
Sensors 2014, 14, 4364-4383; doi:10.3390/s140304364 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired 

Tree Ring Data Tracking Technique 

Shi Bai 
1
, Xuan Li 

2
, Zhaohui Xie 

3
, Zhi Zhou 

2,
* and Jinping Ou 

1,2
 

1
 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;  

E-Mails: stone3214@163.com (S.B.); oujinping@dlut.edu.cn (J.O.) 
2
 School of Civil Engineering, Dalian University of Technology, Dalian 116024, China;  

E-Mail: milanlx1988@hotmail.com 
3
 School of Software Technology, Dalian University of Technology, Dalian 116024, China;  

E-Mail: xie.zhao.hui@foxmail.com 

* Author to whom corresspondence should be addressed; E-Mail: zhouzhi@dlut.edu.cn;  

Tel./Fax: +86-411-8470-9716. 

Received: 22 November 2013; in revised form: 20 February 2014 / Accepted: 20 February 2014 /  

Published: 5 March 2014 

 

Abstract: Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of 

critical structures such as aircraft and railway systems, resulting in enormous casualties as 

well as economic losses. The fatigue life of certain structures is intrinsically random and 

few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this 

paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree 

ring data tracking technique is proposed. The general framework, methodology, and verification 

of this intelligent system are discussed in details. The rain-flow counting (RFC) method is 

adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing 

(DSP) is introduced as the core module for data collection and analysis. Laboratory test results 

based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the 

developed intelligent system can provide a reliable quick feedback and early warning  

of fatigue failure. With the merits of low cost, high accuracy and great reliability, the  

developed wireless fatigue sensing system can be further applied to mechanical engineering, 

civil infrastructures, transportation systems, aerospace engineering, etc. 

Keywords: fatigue; structural health monitoring (SHM); rain-flow counting method;  

data tracking of tree rings; Digital Signal Processing (DSP); wireless sensor; PVDF 
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1. Introduction 

Fatigue is a process of progressive local permanent structural change occurring in a material under 

cyclic loading. These permanent structural changes may culminate in cracks, which may further result 

in a failure of the entire structure after a certain number of additional loading cycles. Fatigue failures 

are often catastrophic since they usually occur without any warning, which may cause the loss of lives 

as well as significant property damage. Fatigue is one of the major factors for the failure of mechanical 

structures and members [1]. Statistics has shown that fatigue damages are responsible for 50% to 90% 

of the failures of mechanical structures [2,3]. Thus, the prediction of fatigue life of structures has been 

one of the dominant issues for structures exposed to repeated cyclic loading in various applications 

such as machines, civil infrastructures, transportation systems, aerospace structures and energy related 

structures. However, due to the complexity and uncertainty of service environments as well as multiple 

damage mechanisms, an accurate estimation of the remaining fatigue life is hard to achieve for aging 

infrastructures under cyclic loading. 

Structural Health Monitoring (SHM) is the basis of the life-cycle performance-based design 

approach, which helps improve the safety, durability, serviceability and sustainability of a structure for 

long-term operation [4]. A structure with a SHM system can be considered as a full-scale experimental 

model and system [5]. The rapid development of the SHM technique provides a potential solution  

for the fatigue life prediction. Fatigue damage, known as a stochastic phenomenon, makes online 

monitoring/sensing a significant need for a reliable estimate of the remaining fatigue life [6]. To meet 

this need, various sensing technologies have been developed in last century for fatigue damage 

monitoring and structural failure analysis, including acoustic emission [7,8], ultrasound [9,10] and eddy 

currents [11,12], fatigue life gauges [13], electrochemical fatigue sensors (EFSs) [14,15] and thermal 

imaging techniques [16]. 

