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Abstract: It has now been 20 years since the seminal work by Finlayson et al. on the use
of spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is
still used today by numerous researchers for different goals unrelated to the original goal
of diagonal color constancy e.g., multispectral processing, shadow removal, location of
unique hues. This paper reviews the idea of spectral sharpening through the lens of what
is known today in color constancy, describes the different methods used for obtaining a set
of sharpening sensors and presents an overview of the many different uses that have been
found for spectral sharpening over the years.
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1. Introduction

Our visual system has a striking ability in allowing us to deal with color. However, we are far from
fully understanding its behavior. To gain an insight into how our visual system works, some assumptions
are often made: first, it is assumed that there is a single illuminant in the scene which is spatially uniform,
and second, it is assumed that objects are flat, coplanar, and Lambertian, i.e., their reflectances are diffuse
and independent from the angle of view.

Following these assumptions light energy reaching our eye depends on the spectral power distribution
of the illuminant ( E(λ), where λ spans the visible spectrum) and the spectral reflectance distribution of
the object we are looking at (R(λ)). This information is called the color signal and is written as

C(λ) = R(λ)E(λ) (1)
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This color signal is weighted along the visible spectrum ω with the sensitivities of our cone-cells
(which peak in the long, medium and short wavelengths of the visible range, and are denoted by
s(λ),m(λ),l(λ) respectively) to obtain the L,M,S color space coordinates of the signal

{L,M, S} =

∫
ω

C(λ){l,m, s}(λ)dλ (2)

From this equation, we can see that when looking at a white piece of paper in sunset the values
captured by our eye are reddish as a result of the illumination. In contrast, when looking at a white
piece of paper on a cloudy day these values are bluish. However, we perceive the piece of paper as
approximately white in both cases. This property of our visual system is called color constancy.

1.1. Human Color Constancy

Color constancy is usually defined as the effect whereby the perceived or apparent color of a surface
remains constant despite changes in intensity and spectral composition of the illumination [1]. An
example is shown in Figure 1, where we are able to perceive the t-shirt of the man in the right as yellow;
however, if we isolate the t-shirt we perceive it as green. Some reviews on color constancy have been
published recently [1–3].

Figure 1. Example of color constancy. We are able to perceive the t-shirt of the man in the
right as yellow, but, when looking at it in isolation the color of the t-shirt appears green.

von Kries [4] in the XIXth century hypothesized that a compensation (or gain) normalization was
performed individually within each photoreceptor. Mathematically, we may write L

M

S


adapted

=

 g1(L) 0 0

0 g2(M) 0

0 0 g3(S)

 ·
 L

M

S


in

(3)

where the subscript in represents the values captured by the eye.
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This model is called von Kries adaptation. The idea of an individual gain for each photoreceptor was
adopted early in computer vision and the gains were computed based on the scene, e.g., assuming that
the scene had a mean value of grey [5], or that a white-patch was presented on the scene [6]. von Kries
adaptation has been shown to provide a reasonable approximation of how we perceive scenes composed
of natural reflectances and illuminant spectra [3]. In a contemporany version of the model, it is stated
that cone-signals interact and the gain in each channel is influenced by the other channels [7] L

M

S


adapted

=

 g1(L,M, S) 0 0

0 g2(L,M, S) 0

0 0 g3(L,M, S)

 ·
 L

M

S


in

(4)

Even though this model can predict the data very well in natural environments, there is still no
agreement in the literature as to how the gain values are computed from the image statistics of the
stimulus [3]. Furthermore, this model performs poorly when natural reflectances and illuminants are not
present in the stimulus.

For this reason, further research on the neural mechanisms that underline color constancy has been
conducted over the years [1]. Different parts of the brain have been shown to deal with color constancy,
specially the lateral geniculate nucleus (LGN), and the regions V1 and V4 of the visual cortex [1],
although recent studies suggest that other areas might also be involved [8]. Therefore, as Smithson
says [2] “It seems most reasonable to say that processing for color constancy starts in the retina, is
enhanced in V1/V2 and continues in V4”. Cues for color constancy used by humans that might befall in
the further neural levels might include mutual reflections, 3D shapes, shadows, color memory, and even
the consciousness of illumination change [2,9].

