLOS‖ (while the user intended to type ―PLEASE‖) to be 

included as the word ―PLEASE‖ in the list of suggestions, hence, enabling the user to correct errors 

when using predictive spelling module technology [114]. 

3.6. Incorporation of Character Prediction Statistic into Classifier 

It could also be possible to fuse the classifier with some natural language model. For example, 

assume one has typed the segment ―WH‖ (the beginning of the word ―WHAT‖) and the next letter 

detected by the classifier is ―T‖. In this case it is not wise to present such a letter to the user since 

English does not have any word starting with ―WHT‖. Since it is clearly a mistake, it is better to use 

knowledge of what is possible and what not in a given language directly at the level of the classifier. 

One can use an n-gram characters model for assessing, using the attached corpus, the probability of 

each possible character typed by taking into account the previously typed segment of length n−1 

characters. Considering the previous example with ―WH‖ and an 3-gram model, the system scans the 

corpus and counts all occurrences of ―WHA‖, ―WHB‖, ―WHC‖, … , ‖WHZ‖, ―WH ‖, ―WH.‖, … 

After that, the probability of having as the next letter an ―A‖ is estimated as the number of occurrences 

of ―WHA‖ compared to the sum of all mentioned triples starting with ―WH‖. Such probabilities could be 
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incorporated into the classifier by using, for example, a Bayesian interference strategy [44,121–123], thus 

for ―correcting‖ the classifier output. 

4. Assessment of BCI Spellers Based on Language Models 

When assessing the benefits of incorporating additional technology into a BCI system, such as  

the ones based on language models, it is important to use some measure for characterizing the 

performance gain. A traditional measure such as typing accuracy is not adequate, as it does not provide 

any information about the spelling speed, which is an important usability characteristic. The 

information transfer rate (ITR), proposed in [2], takes into account the accuracy, the number of 

possible selectable commands the interface supports, and the time required for communicating one 

command (one interface selection). But the ITR leads to ambiguities for some speller interfaces, such 

as for the one proposed in [90] (shown in Figure 5). In such an interface, the number of possible 

commands could be either five (since five SSVEP stimuli are used for letter selection by moving the 

cursor left, right, up and down and for validating the selection) or 32 (if each character is considered to 

be selectable) [124]. Moreover, if one types text with a BCI, it is sometimes required to use 

―backspace‖ for correction. While using additional commands, as ―backspace‖, is seen as undesirable, 

the correct selection of the ―backspace‖ command will increase the ITR of the assessed system, as 

pointed out in [125]. In addition, if one wants to compare character-by-character typing with a word 

completion strategy, a new problem arises. In character-by-character typing four selections 

corresponds to maximally a four-letter word (if no mistakes occur), but the same four selections in a 

word completion strategy could result, for example, in a ten-letter word when, after spelling the first 

three letters, on a character-by-character basis, the fourth selection was used for choosing a ten-letter 

word from the list of suggestions. The ITR will treat the two cases in the same way, while it is clear 

that the latter one is much more beneficial. As a remedy, one could use the time spent on spelling some 

text [98]. However, in general, in different studies the spelled texts are usually different, and therefore 

we cannot use this time-based measure to compare different BCI-spellers. 

Ryan and colleagues proposed in [114] to use the output character per minute (OCM) measure, 

which is estimated by taking the ratio of the total number of characters in the final text to the total time 

spent on spelling this text. They showed that while the standard ITR indicates a decrease from 

19.39 ± 5.37 bit/min to 17.71 ± 5.38 bit/min by switching from character-by-character to predictive 

spelling, the OCM measure is more appropriate and characterizes the benefit obtained by incorporating 

a language model by an increase from 3.71 ± 0.75 character/min for character-by-character mode to 

3.76 ± 0.75 character/min for predictive spelling.  