The acoustic emission technique [7,8] takes advantage of the benefits of the correlation between the 

detected signals (e.g., the acoustic emission counts, the peak amplitudes and the energy) and the 

fatigue crack initiation. If high sensitivity for crack detection is achieved, this technique is able to 

capture the initiation of microstructural fatigue. However, the sensitivity of this method is limited by 

the signal-to-noise ratio. In noisy environments, the acoustic emission may not work well, taking account 

of the difficulty of separating the signal from noise. In an effort to detect fatigue crack in noisy 

environments, the ultrasonic sensing technique is recommended [9,10]. For this sensing technique, 

high-frequency ultrasonic pulses emitted by an ultrasonic sensor travel through the specimen carrying 

the structural behavior information, and are received by the transducers at the other end. The ultrasonic 

sensing technique could distinguish small changes of the specimen during the early stages of fatigue 

damage, which may even not be able to be detected by an optical microscope. The ultrasonic sensing 

technique has been utilized to monitor the small scale microstructural fatigue damage evolution. 

In addition, if the monitored structures are made up by conductive materials and only surface cracks 

are expected, the eddy current technique can also be employed [11,12]. The eddy current technique is 

based on the principles of electromagnetic induction, and it can detect the presence of faults through 

the affected eddy current flow patterns, which can be utilized to detect the evolution of small fatigue 

cracks. In the case that a high frequency fatigue response monitoring is required, the fatigue life gauge 

can be applied [13]. The fatigue life gauge is an electrical resistance-based fatigue strain sensor based 
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on a concept similar to that of a foil strain gauge for normal loading conditions. Experimental work has 

demonstrated that the fatigue life gauge can provide stable high-frequency fatigue responses repetitively. 

However, the commonly used fatigue life gauge cannot cover the low strain cycles, and it also has the 

drawbacks of low durability and nonlinear effects. 

Fatigue can be characterized by three parameters obtained from the SHM system: the number of 

cycles, the strain amplitude, and the state of stress. If the fatigue life at any given stress level and the 

number of cycles at the corresponding stress level are monitored, the aggregate life can be calculated 

using fatigue damage cumulative algorithms like the Palmgren–Miner linear rule [17]. Several efficient 

fatigue prediction methods have been developed based on the statistical measurements of the number 

of fatigue cycles, such as level cross counting, peak-valley value counting, simple range counting,  

rain-flow counting, and hysteresis loop counting. 

Among these methods, the rain-flow counting method is the most widely applied one. The basic 

concept of rain-flow counting method was initially introduced by Matsuishi and Endo in 1968 to count 

the cycles or the half cycles of strain-time signals [18]. It was named for the way that rain runs off the 

roofs of pagodas. Counting is based on the stress-strain behavior of the material. The rain-flow counting 

was further improved by Downing [19] making the algorithm more convenient for practical fatigue 

design and analysis. A modified rain-flow algorithm accounting for the load sequence effect has also 

been developed [20], and the regenerated loading histories can yield similar crack growth results using 

fracture mechanics-based models [21]. Many efforts have been directed to make it more comprehensive 

and sophisticated. For example, Jiang [22] proposed an easily programmed recursive algorithm.  

Tian [23] developed an improved model of rain-flow for real-time counting in which rectification or 

modification of the stress-time history is no longer necessary before counting. This model was 

successfully applied to the data treatment of stress-spectra for high-speed Electric Multiple Units 

(EMUs). Xiao [24] enhanced the three-point rain-flow counting method and applied it to the evaluation 

of blasting damage. Carmen Castillo [25] replaced the commonly used records of wave heights 

employed in the design of marine structures with rain-flow matrices, and thus made an obvious 

improvement on the safety of the designed structures. 

In this paper, an intelligent system for fatigue damage assessment and fatigue life prediction of  

in-service structures is developed based on the online real-time SHM data. The system is inspired by 

the concept of tree ring data tracking. The rings of semi-tropical trees can clearly record the growth 

features of trees, such as irreversible age gaining, boundaries between each year, and speed of growth 

under various environmental conditions, etc. Similar phenomena are found when comparing the 

fatigue feature parameters (strain amplitude, number of cycles and state of stress) to that of the  

tree-rings data tracking. Thus, supported by fatigue loading spectrum theory, electronics and 

microprocessor technologies and wireless transmission technology, the intelligent system is designed 

and integrated. Laboratory tests based on strain gauges and PVDF sensors were set up to investigate the 

properties of the system. 
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2. Operational Principle 