1.2. Computational Color Constancy

Computational color constancy does not aim to recover the perceived image, but an estimation of
the surface reflectances of the scene; Therefore, it changes the paradigm upon which human color
constancy is built. In other words, while human color constancy relies on the perception of the
colors, computational color constancy relies on the absolute color values of the objects viewed under
a canonical (usually white) illuminant, without considering how the image is perceived by an observer.
Vazquez-Corral et al. [10] have shown that computational and human color constancy do not aim for the
same final image: they performed a pair-wise comparison experiment where they asked human observes
to pick out the most natural image from a range of images produced by different computational color
constancy algorithms. Observers only chose the best computational solution in 40% of the comparisons.

Therefore, computational color constancy is treated from a mathematical point of view. Let us
suppose we have an object with reflectance R(λ) and a camera with sensitivities Qi(λ). We take two
photos of the object with the camera at two different moments in time; at each of these moments there
is a different illuminant in the scene E1(λ), E2(λ) (let us suppose the illuminant is uniform). Then, the
response of the object recorded by the camera sensor i under one of the illuminants is denoted by ρni
where the superscript n denotes the illuminant used. Mathematically,
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ρ1
i =

∫
R(λ)E1(λ)Qi(λ)dλ

ρ2
i =

∫
R(λ)E2(λ)Qi(λ)dλ (5)

Marimont and Wandell [11] showed that although natural surface reflectances in the world are 5 or 6

dimensional, i.e., there is a need of a basis of 5 or 6 reflectances in order to derive any other reflectance,
an “effective basis” of smaller dimension can be extracted. Similarly, Judd et al. [12] showed how to
derive a basis from the set of daylight illuminations. These studies allow us to relate ρ1 = [ρ1

1, ρ
1
2, ρ

1
3]

and ρ2 = [ρ2
1, ρ

2
2, ρ

2
3] by a 3× 3 matrix. That means, we are dealing with a 9-dimensional problem:

ρ1 = M1,2ρ2. (6)

Equation (6) is crucial in order to solve the computational color constancy problem. If we wish
to estimate reflectances by discounting the color of the prevailing light from the picture of a scene, it
suffices to find the matrix that replaces this light by the canonical one. As an example, if an image is
captured under bluish light then all the recorded sensor responses are biased in the blue direction and,
in particular, a white surface will itself be bluish. If we can find the matrix that takes us from the blue
light to a white counterpart then applying this matrix will remove the colored light. Of course, as simple
as Equation (6) is, there are 9 components in a 3 × 3 matrix and so color constancy, viewed in this
perspective, is a hard 9-dimensional problem.

2. Spectral Sharpening for Diagonal Color Constancy

Early research in computational color constancy [5,6] focused on modeling illumination changes by a
scaling multiplication in each of the sensor channels (inspired by von Kries’ coefficient law). This idea,
called the diagonal model of illuminant change, can be expressed as:

ρ1 ≈ D1,2ρ2 (7)

where D1,2 is a 3 × 3 diagonal matrix. Equation (7) supposes that illumination change is a process
that operates in each sensor channel independently, which simplifies color constancy computation. The
diagonal model turns out to be rather good at accounting for illuminant change in many circumstances.
Partly, this is explained by the underlying physics which states that as the support of the sensor becomes
small, i.e., as the range of wavelengths to which the sensor responds becomes smaller, then a diagonal
matrix will work well [13]. Empirically, it has been shown that a diagonal matrix works for most cameras
that have spectral sensitivities with support of 100 to 150 nanometers [14]. Let us in any case note that
this is different from von Kries adaptation, which should be performed in the L,M,S cone space.

Many cameras do not have sensors that match the above specifications. Therefore, different methods
have tried to search for a linear combination of the original sensor responses in order to force them to
accomplish the diagonal model. Mathematically, this linear combination will be the one accomplishing

Tρ1 ≈ D1,2Tρ2 (8)

Finlayson et al. [15] called this approach “spectral sharpening” since the new sensors responses are
sharper than the original ones. We should note that other authors had previously suggested a similar
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idea [16]. Figure 2 compares a set of originals sensors with their sharpened version. The remarkable
and useful conclusion of the spectral sharpening work was that, even for a broad-band sensor system, a
diagonal matrix model of illumination could be used to solve the computational color constancy problem.

Figure 2. Original camera sensors (left) and their sharpened counterparts (right).

An example of the use of spectral sharpening can be seen in Figure 3. In this figure, an original image
that presents a blue cast is seen under the CMF color matching functions. In order to apply diagonal color
constancy and remove the blue cast, a linear transform T is computed by 5 different methods (that will
be explained later in this section). Then, for each method, the pipeline works as follows: (1) a change
of basis is performed by the linear transform T ; (2) a method for diagonal color constancy (MaxRGB in
this case) is applied to the new basis image; (3) the image is converted back to the original sensors by
T−1. The different T matrices have been obtained using the Planckian illuminants and the whole set of
reflectances from [17].

