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Abstract: Multivariate quadratic (MQ) cryptography requires the use of long public and
private keys to ensure a sufficient security level, but this is not favorable to embedded
systems, which have limited system resources. Recently, various approaches to MQ
cryptography using reduced public keys have been studied. As a result of this, at CHES2011
(Cryptographic Hardware and Embedded Systems, 2011), a small public keyMQ scheme,
was proposed, and its feasible implementation on an embedded microprocessor was reported
at CHES2012. However, the implementation of a small private key MQ scheme was
not reported. For efficient implementation, random number generators can contribute to
reduce the key size, but the cost of using a random number generator is much more complex
than computingMQ on modern microprocessors. Therefore, no feasible results have been
reported on embedded microprocessors. In this paper, we propose a feasible implementation
on embedded microprocessors for a small private keyMQ scheme using a pseudo-random
number generator and hash function based on a block-cipher exploiting a hardware Advanced
Encryption Standard (AES) accelerator. To speed up the performance, we apply various
implementation methods, including parallel computation, on-the-fly computation, optimized
logarithm representation, vinegar monomials and assembly programming. The proposed
method reduces the private key size by about 99.9% and boosts signature generation and
verification by 5.78% and 12.19% than previous results in CHES2012.
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1. Introduction

The technology related to embedded systems has made significant progress, making many
applications, such as home automation, surveillance systems and environment monitoring services,
feasible. However, without secure and robust data protection from security threats, these services cannot
be put into practice. To solve these problems, public key cryptography has been studied for several
decades. The current main stream is Elliptic Curve Cryptography (ECC), which is an approach based on
the algebraic structure of elliptic curves over finite fields. The use of elliptic curves in cryptography was
suggested independently by Koblitz [1] and Miller [2] in 1985. The technology provides a short key-size
and various applications, including Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve
Diffie-Hellman (ECDH).

The alternative multivariate quadratic (MQ) cryptography provides encryption and digital signatures
with modest computational resources [3]. There is no feasible attack to lattice-based cryptosystems
that has been discovered yet under a quantum computing environment, while those to factoring for
Rivest Shamir Adleman (RSA) and Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography
(ECC))-based systems already exist. However, the large size of the public and private keys required
makes it difficult to fit such systems into low-cost devices like Radio-frequency identification (RFID)
tags and smart-cards.

In this paper, we study an efficient implementation ofMQ cryptography in terms of shortening the
private key and reducing the computational cost of signature generation and verification. We focus on
MQ techniques on an embedded processor, because ECC has been studied for several decades and
has reached its technological pinnacle [4]. In contrast, MQ cryptography has only recently begun to
receive attention, and there is considerable room to improve its performance. Previously, small public
key implementations have been actively studied, but the private key analogue has not. In this paper, we
implement small private key MQ cryptography using a Pseudo-Random Number Generator (PRNG).
To enhance its performance, we adopt an Advanced Encryption Standard (AES) module for the PRNG
and hash function and use optimized techniques, including parallel computation, on-the-fly computation,
vinegar monomials, optimized logarithmrepresentation and assembly programming.

The paper is organized as follows. In Section 2, we give an introduction to the basic structure
of Multivariate Quadratic Public Key Scheme (MQPKS)and related technologies. In Section 3, we
present efficient implementation techniques for embedded microprocessors. In Section 4, we evaluate
and analyze the performance of the proposed method. Finally, in Section 5, we conclude the paper with
a brief summary of our contributions.
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2. Related Work

2.1. Unbalanced Oil and Vinegar

The idea of Unbalanced Oil and Vinegar (UOV)-signature schemes is to use a public multivariate
quadratic map, P : Fn

q → Fm
q , with:

P =

 p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)


and:

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

α
(k)
ij xixj = xTβ(k)x

where β(k) is the (n × n) matrix describing the quadratic form of p(k) and xT = (x1, . . . , xn)
T [5].