2.1. Tree-Rings Data Tracking 

Nature not only provides an information sourcebook of behavior, function, color and shape which 

can inspire visual design and invention [26], but acts as a school for materials science and its 

associated disciplines such as chemistry, biology, physics or engineering [27]. Conventional analysis 

of fatigue damage accumulation based on the whole strain course has disadvantages of high cost, 

complicated sensor implementation and system integration, making it hard to use in engineering 

applications. In combination with a counter based on Digital Signal Processing (DSP) technology, the 

bio-inspirited tree-rings data tracking method can record the real-time characteristics of fatigue 

behavior: the amplitude of strain, the number of cycles, and the stress state, potentially overcoming the 

disadvantages of the traditional fatigue prediction methods. The tree-rings data tracking method could 

record various environmental conditions; the DSP hardware technique, on the other hand, records, 

analyzes, and transmits the real-time characteristic data from the wireless fatigue meter, such as the 

amplitude of strain, the number of cycles and the stress state. With both the environmental conditions 

and the fatigue progressing, the analysis of fatigue damage accumulation and an early warning for 

potential structural fatigue failure can be estimated. 

2.2. Rain-Flow Counting Method for Fatigue Data Tracking 

In this paper, four Peak-to-Valley values comparison algorithm was adopted as the rain-flow 

counting method. As illustrated in Figure 1, a cycle should be counted as long as either condition a or b 

(indicated by Equations (1) and (2)) occurs, and the amplitude and the mean values of the cycle are 

recorded accordingly. After removing the middle two values, another two values are taken out from the 

peak/valley values array (array X), then forming a new judgement of four peak-to-valley values: 

Condition a: if 
1 2x x , both 

1 3x x  and 2 4x x  (1)  

Condition b: if 
1 2x x , both 

1 3x x  and 
2 4x x  (2)  

Figure 1. Criterion conditions of rain-flow counting method. 
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3. System Design of the Intelligent System 

3.1. System Integration 

Figure 2 shows the flow chart of the wireless fatigue monitoring system. The time history of the 

object‘s fatigue response is sensed by the sensing probe. The obtained data is transmitted to a strain 

amplifying processor, which achieves the digital-to-analog conversion to convert the time history into 

digital signal. The DSP module implemented with rain-flow counting method analyzes the signals, and 

the key parameters of fatigue features are acquired and saved in the DSP microchip and finally 

transmitted by the wireless transmitter module to the user PC. The fatigue damage is estimated using 

the acquired key parameters. 

Figure 2. Wireless fatigue monitoring system. 

 

3.2. Wireless Communication and Networking 

Taking advantage of low price, good stability and linearity, excellent corrosion resistance and 

developed technology, the electrical resistance based strain gauge is used as the major sensing probe. 

The strain amplifying module amplifies, filters, and demodulates the strain gauge data, followed by 

data collection using DSP. A F28335 DSP microchip made by YanXu Company, Nanjing, China, is 

used in this study. The interface between DSP module and wireless transmission module is a serial 

communication. The wireless transmitter adopts STR-30 micro-power wireless transfer-block, in view 

of its advantages of remote transmitting power, long transmission distance (within the range of sight 

distance, antenna height >1.5 m, reliable transmission distance >800 m), low Bit Error Rate (BER), 

small-size, and low weight. Point-to-point wireless serial communication can help the wireless module 

work firmly and exactly, as shown in Figure 3. 

Figure 3. Point-to-point wireless serial communication. 

 

3.3. Digital Signal Processing and Hardware Module Design 

Figure 4 shows the details of the hardware design for the developed system including the front-end 

strain processor, the DSP, the wireless transmitter, and the power module. The power module consists 

of two components, an YSD-12-5 Li-ion battery and a B0503M-1W DC-DC power converter. The 

loop charging battery supplies a consistent voltage of 5 V, and has a capacitance of 9000 mAh. The 
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DC-DC power converter is usually utilized in low power supply system containing distributed generation. 

The strain front-end processor requires a 5 V power supply, while the DSP and the wireless transmitter 

need 3.3 V power supplies. The voltage conversion can be realized by the DC-DC power module.  

Figure 4b shows a photo of the system. 

Figure 4. (a) The installation of hardware integration; (b) Photo of the system. 