In this section we will show a review of different methods used to achieve spectral sharpening.
Figure 4 presents a hierarchy regarding when each particular method might be used. In this figure, the
different methods are linked to their section in the paper. The selection of a particular method might be
taken depending on two aspects: the availability of spectral data and the final goal that is being pursued.

2.1. Perfect Sharpening

Finlayson et al. [15,19] showed that when illuminants are two dimensional (in the sense that two
illuminants are enough to define any other illuminant as a linear combination of them) and reflectances
three dimensional (in the same sense), or vice versa, spectral sharpening is perfect.

Let us suppose that reflectances are three dimensional and illuminants two dimensional (the other
case is analogous). In this case any reflectance can be decomposed as

R(λ) =
3∑
j=1

Rj(λ)σj (9)

where Rj(λ) is a basis and σ = [σ1, σ2, σ3] is a coefficient vector in this basis. Let us define Λk as a
3× 3 matrix which ijth entry is defined as Λk

ij =
∫
ω
Qi(λ)Ek(λ)Rj(λ), where superscript k denotes the



Sensors 2014, 14 3970

illuminant used and Qi are the sensors to be sharpened. Then, a color descriptor (Equation (5)) under a
canonical light c can be written as

pc = Λcσ (10)

Figure 3. Example of diagonal color constancy using spectral sharpening for five different
methods. The original image (sensors) is converted by a linear matrix T to a sharpened
basis. Then, a diagonal color constancy method is applied (MaxRGB in this case). Finally,
the resultant image is converted back to the original basis by the inverse of the matrix T . In
this example, the original sensors are the CMF XYZ functions. The sharpening matrices have
been obtained using the Planckian illuminants and the whole set of reflectances from [17].
The multispectral image comes from [18].

As illuminants are two dimensional they need a second illuminant E2(λ) independent from the
canonical one Ec(λ) to span the space. Associated with this illuminant there will also be a new lighting
matrix Λ2. This second lighting matrix is some linear transform (M ) away from the first one, Λ2 = MΛc,
that is, M = Λ2[Λc]−1.

As E2(λ) and Ec(λ) span the space, any other lighting matrix will be a combination of Λc and MΛc.
For this reason, any color descriptor under an illuminant Ee(λ) = αEc(λ) + βE2(λ) can be written as

pe = [αI + βM ]Λcσ = [αI + βM ]pc (11)

where I is the identity matrix. Calculating the eigenvector decomposition of M

M = T−1DT (12)
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and expressing the identity matrix in terms of T , I = T−1IT , they rewrite Equation (11) as a diagonal
transform

Tpe = [αI + βD]Tpc. (13)

Finally, writing pc in terms of pe

Tpc = [αI + βD]−1Tpe. (14)

This implies that the spectral sharpening is perfect since both matrices D and I are diagonal.

Figure 4. Hierarchy for the selection of a spectral sharpening method. The decision should
take into account two aspects: the final goal pursued and the availability of spectral data.

2.2. Sensor-Based Sharpening

Finlayson et al. proposed in [15] a method called Sensor-based spectral sharpening. The idea
underlying this method is that it is possible to sharpen a sensor from an original set Q(λ) (of dimension
n × k) in a wavelength interval [λ1, λ2]. The resulting sensor Q(λ)t where t is a coefficient vector of
dimension k, can be found by minimizing

min
∑

Φ

[Q(λ)t]2 + µ{
∫
ω

[Q(λ)t]2dλ− 1} (15)

where ω is the visible spectrum, Φ denotes wavelengths outside [λ1, λ2] and µ is a Lagrange multiplier.
In other words, the idea is to strengthen the percentage of the norm of sensor Q(λ)t lying in the interval
[λ1, λ2] in relation to the rest of the spectrum.
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To solve the problem for all the spectra Finlayson and co-authors defined k intervals, where k is the
number of sensors. These intervals have no intersection between them and cover all the spectra. Then,
the kth row of matrix T will be the vector that minimizes Equation (15) for its particular interval (note
that t is post-multiplying in Equation (15) while T is defined in Equation (8) as a pre-multiplication).