The trapdoor is given by a structured central map, F : Fn
q → Fm

q , with:

F =

 f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)


and:

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = uT δ(k)u

In order to hide this trapdoor, secret linear transformation S is chosen, such that P := F ◦ S [6].
For the UOV signature scheme, we define two variables called vinegar (ui, i ∈ V := {1, . . . , v}) and oil
(ui, i ∈ O := {v + 1, . . . , n}). The central map, F , is given by:

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V

γ
(k)
ij uiuj +

∑
i∈V,j∈O

γ
(k)
ij uiuj

The number of vinegar variables is twice the number of oil variables to make the protocol secure.
The transformation involves fully mixing the oil and vinegar variables, so that malicious users cannot
obtain secret values by separating the oil and vinegar variables.

2.1.1. Signature Generation

To sign a document, d, a hash function,H : F?
q → Fm

q , is used to compute the hash value h = H(d) ∈
Fm
q . Next, one computes y = F−1(h) and then z = S−1(y). The signature of a document, d, is z ∈ Fn

q .

2.1.2. Signature Verification

To verify the authenticity of a signature, the hash value, h, of the corresponding document and the
value h′ = P(z) must be computed. If h = h′ holds, the signature is accepted; otherwise, it is rejected.
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2.1.3. Public Key Optimization

At CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), the 0/1 UOV method for
reducing the size of the public key was presented [7]. Choosing the special structure (S,P), it was
reported that the key size and runtime of the verification algorithm could be reduced. The concept
behind the reduction of the public key size is the use of a partially cyclic public key and GF (2) (Galois
Field) elements for coefficients. The method proceeds by generating a partially circulant matrix and
then computes the public key transformation matrix from a linear map to compute the corresponding
secret key. If the specific requirements are met, we can generate the public key from small-size cyclic
keys. Furthermore, coefficients of the GF (2) form are easily computable, reducing both the size and
verification time.

2.1.4. Private Key Optimization

To reduce the private key size ofMQ schemes, we can use a PRNG for key generation. This reduces
the key size down to the size of the seed values. Recently, private key generation has been implemented
using an RC4-based PRNG [8]. The basic idea is to generate a private key from symmetric
cryptography, which can be used as the private coefficients. However, the method is implemented
on PCs using JAVAso straight-forward implementation of this method on resource constrained device
is infeasible, because PRNG has high overheads for embedded microprocessors. For a light-weight
implementation, an embedded encryption module could be exploited. This approach was firstly
introduced in INDOCRYPT2012 [9], where sub-operation of the RFSB-509 generating constant is
concurrently computable by accumulating previous results. In terms of PRNG, the first implementation
of AES-based PRNG was described in [10]. The method exploits AES counter mode of operation to
generate high entropy random numbers with high throughput.

2.2. Previous Implementations on Embedded Microprocessors

A software implementation of enTTS (20, 28) on a MSP 430 microprocessor was reported in [11].
The signing and verification operations were executed within 71 ms and 726 ms, respectively.
At CHES2004, Yang et al. reported signs of TTS(20, 28) in 144 ms, 170 ms and 60 ms and TTS(24,
32) in 191 ms, 227 ms and 85 ms for i8032AH, i8051AH and W77E59, respectively [12]. Recently,
at CHES2012, implementations of UOV, Rainbow and enTTS on an eight-bit microprocessor were
reported. The author implemented MQ signatures with security levels of 264, 280, and 2128 and
demonstrated the feasibility of such protocols on resource-constrained devices. They also provided
specific implementation techniques, such as self-invertible linear maps, LU decomposition and logarithm
representation. First, self-invertible linear maps do not, by definition, require inversion, and their
private key is smaller than a normal map. Second, LU decomposition factorizes a matrix into the
product of lower triangular and upper triangular matrices. The decomposition representation reduced the
straightforward implementation cost of Gaussian elimination. Finally, logarithm representation simply
performs multiplication on a Galois field by computing addition. Until now, few implementations have
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been reported on embedded microprocessors, and even private key optimization has not been studied.
For this reason, we have focused on a private key reduced model for embedded microprocessors.