 

(a) 

 

(b) 

4. Experiments and Discussion 

4.1. Numerical Simulation 

To check the feasibility of the system, a numerical simulation was conducted in Matlab. The rain-flow 

counting method with the four peak-valley counting principle [28] is used in the simulation. The original 

principle is reprogrammed to remove the invalid amplitudes. Figure 5 shows a group of random signals 

obtained from the simulation. A total of 637 peak-valley values were detected. Table 1 and Figure 6 

show the results from cycle counting. It is noted in Table 1 that the intervals of amplitude and  

mean values can be set randomly. To get reliable structural fatigue properties, both the theoretical and 

experimental analysis are expected. The data in Table 1 serves as the basic inputs for counting, and its 

combination with the material‘s S-N curve and Miner cumulative damage principle generates the 

fatigue damage caused by the signals. 
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Figure 5. Numerical simulation of random signals. 

 

Table 1. Rain-flow matrix for cycle counting. 

Amplitude 

Mean 
[0, 0.6] [0.6, 1.2] [1.2, 1.8] [1.8, 2.4] [2.4, 3] 

[−2, −1.2] 0 0 0 0 0 

[−1.2, 0.4] 6 1 0 0 0 

[−0.4, 0.4] 32 29 14 7 3 

[0.4, 1.2] 71 65 35 14 1 

[1.2, 2] 16 10 5 1 1 

Figure 6. Rain-flow histogram. 
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The hardware used in this simulation is a F28335EVM-I development board and the embedded 

algorithm is programed under the Code Composer Studio (CCS) environment. Figure 7a,b show the 

simulated signal input in Matlab and CCS, respectively. Tables 2 and 3 list the results of signal outputs 

from Matlab and CCS. The signals from the Matlab and the CCS show excellent agreement. 

Figure 7. Simulated signal input in Matlab and CCS. (a) In Matlab; (b) In CCS. 

 
 

(a) (b) 

Table 2. Result of signal output in Matlab. 

 1 2 3 4 5 6 7 8 9 10 

1 2 1 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 2 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 3 0 0 0 0 1 0 0 1 0 

8 0 1 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 1 3 0 0 0 0 0 0 0 0 

Table 3. Result of signal output in CCS. 

 1 2 3 4 5 6 7 8 9 10 

1 0×002 0×001 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×001 

2 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

3 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

4 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

5 0×000 0×002 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

6 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

7 0×003 0×000 0×000 0×000 0×000 0×001 0×000 0×000 0×001 0×000 

8 0×000 0×001 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

9 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 

10 0×001 0×003 0×000 0×000 0×000 0×000 0×000 0×000 0×000 0×000 
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4.2. Lab Tests Based on Strain Gauge 

4.2.1. Material Selection 

Lab fatigue tests have been performed to verify the stability, durability, accuracy, and engineering 

applicability of the developed system. 6061-T6 aluminum alloy, a common material used in 

mechanical systems, civil infrastructure, automotive, marine structures, and aerospace structures, was 

selected as the test material due to its high strength, low density, good corrosion resistance, excellent 

cryogenic toughness, and beautiful appearance. The intrinsic characteristics of aluminum make it 

sensitive to stress concentration, local damage, and cracks. Table 4 shows the typical chemical elements 

of 6061-T6 aluminum alloys (% weight) and Figure 8 shows its S-N curve [29]. 

Table 4. Typical chemical compositions of 6061-T6 aluminium alloys (% weight) [30,31]. 

 Al Cr Cu Fe Mg Mn Si Ti Zn 

Minimum 

Maximum 

95.8 

98.6 

0.04 

0.35 

0.15 

0.4 

- 

0.7 

0.8 

1.2 

- 

0.15 

0.4 

0.8 

- 

0.15 

- 

0.25 

Figure 8. S-N curve of 6061-T6 aluminium alloy. 