Mathematically, they defined a k × k matrix

Λ(α) =
∑
λ∈α

Qt(λ)Q(λ) = Qt(λ)∆αQ(λ) (16)

where ∆α is an operator that picks out wavelengths indices in the sharpening interval α within any sum.
They took partial derivatives over the vector t in Equation (15) and equated to the zero vector to look

for the stationary values. They combined this derivative with Λ(α) obtaining:

Λ(Φ)t+ µΛ(ω)t = 0. (17)

In parallel, they differentiated Equation (15) over µ and found the constraint
∑

λ∈ω[Q(λ)t]2 = 1.
Rearranging Equation (17), they concluded that finding t amounts to solving eigenvector problem

Λ(ω)−1Λ(Φ)t = −µt. (18)

Then, as this last equation has multiple solutions, they choose one solution minimizing
∑

λ∈Φ[Q(λ)t]2.

2.2.1. Sharpening with Positivity

Sensors with negative values are physically impossible. For this reason Pearson and Yule [20]
defined different positive combinations of the color matching functions. Following this trend, Drew
and Finlayson proposed methods to obtain sharpening transforms giving always positive values [21].
These techniques are very similar to the previous one but some constraints were added for ensuring all
the values are positive. These constraints can be based either on the L1 or L2 norm and can be performed
both in the sensors themselves or in the sharpening matrix coefficients. All these methods can be solved
by either linear or quadratic programming. Here we report the different methods presented.

• L1- L1 Constrained coefficients:

arg min
t

∑
Φ

[Q(λ)t] constrained to

{
min

∑
ω[Q(λ)t] = 1

t ≥ 0
(19)

• L1- L1 Constrained sensors:

arg min
t

∑
Φ

[Q(λ)t] constrained to

{
min

∑
ω[Q(λ)t] = 1

Q(λ)t ≥ 0
(20)

• L2- L2 Constrained coefficients:

arg min
t

∑
Φ

[Q(λ)t]2 constrained to

{
min

∑
ω[Q(λ)t]2 = 1

t ≥ 0
(21)
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• L2- L2 Constrained sensors

arg min
t

∑
Φ

[Q(λ)t]2 constrained to

{
min

∑
ω[Q(λ)t]2 = 1

Q(λ)t ≥ 0
(22)

• L2- L1 Constrained coefficients

arg min
t

∑
Φ

[Q(λ)t]2 constrained to

{
min

∑
ω[Q(λ)t] = 1

t ≥ 0
(23)

• L2- L1 Constrained sensors

arg min
t

∑
Φ

[Q(λ)t]2 constrained to

{
min

∑
ω[Q(λ)t] = 1

Q(λ)t ≥ 0
(24)

2.3. Adding Information to Improve Sharpening

Information about the illuminants and reflectances that are more representative in natural scenes is
available from multiple sources [12,17,22–26]. In this section we review methods that take advantage of
this available information to search for sharpened sensors.

2.3.1. Data-Based Sharpening

Finlayson et al. [15] proposed a method called data-based sharpening which uses linear algebra
methods to directly solve for T by minimizing the residual error between a pair of illuminants. To this
end, they defined W 1 and W 2 as 3 × n matrices containing the color values for a set on n different
refectances under two different illuminants E1 and E2.

TW 1 ≈ D1,2TW 2. (25)

Then, they solved Equation (25) forD1,2 in a least-squares sense. This can be done by the Moore-Penrose
inverse

D1,2 = TW 1
[
TW 2

]+ (26)

where []+ represents the pseudoinverse [27]. Rearranging Equation (26), they got

T−1D1,2T = W 1[W 2]+. (27)

Therefore, T is the eigenvector decomposition of W 1[W 2]+.
Some years later, Barnard et al. [28] tried to allow more flexibility to the database sharpening, by

averaging over a set of illuminants (not only one), and introducing a parameter to prioritize positivity.

2.3.2. Measurement Tensor

Chong et al. [29] introduced a new method which finds a matrix T for a complete set of illuminants
at the same time. This method is based on the measurement tensor defined as

Mkij :=

∫
Qk(λ)Ei(λ)Rj(λ)dλ (28)
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where {Ei}i=1,··· ,I is a set of illuminants, {Rj}j=1,··· ,J is a set of reflectances and {Qk}k=1,··· ,K are
sensors. This measurement tensor is an order 3 tensor.

Chong et al. proved that a measurement tensor supports diagonal color constancy if and only if it is
a rank 3 tensor. An order 3 tensor τ is rank N if N is the smallest integer such that there exist vectors
{an, bn, cn}n=1,··· ,N allowing decomposition as the sum of outer products

τ =
N∑
n=1

cn ◦ an ◦ bn (29)

where ◦ represents the outer product.
They rewrote Equation (29) as

τ =
N∑
n=1

C ◦ A ◦B (30)

Where the columns of A, B and C are composed by the different an, bn, and cn respectively. C is the
matrix we search, and T = C−1.