2.3. Target Platform and Tools

We used ATxmega128a1on an Xplain board as our target platform. This microprocessor has a clock
frequency of 32 MHz, 128 KB flash program memory and 8 KB SRAM. Furthermore, the device
provides an AES crypto-accelerator that computes the encryption within 375 clock cycles. This is
significant progress compared to the software implementation of AES on the ATmega128 processor,
which requires 1,993 ∼ 3,766 clock cycles [13,14] with pre-computations. In this paper, we provide a
novel signature generation for modern microprocessors that uses an embedded AES accelerator for the
PRNG and hash function. These approaches significantly reduce the size of the private key and optimize
the computational performance, as well. To use AES module, we should trigger AES operation by
following instructions as described in Algorithm 1. First, a status bit for AES operation is set. Second,
a key and plain text are allocated to the AES accelerator, and then, we trigger the AES execution, which
takes 375 clock cycles. During the execution, we can perform other operations using the microprocessor,
because AES operations are independently executed on the AES accelerator. After the execution,
we obtain the cipher-text generated from the AES accelerator by accessing the storage address. Our
program is written in assembly for the main computations and partly C language for the interface.
The development tool is the latest version of Atmel Studio 6.0.

Algorithm 1: AES encryption using AES accelerator
Input: Secret key k, plain text p
Output: Cipher-text c

1. AES accelerator setting
2. Move k to key storage in AES accelerator
3. Move p to plain text storage in AES accelerator
4. Execute the AES accelerator
5. Wait for completion (375 clock cycles)
6. Get c from cipher-text storage in AES accelerator

2.4. Random Number Generator Based on a Block Cipher

Random numbers are widely used as seeds for cryptographic operations and secret key generation.
Among various types of random number generators, a block cipher-based random number generator is
considered in this paper to exploit the AES module in an embedded board. The following equation
outlines the process of random number generation. The notations, enc, C, k and R, represent the
encryption process, counter (secret seed), secret key and random number stream. First, the counter is
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encrypted with secret key, k. The output is then bitwise XORedwith counter value Ci, and the encryption
can proceed. This process is iterated until we obtain a suitable size of random numbers.

R1 = enck(C1)

Ri+1 = enck(Ci ⊕Ri)

where : Ci = Ci−1 + 1

(1)

The purpose of introducing the block cipher-based random number generator is that we will
use it to generate the secret coefficients. This is possible using the AES accelerator on modern
embedded boards, which can generate encrypted data conveniently. The AES accelerator is a peripheral
device, so it operates independently of the microprocessor. We can order the encryption on the
AES accelerator while simultaneously computing a signature on the microprocessor. This method
can boost performance and reduce the required program memory. Furthermore, the PRNG process
follows cipher-block chaining (CBC); this is efficiently executed using the CBC option on an embedded
processor. In our implementation on ATXmega, timing and ROM cost around 40 (clock/bytes) and 204
(bytes), respectively. This result is reasonable for embedded processors. For randomness characteristic,
we evaluated our random sequence on the National Institute of Standards and Technology (NIST)-test
suite [15]. Firstly we collected a pseudo random number sequence from block cipher-based PRNG by
two gigabytes. Then, we operated the NIST statistical test suite version 1.6 with the number of bit
streams and the length of the bit set to 100 and 1,024, respectively. The results are described in Table 1,
and reasonable proportion rates are achieved.

Table 1. Result of NISTrandom number generator (RNG) test.

Statistical Test Proportion(%)

Frequency 99
Block-Frequency 99.4
Cumulative-sums 99.2
Runs 99.5
Longest-run 100
Rank 100
FFT 100
Serial 100
Lempel–Ziv 100
Linear-complexity 100

For the security concern, the strength is based on the bit-length of block-cipher. If the inner state of
the generator is compromised once, the adversary could foresee future outputs. To resolve this problem,
we should compute random numbers with refreshed seed values. One possible challenge to AES in
counter mode would be a timing attack on the value of the counter. We can prevent these attacks by
using a counter that always takes the same amount of time to increment its value, and AES-based PRNG
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could give a periodic generation. This drawback could be solved by reseeding the secret values on
proper timing.

2.5. Hash Function Based on a Block Cipher

Hash functions compress an input of arbitrary length to a string of fixed length. Our main motivation
for constructing a hash function based on a block cipher is to minimize the design and implementation
effort. The hash function based on the block cipher is conducted according to Equation (2), where H ,
pi, N and E denote the hash code, plain text, nonce and encryption process, respectively. This structure
follows the Davies–Meyer single-block-length compression function. The security level of the one-way
hash function is determined by the minimum of the size of the key and the block length [16]. To ensure
a sufficient security level, we used a 128-bit secret key for the AES-based hash function.