 

4.2.2. Specimen Geometric Design 

The geometric design of the specimen mostly depends on the cantilever bending tests. The 

maximum stress max  of the material is given as follows: 

max 2

3

2

BE h

l




 
  (3)  

where E  is the Youth‘s modulus, h  is the height of the specimen, l  is the distance from the loading 

point to beam end and B  is the maximum loading displacement. When B  is 8 mm, h  is 1 mm, max  

is between 75 MPa and 250 MPa, we can get that l  is from 46.2 mm to 86.4 mm. The gradual 

geometric change is adopted to the specimen to reduce the residual stress and work-hardening. The 
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gradual geometric change design refers to the Chinese National Standard, ―metals-rotating bar bending 

fatigue testing‖. Figure 9 shows the designed geometry layout of the 6061-T6 aluminum alloy specimen. 

Figure 10 shows the stress distribution of the specimen analyzed by ANSYS with element solid 45 used 

and the maximum stress is around 219 MPa. Comparison of the computed stress to the S-N curve of 

6061-T6 aluminum alloy indicates that the design proposal is feasible. 

Figure 9. Design of the specimen. (a) Geometry parameters of the specimen (unit: mm); 

and (b) Photo of the specimen. 

 

 

(a) (b) 

Figure 10. Stress distribution of the specimen. 

 

4.2.3. Experimental Setup 

Figure 11 shows the test setup. The fatigue loading is symmetrical, so the stress ratio (R) is −1. 

Meanwhile, the loading frequency is 5Hz and the power amplifier can control the vibration amplitude. 

Five specimens were tested under different stress levels.  
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Figure 11. Experimental setup of fatigue test based on strain gauge. 

 

The strain gauge served as the sensing probe of the fatigue monitoring system. The rain-flow 

counting results were sent through wireless transceiver modules and delivered to the PC every 16 

seconds. Figure 12 shows a screenshot of the wireless transceiver software.  

Figure 12. Screenshot of the wireless transceiver software. 

 

4.2.4. Results and Discussions 

As shown in Figure 12, the numbers with red frames and enlarged are the three cycle counting 

results consecutively, which are 40,086, 40,163, and 40,240, increase progressively by 77 every time. 

The accuracy of the system is high with a relative error less than 4%. With a constant load, only one 

location on the beam would expect fatigue damage, all other locations would have no response which 

provide no reading as shown in Figure 12 as zeros. Figure 13a,b show the photos of the damaged 

specimens. All five specimens indicated the same fatigue failure location as seen in Figure 13a and the 

fracture is in a serrated shape as shown in Figure 13b, which confirms the lattice restructuring 

phenomenon of metallic materials under fatigue loading.  
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Figure 13. Photos of the damaged specimen. (a) Damaged specimen; and (b) Fracture morphology. 

  

(a) (b) 

Table 5 showed the test results of the five specimens. Along with the decrease of stress amplitude, 

the fatigue life of the specimen apparently increases. The cycle counting of the system is well 

consistent with the cycles of fatigue loading, and the systematic error is less than 4%, which is caused 

by omitting cycles during the test. However, it exceeds the accuracy requirement in engineering 

community. Figure 14 shows the comparison between the test results and the aluminum‘s S-N curve. 

Good stability, high accuracy, quick processing, and real-time capability of the fatigue monitoring 

system was observed during the entire test process. Moreover, the test results also showed that the 

experimental method is feasible for studying the fatigue properties of 6061-T6 aluminum alloy. 

Table 5. Fatigue test result based on strain gauge. 

Specimen 

No. 

Stress 

amplitude 

Cycles of 

loading 

Cycles of 

system 
Error Fatigue life Remark 

1 200 mPa 63,000 60,500 4% 33,700 Fracture  

2 180 mPa 210,000 202,000 3.8% 79,100 Fracture  

3 150 mPa 400,000 389,600 2.6% 432,000 Fracture  

4 130 mPa 918,000 888,300 3.2% 1,550,000 Fracture  

5 120 mPa 4,200,000 4,051,100 3.5% 3,100,000 Not broken 

Figure 14. Comparison results of test points and S-N curve. 
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4.3. Lab Test Based on the PVDF Piezoelectrc Film 