In order to solve Equation (30) they used the Trilinear Alternate Least Squares (TALS) method [30].
This is necessary since in most of the cases the tensor Mkij is not rank 3, and therefore it is necessary
to search for the “closest” rank 3 tensor. At each iteration of the minimization procedure through TALS,
two of the three matrices are fixed while the free matrix is chosen to minimize the difference between the
given data Mkij and the obtained tensor τ in the least-squares sense. The alternating process is repeated
until convergence.

This method has the drawback of local convergence, that is, the result obtained can be a local minima.
Also, TALS needs initialization values for two of their three matrices.

2.3.3. Data-Driven Positivity

In [21], Drew and Finlayson proposed a data-driven approach for obtaining positive sensors.
Following the original sensor-based sharpening method they divided the spectra in k intervals, where
k is the number of sensors, and for each interval they searched for the sensor Q(λ)t minimizing

min
∑

Φ

[Q(λ)t]v constrained to

{
min

∑
ω[Q(λ)t]v = 1

R̂t ≥ 0
(31)

where Φ denotes the wavelengths outside the selected interval , ω represents the visible interval, R̂ is
a r × 3 matrix representing the gamut boundary of the set of RGBs obtained from the data, r represents
the number of points lying on that boundary, and v = 1, 2 represents the chosen norm. The transpose
of the vector t is the k-th row of the sharpening matrix T . This method does not guarantee per se the
positiveness of the result. Positiveness is conditioned to select a big enough space of reflectances and
illuminants so no other color signal lies out of the gamut defined by R̂.

2.4. Chromatic Adaptation Transforms

All the previous methods were defined in order to help solving for diagonal color constancy. But,
the sharpening matrices related to these methods are not the only ones, there are sharpening matrices
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that have been derived from psychophysical experiments in chromatic adaptation. Chromatic adaptation
matrices also represent sharp sensors [31], and are obtained from the XYZ color matching functions.
They are used to match image appearance to colorimetry when the visual conditions are changed. In
particular, they are defined to handle corresponding colors data. Citing from the Fairchild’s book [32]
“Corresponding colors are defined as two stimuli, viewed under different viewing conditions, that match
in color appearance”. Examples of chromatic adaptation transforms are the Bradford transform, the
Fairchild transform, and the CAT02 transform. For a review on the different transforms, we recommend
the book by Fairchild [32]. Here we enumerate some of them.

2.4.1. Von Kries Transform

The Von Kries chromatic adaptation transform is usually defined by the Hunt, Poynton and Estevez
transform [32]. The values of this transform are:

T =

 0.3897 0.6890 −0.0787

−0.2298 1.1834 0.0464

0 0 1

 (32)

2.4.2. Bradford Transform

The Bradform transform was defined by Lam [33] following the results obtained in an experiment
regarding corresponding colors. The data used for the experiment consisted of 58 dyed wood samples
under the A and D65 illuminants. The original Bradford transform is non-linear, but the non-linear part
is usually neglected. The linear matrix is then

T =

 0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

 (33)

2.4.3. Fairchild Transform

The Fairchild transform was suggested by Mark Fairchild [34] for improving the CIECAM97s
color appearance model. It was obtained through a linearization of the previous chromatic adaptation
transform. The matrix suggested by Fairchild was

T =

 0.8562 0.3372 −0.1934

−0.8360 1.8327 0.0033

0.0357 −0.0469 1.0112

 (34)

2.4.4. CAT02 Transform

The Comission Internationale de l’Éclairage (CIE) selected in its report CIC-TC8-01 the CAT02
transform as the preferred chromatic adaptation transform. CAT02 was obtained by optimizing a wide
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variety of corresponding data, while approximating the non-linear transformation of CIECAM97s. The
matrix obtained was

T =

 0.7328 0.4296 −0.1624

−0.7036 1.6975 0.0061

0.0030 0.0136 0.9834

 (35)

2.4.5. Chromatic Adaptation Transforms by Numerical Optimization

Bianco and Schettini [35] defined two new chromatic adaptation transforms based on estimating the
corresponding colors data from [4,33,36–40].