H1 = encp1(N)⊕N
Hi = encpi(Hi−1)⊕Hi−1

(2)

In our hash function, we exploit the AES-accelerator for the block-cipher-based hash function.
Previous MQPKS implementations on an embedded board were not concerned much with hash
functions. However hash function should be included for practical purposes, because normally,
a message is compressed in its own embedded board, not other places. In Table 2, we can find hash
function implementations on the ATmega board. Compared with other results, our result improves speed
and size altogether. In the case of speed, we use a dedicated hardware crypto module, so this is faster
than other results that implement the functions in software. Furthermore, our result does not use much
memory, because we only need to use hardware control code.

Table 2. Speed of compression functions.

Algorithm Time RAM ROM
(cycles/byte) (bytes) (bytes)

SHA-1 [17] 579 198 1,022
SHA-1 [18] 177 122 1,352

SHA-256 [17] 783 416 1,598
SHA-256 [18] 335 158 2,720
Blake-32 [17] 1,115 245 6,684
Blake-32 [19] 324 251 1,804
Blake-32 [18] 263 206 2,076
Skein-256 [18] 287 123 2,464

Ours (Davies et al.) 50 48 144

TheMQPKS implementation consists of two parts, including signature generation and verification.
The signature generation produces private coefficients and computes a signature message. In the case
of signature verification, the signature is verified by checking the validity of the provided signature.
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By introducing AES-based PRNG, we significantly reduced the private key size, and with the optimized
implementation, we show performance enhancements in both the signature generation and verification
parts. The following subsections describe the optimization and implementation methods in detail.

2.6. Parallel Computation

Using the parallel feature of the AES accelerator, we can compute a signature while generating the
private coefficients. Signature generation on the embedded processor is described in Figure 1. First, the
message is hashed using the hash function. The output is 16 bytes each time and takes 375 clock cycles.
Central map computation is then executed, while vinegar variables and private coefficients are generated.
These operations are conducted in independent modules, so we can compute both operations together.
For this reason, we do not need any additional computation costs to generate the private coefficients.
After central map computation, we generate the coefficients of the linear map. As a result of this, the
overheads of the key generation process are absorbed in the central and linear map computations. This
parallel computation technique can be applied to the verification process for message hashing, which
is described in Figure 2. We can the conduct hash function computing the verification process, so one
operation is absorbed into other operations.

Figure 1. Signature generation process on a microprocessor.

Figure 2. Signature verification process on a microprocessor.
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3. Implementation of Small Private KeyMQPKS

3.1. Logarithm Representation

Multiplication and inversion operations on GF (28) can be easily computed using logarithm

representation in Algorithm 2, which transforms multiplication to a simple addition operation.

Algorithm 2: Implementation of Gaussian Elimination.
Input: Coefficients of Gaussian map g(i,j), message mi, where 1 < i, j ≤ o, symbol o denotes the
number of oil variables, the upper subscript describes the representation transition and the bottom
subscript denotes the index. Steps from 1 to 18 describe forward elimination and steps from 19 to 26
describe backward elimination.
Output: Result ri of Gaussian elimination.

1. for i = 1 to (o− 1) do
2. for t = i to o do
3. temp gl = invn→l(gn(t,i))

4. for k = i to o do
5. gl(t,k) = temp gl + logn→l(gn(t,k))

6. gn(t,k) = expl→n(gl(t,k))

7. end for
8. ml

t = temp gl + logn→l(mn
t )

9. mn
t = expl→n(ml

t)

10. end for
11. for k = i+ 1 to o do
12. for t = i to o do
13. gn(k,t) = gn(i,t) ⊕ gn(k,t)
14. end for
15. mn

k = mn
i ⊕mn

k

16. end for
17. end for
18. rno = expl→n(logn→l(mn

o ) + invn→l(gn(o,o)) )
19. count = 1

20. for i = o− 2 to 0 do
21. for j = o− 2 to o− 1− count do

22. rni = rni ⊕ expl→n
(
logn→l(rnj+1) + logn→l(gn(i,j+1))

)
23. end for
24. rli = rni ⊕mn

i

25. count = count+ 1

26. end for
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To compute multiplication, values are first converted into their logarithm form by looking up the
logarithm table. Then, the relevant values are added, and the sum is returned to a normal representation
by looking up the exponential table.