4.3.1. Calibration of the PVDF 

The mechanical and the electrical behaviors of PVDF piezoelectric film are expected to be coupled 

with each other. The piezoelectric equation is used to describe a quantitative relation between its 

electrical behavior and mechanical behavior. The output of the electric charge from PVDF 

piezoelectric film is the response of polarization direction caused by strain in all directions. The 

relationship between the electric charge from the PVDF and the deformation of the monitored structure 

is calculated by formula (4): 

0 3 j jV g t  (4) 

where 
0V is the PVDF‘s output voltage, 

3 jg is piezoelectric voltage constant of the PVDF, 
j is the 

stress on PVDF, t is the thickness of the PVDF, and 1~ 3j  . Generally, the PVDF‘s can work in two 

modes: the stretching mode and the thickness mode. A cantilever beam with a uniform strength, as 

illustrated in Figure 15, is a flexible structure and the PVDF piezoelectric film only deforms in the 

direction of tension. Thus, the test beam works in a stretching mode. The output of the PVDF in a 

stretching mode can be calculated by formula (5): 

0 31 1 32 2( )V g g t    (5) 

Figure 15. Scheme of sensitivity calibration test of PVDF. 

 

As shown in Figure 15, the cantilever beam could be oscillated under the sinusoidal loads. The 

electrical charge amplifier transfers the signal from the PVDF to the A/D acquisition system, while the 

dynamic strain amplifier transfers the signal from strain gauge. The A/D transfer and data acquisition 

system collects and stores both signals from the PVDF and from the strain gauge. The PVDF‘s 

sensitivity K  can be calculated as: 

/K V     (6)  

where V is the output variation of PVDF and  is the output variation of strain gauge. 

Taking 5 Hz loading frequency for example, V and  were recorded under different amplitudes, 

and K  was calculated and listed in Table 6. With the linear fitting of V  and  , the sensitivity of 

the PVDF can be obtained under a loading frequency of 5 Hz. Figure 16 shows corresponding sensitivity 

of the PVDF, K = 6.14 mV/με, and a good linearity was observed. 
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Table 6. The output of PVDF and strain gauge (5 Hz). 

ΔVPVDF/mV Δεstrain/με  K(ΔV/Δε) 

1510 226 6.68 

1970 301 6.54 

2570 399 6.44 

2880 448 6.43 

3160 501 6.31 

3550 555 6.40 

Figure 16. Sensitivity of the PVDF (5 Hz). 

 

Similarly, K could also be acquired under different loading frequencies, as listed in Table 7, for the 

PVDF‘s sensitivities in various frequencies. The sensitivity shows small difference under various 

loading frequencies. 

Table 7. K  under different loading frequencies (0.5~20 Hz). 

Loading frequencies (Hz) K  ( /mv  ) 

0.5 5.71 

1 6.45 

2 6.34 

5 6.14 

10 6.68 

15 7.38 

20 7.88 

4.3.2. Experimental Setup 

An appropriately designed interface circuit plays a key role in the optimization of the PVDF 

sensors. The signal output of the PVDF sensor is expected to be only ±10–20 mv, meanwhile, the 

signal has a high output resistance and a high Gaussian noise, which contributes to the inaccuracies of 

the sampling process. Considering the frequency range and signal amplitude requirements over the 

desired dynamic range for the sampling circuit, the voltage of output signal needs to be maintained in 

the range of 0–3 V. The most critical part of an interface circuit is a proper input resistance. The input 

resistance affects low frequency measurement capability as well as signal amplitude, which is  

called the ―loading effect‖. To meet the needs of high sampling rate and to improve signal integrity, a  
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well-designed interface circuit is introduced into the system as shown in Figure 17, including: (1) a RC 

integral circuit; (2) a voltage follower; (3) a voltage amplifier; (4) a voltage generator; and (5) a voltage 

adder. A RC integral circuit converts the charges generated by the PVDF into voltage signal. Figure 18 

is a photogragh of the unit. A voltage follower reduces the loading effect and isolates the input from 

the output. A voltage amplifier offers an adjustable gain ranged from 1 to 100, facilitating a desired 

output for sampling purpose. Regarding to the dynamic range requirements, a voltage adder pulls the 

signal above the ground. By applying the basic circuit principles, the output voltage, 0V , can be 

calculated as: 

8 6
0 5

1 6 7

PVDF V

R R
V V V

R R R
   


 (7)  

where 8R is the gain resistance, 7R  regulates the output pull-up, and PVDFV   is the input of PVDF.  