They defined an objective function with two competing terms

fBS(T ) = gest(T )− gmed(T ). (36)

The term gest becomes bigger for better estimations of corresponding colors according to the
Wilcoxon signed-rank test. On the other hand, the term gmed becomes smaller when the median errors on
the corresponding colors datasets are smaller. Therefore, our goal must be to look for the transformation
T maximizing Equation (36). To this end, authors applied the Particle Swarm Optimization (PSO)
technique.

This first optimization might, however, incur in negative values of the resulting sensors. For this
reason they defined another objective function

fBS−PC(T ) = gest(T )− gmed(T ) + gPC(T ). (37)

In this second function they added a positive competing term gPC that prioritizes positivity of the sensors.
The second transform was obtained by maximizing Equation (37) though PSO.

2.5. Spherical Sampling

Spherical sampling [31,41] provides a means for discretely sampling points on a sphere and relate
them to sensors. The main idea is to consider each row of the sharpening matrix T as a point in the
sphere.

Mathematically, let us represent our original camera sensors Q as a m × 3 matrix where m is the
wavelength sampling and 3 the number of sensors. We perform the reduced singular value decomposition
(SVD) of these sensors in order to obtain a basis:

Q = U · Σ · V t (38)

where U is an orthogonal matrix with dimension m × 3, Σ is a diagonal 3 × 3 matrix containing the
singular values of matrix Q and V t is an orthogonal 3× 3 matrix. Then, U is the basis we seek.

From this basis U , we can define a new set of sensors S (m × 3), different from the original sensors
S, by multiplying the basis by any linear transformation P (3 × 3), which simply consists of 3 sample
points vectors, p1, · · · , p3 located over the 2-sphere. Then,

Q = UP, P = [p1, · · · , pn] (39)
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We are interested in the relation between the original sensors Q and the new defined ones Q. Using
Equations (38) and (39) we find

Q = UP = UΣV t(ΣV t)−1P = Q(ΣV t)−1P (40)

Therefore, relating this equation to Equation (8) where T is pre-multiplying we obtain

T = ((ΣV t)−1P )t (41)

We can also rearrange this equation in order to relate a transformation matrix T with a set of points P
over the sphere.

P = ΣV tT t (42)

2.6. Measuring Diagonal Color Constancy Effectiveness

Effectiveness of sharpening matrices has usually been evaluated by least-squares as follows. Let us
denote an observed color by ρE

r
(Equation (5)) where E is the illuminant and r the reflectance for the

observation. Then, if we select a canonical reflectance s (usually an achromatic reflectance), we can
compute for each illuminant the ratio between any reflectance and the white reflectance as follows.

dEr,s = T−1[diag(TρE
s

)]−1TρE
r

(43)

where dEr,s is a vector of dimension 3,
Let us note that if the transformation T perfectly accomplishes diagonal color constancy, the value

dEr,s is independent from the illuminant. Therefore, measuring the disparity of this ratio depending on the
illuminant should tell us the effectiveness of a method.

Mathematically, if we select a canonical illuminant Ec, we can denote the error of the sharpening
matrix by

Error = 100 x
‖dEc

r,s − dEr,s‖
‖dEc

r,s‖
(44)

This formula has been widely used to compare spectral sharpening methods and was already included
in Finlayson et al. [15] work. By using this formula two methods outperform the rest. First, the
Measurement Tensor method as shown in [29]. This method has an inherent advantage because
both the method and the measure are based on least-squares. Therefore, we deal with a least square
minimization-least square evaluation paradigm. The second method that excels is Spherical Sampling
due to its capability to minimize any measure. Spherical Sampling presents a further advantage since it
avoids local minima.

The formula presented in Equation (44) is good for a first inspection on how the methods work with
simple diagonal color constancy. But, recently, further applications of sharpened sensors have been
found (see next section) where this measure is no longer appropriate.
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3. Beyond Diagonal Color Constancy

The original aim of spectral sharpening was to achieve diagonal color constancy. Over the years,
spectral sharpening has proven beneficial for a number of purposes, some far removed from the original
aim. In this section we review some of these new applications. They are presented graphically in Figure 5
where they are listed in terms of their research field and linked to a particular subsection of this paper.

Figure 5. Hierarchy of sensor sharpening applications grouped by research field. Each
application is linked to a section in this paper.

3.1. Chromatic Adaptation

Section 2.4 shows that chromatic adaptation transforms can be understood as spectral sharpening,
therefore it is a straightforward idea to use spectral sharpening techniques for handling corresponding
colors data and chromatic adaptation.