The representation setting is selected in an optimized way when we generate the private coefficients,
vinegar values and coefficients of the linear map. The values are randomly generated and are considered
to be in logarithm form, because the private coefficients, linear map coefficient and vinegar values
are directly multiplied from the first computation. Thus, storing values in logarithm representation is
more efficient than leaving them in their normal representation when we consider the next operation.
This method has one more advantage. In the logarithm representation, we can express the additional
value of “0”, which does not exist in the logarithm look-up table, so it cannot be used in the normal
representation. However, the value exists in the exponential table, so we can use this representation for
private coefficients.

To find the inverse of a value, we can use an inversion table, which transforms the value using
the logarithm table and then subtracts 0xff (255) before returning the resulting value to a normal
representation. In our implementation, we use the modified inversion table described in Table A1,
which outputs results in logarithm representation with input variables in normal representation. These
directly multiply the inverse value in the Gaussian elimination process described in Algorithm 3, in
which the first column is inverted and then multiplied with the remaining values in the same row, thus
setting the first column to one. After that, each row is bit-wise exclusive-ORed with other rows. This
process, called forward elimination, continues to generate triangular form. In the backward elimination,
from the last row, the equation is solved by each row.

Algorithm 3: Multiplication algorithm using logarithm representation written in assembly where
ADD, ADC and CLR is addition, addition with carry and clear and Rd and Rr are destination and
source registers, (ADD Rd , Rr : Rd←Rd+Rr, ADC Rd, Rr: Rd←Rd+Rr+C, CLR Rd: Rd←Rd⊕Rd,
Rd: destination register, Rr: source register, r1 is cleared.)
Input: Unsigned bytes Al(R2), Bl(R3)

Output: Unsigned byte Al(R2) = Al(R2) +Bl(R3)

1. ADD R2, R3

2. ADC R2, R1

3.2. Assembly Programming

Assembly programming generally exhibits higher performance than high-level programming, such
as C and JAVA. This is because we can optimize register allocation and use the status register, which
provides a carry bit to determine a certain condition. In our implementation, we adopt assembly
programming throughout the whole process to reach to highest performance. Multiplication in
logarithm representation can be simplified in addition by using the assembly described in Algorithm 3.
First, register r1 is reset. Second, the operands are added. However, if the result is bigger than 0xff,
an addition operation on the eight-bit microprocessor generates an output that is subtracted from 256,
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setting the carry bit. Therefore, this does not give the expected result. However, conducting an addition
with the carry bit on the results, we can output the correct result, as we expected.

There is another case that exists. Algorithm 4 describes the exception condition. After central map
computations, every parameter is stored into normal representation. The representation cannot map
a zero variable into logarithm representation, so we should conduct exception handling for the zero
variable. In this case, we directly output zero as a result without computation. In Algorithm 4, Step 1
clears destination register R8. From Steps 2 to 5, input variables (R2 and R3) are compared with zero
(R1) to determine the zero variable. From Steps 6 to 13, logarithm mapping is conducted. In Steps
14 and 15, multiplication of R2 and R3 is conducted in logarithm representation. In Steps 16 to 19,
mapping to normal representation is conducted.

Algorithm 4: Exception handling in multiplication for zero variables, where CP, BRCC and MOVW
are compare, branch with carry and move register, (CP Rd, Rr: Rd-Rr, BRCC k: if (C=0) then
PC ← PC+k+1, MOVW Rd, Rr: Rd+1:Rd ← Rr+1:Rr, ADD Rd, Rr: Rd←Rd+Rr, ADC Rd, Rr:
Rd←Rd+Rr+C, CLR Rd: Rd←Rd ⊕Rd, Rd: destination register, Rr: source register, k: label, R1

is cleared, R4, R5 indicate logarithm table, R6, R8 indicate exponential table, R28, R29 indicate Y
pointer, ZERO: label name.)
Input: Unsigned bytes An(R2), Bn(R3)

