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Abstract: In this study, a polarization-control setup for intensity-resolved guided mode 

resonance sensors is proposed and demonstrated experimentally. The experimental results 

are in good agreement with the simulation data based on rigorous coupled wave approach 

calculations. The proposed intensity-resolved measurement setup transfers polarization 

ellipses, which are produced from guided mode resonance to a linear polarization state 

under a buffer solution condition, and then suppresses the signals to dark using a 

polarization-control set. Hence, any changes in the refractive index results in an increase in 

the intensity signals. Furthermore, no wavelength-resolved or angular-resolved measurement 

is needed in this scheme. According to the experimental results, a wide linear detection 

range of 0.014 refractive index units is achieved and the limit of detection is 1.62E-4 RIU. 
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1. Introduction 

The demand for biosensing, especially for investigations related to food safety, infectious diseases 

and security issues is currently increasing [1–3]. Label-free methods provide a rapid and simple 

detection platform for further investigation of molecular interactions [3,4]. Guided mode resonance 

(GMR) devices [5–7], one of the recently arising types of optical label-free sensors, have been also 

demonstrated to offer dependable information about biomolecular interactions and have been 

developed commercially by Corning, SRU Biosystems and MicroVacuum [8–10]. The GMR device 

utilizes the evanescent wave around the structure surface to detect adsorption of biological material 

onto the sensor surface (i.e., changes of refractive index). As target molecules become attached to the 

chip surface, the boundary conditions of the evanescent waves from resonance are changed and this 

results in a shift of the resonance wavelength. For typical GMR sensors, the value of the shift  

in the resonance wavelength is considered to be a direct indicative quantity of bioassay reactions 

(interactions) occurring at the structure surface [11,12]. Thus, wavelength-resolved instruments have 

been extensively introduced in GMR sensor systems, such as spectrometers [9,13,14], wavelength 

tunable light sources [8,15] or angular-resolved motor stages [10]. Since the year 2000, GMR sensors 

using wavelength-resolved platforms have been widely employed in bioanalytical applications, 

including protein-protein and aptamer-protein interactions, as well as for DNA hybridization, drug 

discovery and cell assays [1,8,9,16,17]. However, the wavelength-resolved instruments are expensive 

and also need a lot of effort to achieve high throughput configurations [8,15]. Instead of applying 

wavelength-resolved instruments, this study manipulates the elliptical polarization states transmitted 

after the GMR device for the development of an intensity-resolved, low-cost sensor. In this study, a 

theoretical model for this scheme is explained and the experimental results are demonstrated as well. 

The polarization control setup is able to suppress the background signal under any buffer conditions, 

and the following changes in refractive index are transferred to an increase of light intensity responses, 

this is not only suitable for wide bioanalytical applications but also has the potential for 2D high 

throughput configuration. 

2. Experimental Section 

2.1. System Setup 

Figure 1a shows the system setup. The light source used in this work is a laser diode with a working 

wavelength centered at 1,550 nm, purchased from Thorlabs (Newton, NJ, USA), followed by collimation 

optics. A linear polarizer is placed after the collimator lens to control the TE/TM ratio (TE: transverse 

electric; TM: transverse magnetic), which is set to 1:1 in this work. The GMR chip sealed in a 

homemade fluidic cell is placed on a rotational stage immediately after the first polarizer. A design for 

the non-reaction region is also introduced to the fluidic cell, which provides a self-reference for signal 

processes. The misallocation of the resonance wavelength caused by imperfection in chip fabrication 

can be adjusted by rotating the chip as shown in Figure 1a. In order to control the transmitted 

polarization state, a polarization control set composed of a quarter wave plate (λ/4 plate) is used as a 

compensator, with an analyzer placed right after the sealed sensing cell. All the wave plate and 

polarizers were purchased from Edmund Optics (Barrington, NJ, USA). Finally, there are two 
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detectors for real-time transmission intensity capture and calibration, one for the signal and the other 

for reference. The detector was purchased from Gentec-EO (Lake Oswego, OR, USA). Here, a  

surface relief GMR chip is used in the intensity-resolved configuration to serve as an analyte-sensitive  

wave plate, which produces different amplitude TE/TM ratios and mutual phase differences (i.e., different 

polarization ellipses). Therefore, the following quarter wave plate and analyzer set is able to transfer 

information about the analyte-sensitive polarization ellipses to an intensity-resolved sensor. As can be 

seen in Figure 1b, the GMR chip is composed of a grating and a waveguide layer on top of a substrate. 

The period of the grating and waveguide thickness is designed to resonant around 1,550 nm to fit the 

light source that is used in this work. The reason for using 1,550 nm is that all of the related passive 

and active devices are easily obtained. However, the GMR device could be modified to fit any possible 

target wavelengths. 

Figure 1. (a) Setup of the polarization control system. The arrows sketched on the polarizer, 

analyzer and quarter wave plate stand for the transmission directions and fast axis, 

respectively. The red arrows drawn on light path depict the polarization states of the light 

wave. (b) Sketch of surface relief GMR chip, one period is present. 