Finlayson and Drew [42] showed that the Bradford transform can be obtained through spectral
sharpening with a careful selection of intervals. Later on, Finlayson and Süsstrunk in [43] defined
a chromatic adaptation transform following a technique very similar to the data-based sharpening
considering the preservation of the white point. Ciurea and Funt [44] used the same algorithm but
applied it to spectral quantities instead of tristimulus values. Finally, Finlayson and Süsstrunk [31] used
the spherical sampling technique to derive a set of chromatic adaptation transforms that were equivalent
in terms of the error committed to the colorimetrically obtained.
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3.2. Color Constancy in Perceptual Spaces

Human perception is not linear but colorimetric spaces are. In other words, when we work in RGB or
XYZ spaces, a Euclidean distance d will be perceived differently depending on the region of the color
space the points are located in.

To overcome this issue CIE proposed the CIELab and CieLuv color spaces [45]. Later on,
Finlayson et al. [41] defined a new color constancy error measure regarding differences in the CIELab
perceptual space. From Equation (5), let us call ρD65 the XYZ color value of a particular patch under the
D65 illuminant and ρe the value of the same patch under a different illuminant e. We know we can find
an approximation of the value under the D65 illuminant by ρ̂D65 = T−1 · D · T · ρe. The basic idea is
to convert both ρD65 and ρ̂D65 values to CIELab and to minimize the measure ∆ε, that is, the euclidean
distance between the two points. This measure is considered to be perceptual. Formally,

∆ε(T ) = ‖Lab(ρD65)− Lab(ρ̂D65)‖ = ‖Lab(ρD65)− Lab(T−1 ·D · T · ρe)‖ (45)

The matrix T minimizing this equation for a set of reflectances and illuminants is defined as the best
matrix regarding perceptual color constancy. It is found using the spherical sampling technique [41].

3.3. Relational Color Constancy

Foster and co-authors [46,47] defined color constancy as a ratio-based phenomena, not pixel-based.
This view, called relational color constancy, assumes that the colors in a scene have a fixed relation
between each other. Relational color constancy is also related to Retinex [48]. On the other hand, from
the computer vision side, color ratios have proven useful for dealing with some particular problems such
as object recognition [49] and image indexing [50].

Finlayson et al. [41] defined a color ratio stability measure that works in each sensor individually.
They defined a vector b (m-by-1) containing the colors for a set of m reflectances under the canonical
illuminant viewed under a particular sensor, that is b = [ζ1, · · · , ζm] = [(Tρc

1
)i, · · · , (Tρcm)i], where

Tρc
m

is the response of the sensors for reflectance m and canonical illuminant c, and subscript i denotes
the sensor selected. They defined the vector of color ratios ac

ac =

[
ζi
ζj

;
ζi
ζj+1

; · · ·
]

; ζi, ζj ∈ b, ζi 6= ζj (46)

They considered a second vector of ratios for the same reflectances under a different illuminant ae. In
this case, the total ratio error is defined by

ε(T ) =
1

n

n∑
e=1

‖ac − ae‖
‖ac‖

(47)

This error is minimized by the spherical sampling method [41].

3.4. A Perceptual-Based Color Space for Image Segmentation and Poisson Editing

Chong et al. [51] defined a perception-based color space with two main goals: (1) be linear correlated
with perceived distances, that is, distances in this space might correlate with perceived ones, and (2)
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color displacements in this space should be robust to spectral changes in illumination, that is, if we
re-illuminate two colors by the same light, the difference between them might stay equal. To obtain
a space with these characteristics the authors showed that one further assumption is needed. This
assumption states that diagonal color constancy must be well modeled in the space.

Therefore, the definition of the color space parametrization F given a point x in XYZ coordinates is

F (x) = A(l̂n(Bx)) (48)

whereB is coding a change in a color basis by converting original sensors into ones where diagonal color
constancy is well characterized, l̂n is the natural logarithm and A is used to match perceptual distances.
To obtain B authors used the measurement tensor method [29].

The authors showed the advantages of this new space in two common image processing tasks: image
segmentation and Poisson editing [52].

3.5. Multispectral Processing Without Spectra

Drew and Finlayson [53] showed that spectral sharpening was useful to simplify the cost of calculating
the modeling of the interaction of light and reflectance. Reducing this cost is important for problems such
as ray-tracing. For this application they applied spectral sharpening in more than the usual 3 dimensions
(red, green, and blue).