Output: Unsigned byte Cn(R8) = An(R2)×Bn(R3)

1. CLR R8

2. CP R1, R2

3. BRCC ZERO
4. CP R1, R3

5. BRCC ZERO
6. MOVW R28, R4

7. ADD R28, R2

8. ADC R29, R1

9. LD R2, Y

10. MOVW R28, R4

11. ADD R28, R3

12. ADC R29, R1

13. LD R3, Y

14. ADD R2, R3

15. ADC R2, R0

16. MOVW R28, R6

17. ADD R28, R2

18. ADC R29, R1

19. LD R8, Y

20. ZERO:
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3.3. Vinegar Monomials

Central map computation is multiplying private coefficients with vinegar variables by the following
equation: f (k)(u1, . . . , un) :=

∑
1≤i≤j≤n γ

(k)
ij uiuj = uT δ(k)u. These vinegar computations are

executed in every central map computation, so vinegar monomials can reduce the vinegar variable
computations throughout the whole processes by removing multiplication operations between each
vinegar variable. Algorithm 5 describes the pre-computation of vinegar variables, in which we can
generate vinegar monomials. The vinegar variables are generated in logarithm form. We left vinegar
monomials as a logarithm form, because these variables are directly used for multiplication operations
in
∑

i∈V,j∈V γijp(i,j), where γ and p are the private coefficient and vinegar monomials, respectively.

Algorithm 5: Pre-computation of vinegar variables; symbols V and n denote the number of vinegar
variables and the total number of vinegar and oil variables, respectively.
Input: Vinegar variables ui.
Output: vinegar monomials p(i,j), 0 < i, j < V .

1. for i = 1 to V do
2. for j = i to V do
3. p(i,j) = ui × uj
4. end for
5. end for

3.4. On-the-Fly Computation

MQPKS requires a large key size. If we firstly compute all private keys before we use them, these
occupy a huge storage amount for retaining these values. To avoid this condition, we selected the
on-the-fly method, which generates private keys, and then, these keys are used directly. The AES-based
PRNG that we chose generates 16 bytes of secret information every computation. These variables are
directly used for central and linear map computation. For efficient computation, we divide central
map computation into vinegar and oil parts. Firstly, the vinegar part is computing

∑
1≤i≤j≤v γ

(k)
ij uiuj

with vinegar coefficients, vinegar monomials and message variables, and then, the oil part is executing∑
1≤i≤v,1≤j≤o γ

(k)
ij ui with vinegar and private coefficients.

3.5. Overview of the Computation Process

In Figure 3, briefly, we describe the representation of variables for each computation. Firstly,
in Figure 3a, a message is hashed and outputted in normal representation. In the case of vinegar
variables, logarithm representation is selected. In Figure 3b,

∑
i∈V,j∈V uiuj are the vinegar monomials

for efficient computation and are stored in logarithm form. In Figure 3c, we firstly compute∑
i∈V,j∈V γijp(i,j), where γ and p are private coefficient and vinegar monomials, respectively. After that,

we compute the remaining part,
∑

i∈V,j∈O γiju(i,j), to complete central map computation. In Figure 3d,
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Gaussian elimination is conducted with the results of the previous step. Finally, in Figure 3e, we generate
linear map coefficients in logarithm representation and then compute the linear map computations.

Figure 3. Overview of the representation of the variables for each computation: (a) message
(normal), vinegar variables (logarithm); (b) vinegar monomials (logarithm); (c) private
coefficients(logarithm); (d) Gaussian coefficient (normal); (e) linear map coefficients
(logarithm); red and black mean logarithm and normal representations, respectively.

4. Results

In this section, we provide evaluation results on a UOV scheme implementation in terms of memory
consumption and computational complexity. Memory consumption is mainly used for key storage. The
private key size is o(ov + v(v+1)

2
) + ov for central map and linear map coefficients.

Table 3. Implementation results of the signature generation of the UOVscheme.

Scheme
Private Key Cycles Time (ms) ROM RAM Program

(Byte) ×103 32 MHz (Byte) (Byte) Language

UOV (21,28) [20] 21,462 1,615 50.49 2,188 441 C + ASM
0/1 UOV (21,28) [20] 21,462 1,577 49.29 2,258 441 C + ASM
Our UOV (21,28) 48 1,486 46.37 4,814 2,499 ASM

Table 4. Implementation results of the signature verification of the UOV scheme.