Another strategy to overcome the limitation of the standard ITR measure in the case of text spelling 

was proposed by Kaufmann and colleagues [115]. Instead of estimating the ITR in terms of selections 

per minute, they suggested to estimate the true bit rate in terms of the communicated characters per 

time unit. They showed that in their experiments the standard ITR was only slightly better for 

predictive spelling (15.7 ± 5.7 bit/min) compared to character-by-character spelling (15.1 ± 5.6 bit/min), 

while the true ITR better characterized the benefits of the language model by producing 20.6 ± 5.3 bit/min 

for predictive spelling and 12.0 ± 2.7 bit/min character-by-character spelling. 
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So far there is no consensus what measure to use. Different studies exploit different techniques for 

performance assessment. In Table 1 we list the performance data of the reviewed studies, where the 

results with and without natural language models are indicated. Since the performance of a BCI-speller 

depends on several components (e.g., classifier, preprocessing and so on, see Section 2), we wanted to 

show only the effect of the language model while the other system components (like classifier, signal 

processing, …) remain the same. 

Table 1. Difference in performance of spelling interfaces with and without natural 

language models. The third column refers to the sections where they are discussed. 

Study 
BCI 

Paradigm 

Section 

Describing 

Model 

Number 

of 

Subjects 

Amount of  

Words/Characters 

Typed 

Performance without  

Natural Language 

Model 

Performance with  

Natural Language 

Model 

Kaufmann 

et al. 

2012 [115] 

ERP-based 3.4. 19 9 words/45 characters 

15.1 ± 5.6 bit/min (ITR) 

12.0 ± 2.7 bit/min (true 

ITR) 

15.7 ± 5.7 bit/min 

(ITR) 

20.6 ± 5.3 bit//min(true 

ITR) 

Ryan et al. 

2010 [114] 
ERP-based 3.4. 24 

Sentence with 

58 characters 

19.39 ± 5.37 bit/min 

(ITR) 

3.71 ± 0.75 char/min 

(OCM) 

17.71 ± 5.38 bit/min 

(ITR) 

3.76 ± 0.75 char/min 

(OCM) 

Volosyak 

et al. 

2011 [112] 

SSVEP 3.4. 7 
Three phrases with in 

total 34 characters 

29.98 ± 5.79 bit/min  

(true ITR) 

32.71 ± 9.18 bit//min  

(true ITR) 

Ahi et al. 

2011 [103] 
ERP-based 3.5. 14 

10 words with 

4 characters each 

For 2 trials: 8.48 bit/min 

(ITR) 

For 2 trials: 

35.24 bit/min 

(ITR) 

Ahi et al. 

2011 [103] 
ERP-based 3.5. + 3.1. 14 

10 words with 

4 characters each 

For 2 trials: 

8.48 bit/min (ITR) 

For 2 trials: 

55.32 bit/min (ITR) 

Speier et al. 

2012 [44] 
ERP-based 3.6. 6 

9 words with 5 letters 

each 

22.07 ± 8.48 bit/min 

(ITR) 

33.15 ± 12.37 bit/min 

(ITR) 

D’Albis 

et al. 

2012 [98] 

MI 3.2.  3 
Phrase with 

20 characters 

12:56 min  

(spelling time) 

10:38 min  

(spelling time) 

D’Albis 

et al. 

2012 [98] 

MI 3.4.  3 
Phrase with 

20 characters 

12:56 min  

(spelling time) 

6:27 min  

(spelling time) 

D’Albis 

et al. 

2012 [98] 

MI 3.2. + 3.4.  3 
Phrase with 

20 characters 

12:56 min  

(spelling time) 

6:09 min  

(spelling time) 

Akram et al. 

2013 [113] 
ERP-based 3.4.  4 10 words 

2.9 min  

(word spelling average 

time) 

1.66 min  

(word spelling average 

time) 
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5. Discussion 

As is seen from Table 1, incorporating language models into BCI-spellers provides benefits in 

performance. In this way, language models could be seen as another way to improve the performance, 

in addition to a better classifier, more advanced signal processing, and so on. While the latter 

conventional methods are intended to change one of the blocks in Figure 1, the incorporation of a 

language model could be seen, in the majority of cases (for Sections 3.2–3.6), as an additional block in 

the scheme, which could also influence the classification step, its outcome, or the interface (display 

layout) itself. 

Studies done so far with language models in BCI spellers only had a small amount of words/characters 

typed (less than 60 characters). Therefore, it is difficult to draw any solid and unbiased conclusions about 

the benefits of language models during a prolonged use of the system. However, one could expect that in 

this case the user could become more familiarized with the interface and its abilities and caveats.  