First, they defined a set of color signals, from which they obtained a n-dimensional (n = 5, 6, 7) basis
B(λ) (via SVD). They sharpened this basis to improve the discernability of its information obtaining a
new basis B̂(λ) = TB(λ), where T is a n × n sharpening matrix obtaining using the method L2 − L2

sensor-based with positivity. Then, any light or reflectance can be expressed as a coefficient vector in
this last basis

R(λ) =
N∑
i=1

b̂iB̂i(λ) (49)

Drew and Finlayson showed that computing the modeling of light and reflectance using these coefficient
vectors and then reconstructing back the full color signal needs less computations and that the error
committed is very small.

Later on, Finlayson et al. [41] showed that even smaller errors are obtained by the use of spherical
sampling in terms of the ∆ε measure between the Lab values of the real and the reconstructed signal.

3.6. Obtaining an Invariant Image and Its Application to Shadows

Finlayson et al. [54] theoretically proved that it is possible to obtain a 1-dimensional representation
of reflectances independent from the illuminant if one supposes a narrow-band camera. From this
1-dimension representation they obtained the invariant image, where the RGB value of the pixel is
substituted by its illuminant-independent representation. In the same work they also showed that the
illuminant independent representation was useful in real cameras (the narrower the camera sensors, the
better the results). Following this last point, Drew et al. [55] proved that when using spectral sharpening
sensors, the invariant image was better than with the original ones.
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Finlayson et al. [56], later used the invariant image to remove shadows from images. Drew et al. [57]
recently showed that when using spectral sharpening sensors, the results were improved, although this
last algorithm requires user interaction.

3.7. Estimating the Information from Image Colors

Recently, Marin-Franch and Foster [58] presented a method to evaluate the amount of information
that can be estimated from the image colors captured by a camera under different illuminations. To this
end, they applied different statistics to the color images. In their work they explained that when dealing
with spectrally sharpened sensors the amount of information that can be extracted is higher than with the
original ones.

3.8. Color Names, Unique Hues, Hue Cancellation and Hue Equilibrium

Philipona and O’Regan [59] showed the possibility of extracting a surface reflectance descriptor using
only the information reaching our eye. To start with, they defined vs as the accessible information about
the reflected light for a given surface s and u the accessible information about the incident illuminant

vsi =

∫
ω

Qi(λ)E(λ)R(λ)dλ, i = 1, 2, 3 (50)

u =

∫
ω

Qi(λ)E(λ)dλ, i = 1, 2, 3 (51)

where R(λ), E(λ) are the same as in Equation (5) and Qi(λ) is the absorption of photopigments
presented in the L,M and S photoreceptors.

They repeated this procedure for N different lights. They arranged the N response vectors for the
surface in a 3×N matrix V s and for the lights in a 3×N matrix U . They related these two matrices by
finding the best 3× 3 matrix transform As such that

V s ' As · U (52)

where the superscript s denotes dependence on the surface. They solved for the matrix As by linear
regression. Finally, they considered the eigenvalue/eigenvector decomposition of As reaching to

V s ' U sVs(U s)−1 · U (53)

where U s and Vs are the 3× 3 matrices of the eigenvectors and eigenvalues respectively.
Philipona and O’Regan selected the eigenvalues Vs as the surface descriptor, from where they were

able to precisely predict color naming, unique hues, hue equilibrium and hue cancellation data.
Building upon Philipona and O’Regan’s model, Vazquez-Corral et al. [60] demonstrated that it is

possible to find a unique transformation T for all the surfaces such that the Philipona and O’Regan
model can be expressed as

vs ' TVsT−1 · u (54)

This transformation T was computed by spherical sampling. The work of Vazquez-Corral et al. shows
that the surface reflectance descriptor is equivalent to a Land color designator [6] computed in the space
spanned by the sharp sensors.
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4. Conclusion

Sensor sharpening was developed 20 years ago to achieve computational color constancy using a
diagonal model. Over this period, spectral sharpening has proven important for solving other problems
unrelated to its original aim.

In this paper, we have explained some of the differences between human and computational color
constancy: human color constancy relies on the perception of the colors while computational color
constancy relies on the absolute color values of the objects viewed under a canonical illuminant.

We have reviewed different methods used to obtain spectrally sharpened sensors, dividing them into
perfect sharpening, sensor-based sharpening, sharpening with data, spherical sharpening, and chromatic
adaptation transforms.

We have also described different research lines where sharpened sensors have proven useful:
chromatic adaptation, color constancy in perceptual spaces, relational color constancy, perceptual-based
definition of color spaces, multispectral processing without the use of all the spectra, shadow removal,
extraction of information from an image, estimation of the color names and unique hues presented in the
human visual system, and estimation of the hue cancellation and hue equilibrium phenomena.
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