Scheme
Private Key Cycles Time (ms) ROM RAM Program

(Byte) ×103 32 MHz (Byte) (Byte) Language

UOV (21,28) [20] 25,725 1,690 52.83 466 n/a C + ASM
0/1 UOV (21,28) [20] 4,851/20,874 1,395 43.60 578 n/a C + ASM
Our UOV (21,28) 25,725 1,225 38.30 2,069 562 ASM
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To compute the signature generation, previous implementations stored the private key in memory.
However, our implementation stores only the seed values for the random number generator used for
secret coefficient generation. For this reason, we can reduce the size of the private key by up to 99.9%.
Furthermore, we show a performance enhancement by about 5.78% and 12.19% in signature generation
and verification, respectively. This performance is achieved by adopting various optimization techniques
that we explored before. The detailed evaluation results are available in Table 3 and 4, respectively.

4.1. Computational Costs

Table 5 shows a detailed analysis of the computation costs for each operation. We separate whole
computations into six categories. In central map computation, we divide into vinegar and oil parts.
In Gaussian elimination, we divide into forward and backward eliminations. Our method exploits the
AES operation for PRNG, so computations that need many private coefficients take many clock cycles.
In our implementation, central map computation is the most expensive operation, because the private
coefficient size is o(ov), and it needs 882 AES operations. This result could be reduced more, because
we compute two AES operations (32 outputs) in each column for 28 coefficients and did not use four
remaining outputs, due to the difficult variable handling. If we fully use 32 outputs, the speed would be
improved further.

Table 5. Computation costs for each operation in the case of UOV (21,28) on the
ATxmega128a1.

Operation Clock Cycle Proportion (%) Number of AES Operation

Vin-genand pre-com 9,396 0.63 2
Central-vinegar 514,070 34.59 546
Central-oil 769,107 51.75 882
Gaussian-forward 128,253 8.69 -
Gaussian-backward 1,460 0.09 -
Linear 62,896 4.23 42
Total 1,486,182 100 1,367

4.2. Source Code Storage (ROM) Requirements

Table 3 shows the reduction in size of the private key compared with traditional implementations. The
size of the seed is computed with the following requirements (security level bit × 3, two for PRNG and
one for the hash function). For all parameter variations, our implementation shows a 99.9% reduction in
private key size. This is because our method generates private coefficients on the spot, so we store small
seed values instead of whole private key values.
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4.3. Variable Storage (RAM) Requirements

RAM stores persistent, counting or temporary variables for computation. The minimal RAM
requirements are those for storing Gaussian elimination variables, which are generally of o2 complexity.
For better performance, we used more RAM to compute the vinegar variables and look-up tables. The
computed vinegar variables, which multiply two vinegar variables, are used several times in the central
map, so maintaining these values is more beneficial than computing them each time. These have a
size of v(v+1)

2
. Second, the logarithm, exponential and inversion tables are used for converting the

representations, and each table has a size of 256 bytes. By storing values in RAM, we can access data
that is frequently required with lower overheads. The detailed information is available in Table 6.

Table 6. Minimal and our RAM requirements in bytes.

Scheme UOV (21,28) UOV (28,37) UOV (44,59) General

Minimal 441 784 1,936 o2

Our 1,615 2,255 4,474 o2 + v(v+1)
2

+ 3(16× 16)

4.4. Security Analysis

In this paper, we used representative block cipher AES as a core operation of random number
generator and hash function to reduce the private key size. Therefore, the security levels highly rely
on the strength of the block cipher. Recently, the vulnerability of a symmetric cryptosystem toward a
quantum system has been proven by applying Grover’s algorithm to break a symmetric algorithm by
brute force, requiring 2n/2 of time, where n is the security bit [21,22]. For this reason, we should select
a double-bit size to maintain the same security level ofMQPK. This is the main strength of a quantum
cryptosystem. To meet the n-bit security level of MQPK, we should select at least a 2n-security
level. For this reason, we selected 128-bit AES encryption to meet the 64-bit security level ofMQPK.
To ensure the 96-, 128-bit security level, we could use 192-, 256-bit AES operations, which are also
available in modern microprocessors. There is no specific conference and journal described.