Moreover, some interfaces [113,114] allow for the inclusion of the user’s most frequent words and 

phrases, collected when using the BCI system, which could also speed up typing, especially in a word 

completion mode. On the other hand, with some of the language model implementations, as in [114], 

which were reported to increase the mental workload, the performance could even decrease after 

prolonged use. All these points indicate the necessity to perform longitudinal studies to properly 

evaluate the benefits of such implementations. 

Even to date the potential benefits (if any) of some language models are not yet fully investigated. 

For example, the Dasher interface (see Section 3.2) is merely presented as a proof of concept for BCI. 

Whether it is beneficial or not still remains an open question. Additionally, some evaluations and 

comparisons were only done with simulated BCI spellers [99,107] or with off-line data [44,121]. All 

this still calls for on-line assessments of the proposed methodologies. 

While the primary goal of BCI is to help patients suffering from locked-in syndrome, severe speech 

or motor disabilities, all studies with language models done so far only considered healthy subjects. It 

could very well be that some of the suggested methodologies, such as word completion, which require 

an increased cognitive load [114], are in fact infeasible for certain patient groups. 

Another challenge is the design of an appropriate interface, tailored to the user. This could even 

start with the selection of the corpora so that the interface is better tuned to the user’s language or 

his/her language capabilities. Human-machine interaction studies in this direction are needed. It would 

also be beneficial to have interfaces that work without requiring the user to switch between different 

interface layouts as, for example, in [112]. Such modifications could result in faster typing, since no 

commands for switching between interfaces are required. From the reviewed publications it is already 

seen that, for example, the list of word suggestions (during predictive spelling), integrated directly into 

interface, can reduce the mental workload [115]. All these could inspire the design and implementation 

of an interface that complies to with the main goals of AAL: to render the resulting system easily 

usable by the targeted user and not to increase its mental effort.  

Most of the publications to language models in BCI spellers explore mainly only one of the 

language models presented in Section 3, while it is desirable to use several of them simultaneously to 

boost the performance. For example, a classifier for typing consecutive letters that takes into account 

letter probabilities depending on previously typed text (Section 3.6), could be easily connected to 
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predictive word spelling (Section 3.4). The same principle of implementing several applications, 

according to the particular needs of AAL users, can be followed when integrating BCI spellers in AAL 

applications (e.g., in areas of safety, social environment, housework). 

While the previous remarks are somewhat general, each method has its limitations and possible 

directions for improvement. For example, in [112] the word prediction model was supported by a 

dictionary containing the 49,142 most common words in English. This dictionary consisted of (mainly) 

the singular form of those words, whereas the user sometimes wanted to type words in plural. Since the 

word completion strategy used in this study had each word completed by adding a space after it, many 

users preferred the character-by-character spelling mode over the word completion one, since the latter 

required frequent corrections, by using the ―backspace‖ command, and a retyping to obtain the plural 

form. As another example, we mention the word correction strategy proposed in [103] which can work 

under the following conditions: (a) the spelling system must exactly know where the intended word 

starts and ends (thus, a misspelled word-separating symbol could be considered as a part of the 

intended word); (b) the words can only contain letters (no digits and/or other characters); and (c) words 

not from the system dictionary are not supposed to be spelled. If at least one of these conditions is 

violated, then the described word correction strategy will be useless and will lead to a wrong textual 

output. Hence, further research is needed to overcome these limitations.  

The potential benefits of BCI have been exploited in different BCI systems [68] including AAL 

applications. Particularly, BCI-spellers are in a position to improve the quality of life of people with 

particular communication needs [6] as is the case in the AAL community. Additionally, the various 

implementations of language models (e.g., completion, design of appropriate interfaces, avoid the 

switching between interfaces layouts, predictive characters selection) on BCI-spelling systems, as 

described in this review, could offer new ways to interact with assistive living, communication and 

control systems. Such implementations could support an active social environment in the context of 

rehabilitation [4], and AAL applications such as control environment and context awareness [8]. 

6. Conclusions 

In this study we reviewed several approaches to boost the performance of existing BCI spellers by 

using language models. We categorized them based on the language model used and the way it is 

integrated. Different methods for assessing and comparing the performance of BCI spellers were 

discussed and adaptations to better account for the integrated language models suggested. We conclude 

that as a result of application of these language models, a significant improvement in spelling 

performance can be achieved, and new avenues of BCI integration in the AAL community charted 

such as social and environment control and rehabilitation. 
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