 

2.2. Sensing Principle 

The GMR is a polarization dependent optical filter that couples and reflects specific wavelengths 

according to its geometric structure and refractive index of the surrounding environment. As the 

specific light (i.e., resonance wavelength) illuminates the GMR structure, the grating diffracts the light 

into the waveguide layer at a specific angle. The resonance occurs when the diffracted light matches 

the propagation constant of the waveguide and results in a lower transmission spectrum [11,12,18]. 

Figure 2a shows the amplitude of a normalized electric field and the mutual phase difference of the TE 

and TM modes after the GMR device with respect to different environmental refractive indexes from 

1.32 to 1.37. The data in Figure 2a are calculated by rigorous couple wave analysis (RCWA) [19]. The 
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structure calculated here is designed to have a relatively high response when working at 1,550 nm, 

according to a previous study [12]. A GMR with a period of 1.21 μm, 0.25 μm thick waveguide and 

grating depth of 0.121 μm is calculated. The dip of amplitude in TM mode indicates the resonance 

condition of TM0. In contrast, the off-resonance TE mode shows no response to the variations of the 

refractive index, and the amplitude variation in the TE mode is less than 0.15%. On the other hand, the 

phase difference shows a change in behavior across the resonance dip. Since the amplitude ratio and 

phase difference of the two orthogonal modes across the resonance are changing, the polarization state 

is changing as well. It is convenient to express the general form of the polarization ellipse as follows: 
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where A and B indicate the amplitude of the electric field from the TE and TM waves; δ stands for the 

mutual phase difference between the TE and TM waves; and k and ω denote the wave number and 

angular frequency. The shape parameters of the ellipse can be expressed as follows: 
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where ψ is the rotational angle between the major axis and the TE axis; a and b stand for the semi axis 

lengths of the ellipse, as shown in Figure 2b. 

Figure 2. (a) Normalized amplitudes and mutual phase difference of light waves after 

GMR; (b) sketch of a polarization ellipse. 

 

The intensity-resolved GMR system with polarization control is used to monitor the changes in the 

polarization ellipse caused by the different refractive indexes in the sensing region. However, the 

polarization states must be transferred to changes in transmission intensity, which is what the detector 

directly responds to. Thus, a quarter wave plate and analyzer set is placed after the GMR filter. The 

various transmitted elliptical polarizations can be converted to a linear polarization state by the quarter 

wave plate whose axis is oriented parallel to either the major or minor axis of the polarization ellipse. 
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That is, when the axis of the quarter wave plate is parallel to the “a” or “b” axis, the polarization state 

is transferred to the linear state, as shown by the red dashed-line in Figure 2b. Then, the direction of 

the linearized polarization state can be described as follows: 

2 2arctan(1 ), 1 ( )
b

e e
a

       (5) 

where e is the eccentricity of the ellipse, which depends on the length ratio of the major and minor 

axes. The directions of the linearized polarization are no longer equal to the ψ when the eccentricity is 

not a unit. As the polarization ellipse is linearized, an analyzer whose axis crosses the direction of the 

linear polarization can extinguish the transmitted light intensity. Through the polarization control set, 

the signal intensity can be effectively suppressed at any background refractive index (e.g., the buffer 

solution for different applications); therefore, subsequent changes of the polarization state due to any 

perturbation of the refractive index or bio-interactions result in an increase in the transmitted intensity. 

2.3. Chip Fabrication 

The surface-relief GMR chip used in this work is a high refractive index waveguide grating (Si3N4) 

deposited on a fused silica substrate. The high refractive index layer is deposited by plasma enhanced 

chemical vapor deposition (PECVD). Linear grating patterns are defined on a photo-resistant material 

by laser interference lithographic methods followed by reactive-ion etching to transfer a surface-relief 

grating to the waveguide surface. In order to demonstrate the validity of the polarization control 

system, a series of sodium chloride solutions with different concentrations (different refractive 

indexes) were introduced into the homemade fluidic cell containing the GMR chip for real-time 

monitoring of the transmission intensity. The refractive indexes of the solutions were also checked 

with a commercial refractive index meter. 

3. Results and Discussion 

The amplitudes and the mutual phase difference information enable one to obtain the polarization 

ellipses transmitted for different refractive index solutions after transmission through the GMR. The 

dashed black circular lines in Figure 3 indicate the polarization ellipses transmitted through the  

GMR chip for solutions with three different refractive indexes (1.32, 1.33 and 1.34). The phase and 

amplitude information are the same as the data in Figure 2. Figure 3 also depicts the evolution of the 

polarization ellipses through the quarter wave plate and analyzer control set. The orientations of the 

quarter wave plate and analyzer are fixed at 34.84° and 97.97° in order to suppress the background 

refractive index of 1.33; however, the suppressed refractive index could be any index depending on the 

specific buffer solution used. The red and blue lines indicate the ellipses after the quarter wave plate 

and analyzer, respectively. According to the results, only the ellipse for the 1.33 condition shows a 

total transfer to linear polarization, extinguished by the analyzer. For the other conditions there is still a 

portion of intensity transmitted through the analyzer. 
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Figure 3. Polarization ellipses for background indexes equal to (a) 1.32; (b) 1.33; and (c) 1.34. 