6061-T6 aluminum alloy is used again as the test material in this lab test. The geometric layout of 

the test specimen is illustrated in Figure 19, with the test setup shown in Figure 20. Again, the 

symmetrical stress ratio equals to negative 1 because of fatigue loading, so, 1R   . Meanwhile, the 

frequency of the load is 10 Hz and a power amplifier is used to control the vibration amplitude. Nine 

specimens were tested under different stress level. 

Figure 17. Pre-processing circuit of the unit of the PVDF sensor. 

 

Figure 18. Photo of the pre-processing unit of the PVDF sensor. 
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Figure 19. Design of the specimen. (a) Geometry parameters of the specimen; and  

(b) Photo of the specimen. 

 

 

(a) (b) 

Figure 20. Experimental setups of fatigue tests based on PVDF sensors. 

 

Figure 21 shows a screenshot of the wireless transceiver software of the PVDF sensor tests. The 

numbers enlarged and framed in red are the consecutively increased counting results of two cycles, 

which are 1,742 and 1,899. The enlarged numbers in the green frames will increase by one once the 

cycle counting is cumulative to 10,000. For example, the number in Figure 21 is 41, which means the 

cycle counting is 410,000. The accuracy of the system is high, with a relative error of less than 5%. 

4.3.3. Test Results and Discussions 

Figures 22a,b show photos of the damaged specimens. All the specimens were broken at nearly the 

same location. The fracture surface was also in a serrated shape, which confirms the lattice restructuring 

phenomenon of metallic materials under fatigue loading, as stated in Section 4.2.1 above. 
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Figure 21. Screenshot of the wireless transceiver software. 

 

Figure 22. Photos of the damaged specimen. (a) Damaged specimen; and (b) Fracture morphology. 

  

(a) (b) 

Table 8 illustrates the test results of the nine specimens. With the decrease of stress amplitude, the 

fatigue life of the specimen apparently increases. The systematic error is less than 5%, which is mostly 

caused by omitting cycles during the test but meets the requirement in engineering community.  

Figure 23 shows the comparison between the test results and the S-N curve of the material. The results 

not only show the excellent properties of the system based on the PVDF such as good stability, high 

accuracy, quick processing, and real-time capacity, but also verify the test results of the system based 

on the strain gauge. 
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Table 8. Fatigue test results based on the PVDF. 

Specimen No. Stress amplitude Cycles of loading Cycles of system Error Fatigue life Remark 

1 200 mPa 22,800 22,500 1.15% 33,700 Fracture  

2 185 mPa 54,300 53,236 2% 65,700 Fracture  

3 170 mPa 87,600 85,300 2.6% 141,000 Fracture  

4 160 mPa 258,000 245,800 4.72% 243,000 Fracture  

5 150 mPa 365,400 358,000 2.03% 432,000 Fracture  

6 140 mPa 688,200 671,700 2.4% 799,000 Fracture  

7 130 mPa 1,964,400 1,908,500 2.85% 1,550,000 Fracture  

8 120 mPa 5,485,200 5,390,300 1.73% 3,100,000 Fracture  

9 115 mPa 7,000,000 6,874,400 1.79% 4,660,000 Not broken 

Figure 23. Comparison results of test results and the S-N curve. 

 

5. Conclusions 

In this paper, a novel wireless fatigue monitoring system based on the bio-inspired tree-ring data 

tracking method, was designed, investigated, and verified through theoretical, numerical, and experimental 

studies. Two types of sensing probe, the strain gauge and the PVDF sensors were utilized for the 

validation of the developed system. Laboratory fatigue tests of the system based on the strain gauge 

and the PVDF sensors showed a relative systematic error of less than 5%, which can satisfy the accuracy 

requirements of the engineering community. The test results showed that the developed system possessed 

good stability, high accuracy, fast processing, and real-time capability. Thus, the developed system is 

promising to be further applied in fatigue damage accumulation analysis and early warning for 

potential fatigue related structure failures in practice. 
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