4.5. Impacts on Other Protocols and Target Devices

We selected ATxmega128a1 as a target device to implementMQPKS. This does not mean that our
method is limited to only the ATxmega128a1 board. There are only two requirements that exist for
applying our methods. First, the microprocessor should support above an eight-bit word size, because
our algorithm requires at least an eight-bit word size to use optimal GF (28). Recently, eight-, 16-, 32-bit
machines have been most widely used in embedded environments. The representative target devices in
eight-, 16- and 32-bit are the XMEGA, MSP and ARM series, respectively. This means the majority
of the embedded system could be improved by our methods. Second, the AES accelerator should
be embedded in target devices. This requirement is also commonly met in modern microprocessors.
Previously, we mentioned the representative target devices, including XMEGA, MSP and ARM v8,
provide the AES accelerator as a peripheral.
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In the case of this scheme, our method would have huge impacts on otherMQPKS. We implemented
the UOV scheme in this paper, presenting private key reduction methods. This could be applied to other
schemes, including UOV, Rainbow and enTTS, without difficulty. Because these are variant of the UOV
scheme, the key generation process is similar to the UOV scheme. Furthermore, this is not limited to
the size of the finite field, because our method is generally ideal; so it could be extended to other fields,
as well.

5. Conclusions

The majority of previous results focused on small public keyMQPKS implementations. However, no
practical results on the reduction of private key size in embedded microprocessors have been reported. In
this paper, we presented a novel parallel computing method using a block cipher-based random number
generator and a hash function to reduce the size of the private key and to boost speed performance. The
method generates private coefficients, computing the central and linear maps simultaneously, because the
AES accelerator embedded in modern microprocessors, including the ATxmega, MSP430 and ARMv8
series, can compute AES operations independently with the microprocessor. The results showed a
significant reduction in private key size and enhancement in computation costs for signature generation
and verification. These results can be applied to other schemes, such as Rainbow and enTTS, to
generate private coefficients. Future work involves implementing this scheme on recent platforms,
including Compute Unified Device Architecture (CUDA), Open Computing Language (OpenCL),
NEON, Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX).
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Appendix

Inversion Table

Table A1 describes the inversion look-up table onGF (28). I = The input is the normal representation,
but the output value is the inverse of the input in logarithm representation form.

Table A1. Inversion table (input: normal representation, output: logarithm representation).

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 — 00 e6 fe cd fd e5 39 b4 38 e4 97 cc 11 20 fc
1 9b fb 1f f1 cb 72 7e 10 b3 8e f7 37 07 96 e3 3e
2 82 3d e2 4a 06 46 d8 95 b2 1b 59 8d 65 36 f6 87
3 9a d0 75 fa de f0 1e db ed 0f 7d ba ca 6c 25 71
4 69 70 24 42 c9 2f 31 6b ec a3 2d 0e bf b9 7c c7
5 99 22 02 cf 40 f9 74 9d 4c da 1d 67 dd 77 6e ef
6 81 91 b7 3c 5c 49 e1 bd c5 94 d7 ab 05 7a c2 45
7 d4 86 f5 ea 64 60 a1 35 b1 2b 53 1a 0c 8c 58 a8
8 50 a7 57 af 0b 15 29 8b b0 51 16 2a 18 19 52 17
9 d3 28 8a 85 14 e9 f4 0a a6 34 a0 4f 63 56 ae 5f
a 80 f3 09 90 e8 3b b6 13 27 bc e0 d2 5b 89 84 48
b 33 44 c1 a5 04 9f 4e 79 c4 ad 5e 93 55 aa d6 62
c 68 4d 78 6f 9e 41 23 03 43 6a 30 32 c8 c0 a4 2e
d ac c6 7b c3 be 5d 92 b8 eb d5 61 a2 a9 0d 2c 54
e bb ee 6d 26 dc df d1 76 4b 83 47 d9 88 66 1c 5a
f 98 b5 12 21 3a ce 01 e7 f2 9c 73 7f 3f 08 8f f8
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