The ellipse is calculated from Figure 2a; the orientations of the quarter and analyzer plates 

are to 34.84° and 97.97°, in order to specifically suppress the transmission intensity for the 

1.33 background refractive index. 

 

The grating period for the fabricated GMR chip is 1.21 μm; the thicknesses of the waveguide and 

grating are 0.25 μm and 0.121 μm, respectively, as measured by an ellipsometer and AFM. The GMR 

chip is rotated at an angle of 11.95°. Taking into account the measured structural parameters in the 

RCWA calculation, the amplitude and phase response at different refractive indexes are obtained. The 

chip meets the TM0 resonance conditions for a background index condition of 1.3445. In this study, 

the intensity responses after the polarization control setup are calculated using Jones calculus [20]. The 

suppression of the refractive index should be slightly smaller than the resonance refractive index to 

achieve better performance. In this work, the optimal location is designed to be at 1.33 where the TM 

amplitude equals 0.79. Figure 4 shows the real-time experimental results. It can be seen that there are  

8 solutions with different concentrations of sodium chloride continually pumped into the fluidic cell. 

The intensities versus refractive indexes in the experimental and simulation data are also shown in the 

Figure 4b. Under the suppressed condition, no transmission intensity is observed, while the intensity 

responses of the other refractive indexes are higher than under the suppressed condition (1.33). As can 

be seen from the Figure 4b, a slightly broader linear response range is observed in the experimental 

results. This phenomenon could be contributed to by fabrication errors. In the simulation, the structural 

model in RCWA is perfectly extended with periodic boundaries. The simulation results from RCWA 

always show a much narrower resonance bandwidth than in the experimental results. As the GMR 

bandwidth is broadened, the intensity response is also broadened. However, the experimental results 

still show good agreement with the simulation results. In this study, the experimental linear response 

ranges from 1.336 to 1.35, which is 0.014 refractive index units (RIU). The results for the limit of 

detection (LOD) are strongly dependent on the noise level (3σ, standard deviation) of the whole system. 

The noise level significantly affects the LOD result in this work. Thus, the LOD is only 1.62E-4 RIU. 

Dividing the signal by a reference signal is further reduces the effects on the signal of light source 

fluctuations. The simulated maximum linear dynamic range of this present configuration is from 0  

to 61% of the incident light intensity when the refractive index changes from 1.33 to 1.344 as shown  

in the Figure 4b. Thus, based on a general signal to noise (S/N) ratio of light sensitive devices, 
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(typically around hundreds) the theoretical resolution of the refractive index that could be achieved  

is on the order of 10E-5 RIU; a superior resolution could be expected if any further advanced  

noise-reducing configurations are introduced. However, there is a trade-off between the dynamic range 

and resolution of refractive index. In some cases in the simulation, a large dynamic range (above 90% 

of the incident light intensity) is achieved. However, the operation range of refractive index is relative 

small. In this work, we demonstrate a large operation range configuration to further exhibit the 

advantages of the polarization controlled GMR. The inferior limit of the detection level obtained in 

this work is mainly limited by the low incident light intensity and the detector used in this setup. The 

light output from the laser diode is collimated to a beam with a diameter of 20 mm, which significantly 

decreases the light intensity illuminating on the GMR region. In such a low light condition, the S/N 

ratio is decreased as well. Furthermore, no advanced noise-reducing circuit is connected to the detector, 

which also limits the resolution of the present measurements. In order to achieve better performance, it 

is necessary to increase the light intensity and reduce the electronic noise. 

Figure 4. (a) Real-time response for 8 different refractive index solutions; (b) simulated 

and experimental intensity response; the error bar (one σ is depicted) stands for the noise 

level calculated from real-time results. 

 

4. Conclusions 

In conclusion, a low-cost polarization control system for intensity-resolved GMR sensors is 

proposed and demonstrated. According to the changes in elliptical polarization after the GMR sensor, 

the polarization control set transfers the polarization ellipse into a linear state. A crossed analyzer 

further suppresses the transmission light intensity under buffer solution conditions. Thus, all 

subsequent changes of the refractive index are converted into increasing intensity responses. The 

polarization states are significantly changed and converted into the intensity-resolved responses. The 

linear range of 0.014 RIU proposed in this article is wider than that reported for intensity-resolved SPR 

sensors, typically around 0.002–0.007 RIU [21,22]. Thus, the linear range achieved in this work is 

more than sufficient for most bioanalytical applications. On the other hand, the LOD is 1.62E-4 RIU. 

Although the LOD reported here is inferior for further advance applications, this study demonstrates 

the feasibility of the concept for low-cost intensity-resolving through the use of polarization control 
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schemes. Furthermore, this low-cost setup is practical and suitable to extend to a 2D image array for 

high throughput applications by replacing the detector with an image sensor. 
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