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Abstract: Sensor-deployment-based lifetime optimization is one of the most effective
methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing
the distance-sensitive energy consumption. In this paper, data retransmission, a major
consumption factor that is usually neglected in the previous work, is considered. For a
homogeneous WSN, monitoring a circular target area with a centered base station, a sensor
deployment model based on regular hexagonal grids is analyzed. To maximize the WSN
lifetime, optimization models for both uniform and non-uniform deployment schemes are
proposed by constraining on coverage, connectivity and success transmission rate. Based
on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model
can be obtained through quantifying the energy consumption at each sensor location. The
results of case studies show that it is meaningful to consider data retransmission in the
lifetime optimization. In particular, our investigations indicate that, with the same lifetime
requirement, the number of sensors needed in a non-uniform topology is much less than that
in a uniform one. Finally, compared with a random scheme, simulation results further verify
the advantage of our deployment model.
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1. Introduction

Due to the technological developments of microelectromechanical systems, wireless communication
and digital electronics, it becomes possible to produce low-cost wireless sensors. A wireless sensor
network (WSN), which consists of a number of sensor nodes (several tens to thousands working
together), is applied for information monitoring in the fields such as health monitoring [1], military
target tracking and surveillance [2], natural disaster relief, hazardous environment exploration [3],
intelligent transportation [4], and social networking and gaming [5].

Because the sensors have limited energy resource, the lifetime of a WSN is significantly affected
by its energy consumption [6]. Thus, improving the energy efficiency becomes a hot topic in this
area [7,8]. Anastasi et al. [9] state that the energy consumed by a WSN is mainly used for communication
and data processing. Evidently, the energy consumed by communication is sensitive to the transmission
distance. Thus, sensor deployment optimization is one of the most important methods used to reduce
the energy consumption [7,10]. In many applications, the data gathered via WSN are essential since the
transmission errors may lead to system failures that may cause economic losses, environmental damage
or casualties [11]. As WSN is usually deployed in a harsh environment, according to the reports, the
packet loss ratio can be as high as 70% in a typical WSN [12]. Retransmission is now widely applied to
improve the success rate of data transmission [13–15]. It is obvious that data retransmission consumes
extra energy. However, previous work usually assumes that the data transmission is always successful
and neglects the possible retransmission.

In this paper, the lifetime of a WSN is defined as the period starting from the initial working time until
the WSN fails to satisfy its requirements (including coverage, connectivity and success transmission
rate). Our goal is to maximize the lifetime for a homogeneous WSN that is used to monitor a circular
target area with a base station in the center. We propose a new sensor deployment optimization model
based on the energy consumption calculated under retransmission. The remainder of this paper is
organized as follows. In Section 2, we briefly review the related work of sensor deployment optimization.
Section 3 describes the static topology and dynamic behaviors of the WSN in our problem. The
lifetime optimization models are proposed for both uniform and non-uniform deployment problems in
Section 4. We analyze the energy consumption in Section 5, while the path probability and the success
rate of data transmission, with and without retransmission, are quantified in Section 6, respectively. In
Section 7, two case studies are presented to verify the effectiveness of considering retransmission in the
lifetime optimization, and the advantage of non-uniform deployment scheme compared with a uniform
one. Simulation further demonstrates that our optimal deployment scheme can provide much longer
lifetime and higher successful transmission rate than a random scheme. Finally, Section 8 concludes
our results.
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2. Related Work

There are two types of sensor deployment schemes: structured and unstructured. The difference
between these two schemes is that the sensors of an unstructured WSN are randomly deployed (this is
usually used in an unreachable environment) while the positions of the sensors in a structured one are
pre-determined. In this paper, we focus on the structured scheme.

The structured sensor deployment problem has been extensively studied by many researchers, and
pioneers deploy such pre-determined WSN in practice, such as WSNs used to monitor Dolmabahçe
Palace (Istanbul), Torre Aquila (Italy), a local street (Spain), Bird’s Nest (China) and a forested nature
reserve (USA), see Onur et al. [16], Ceriotti et al. [17], Gallart et al. [18], Shen et al. [19] and
Navarro et al. [20], respectively. Onur et al. [16] claim that deterministic deployment is appropriate for
plain and easily accessible fields such as the embassy/museum garden. For this type of deployment,
the number of sensors and the topology of WSN are determined in advance. Thus, the associated
energy consumption and lifetime of the WSN can be analyzed and optimized before the deployment.
Wu et al. [8], Liu et al. [21] and Wang [22] divide the target area into multiple rings and analyze
the optimal sensor deployment schemes in different rings. AbdelSalam [23], Chiang et al. [24],
Fan et al. [25] and Gupta et al. [26] study the structured deployment methods based on grids, and
Onur et al. [16] deployed a WSN based on grids to monitor Dolmabahçe Palace in Istanbul. In [27], the
advantages and potential applications of hexagon-based WSN are introduced, and the study shows that
WSN can gain benefits from the hexagon-based topology in coverage, energy saving, reliability, routing
design, etc. The deployment of such hexagon-based topology requires to determine the sensor locations
according to the coordinate. For those key WSNs with long lifetime requirement, such as the WSN that
may be used in the cabin of the next generation airborne networks (see Yedavalli and Belapurkar [28],
Leipold et al. [29] and Wang and Hu [30]), it is worthy to deploy sensors according to the optimal
deployment scheme.

The WSN topologies can be either heterogeneous or homogeneous. Compared with the heterogeneous
WSN, the homogeneous one, in which all sensors are the same in sensing capability, communication
capability, power capability, etc., is convenient and cheap to deploy. Pioneers propose several sensor
deployment schemes for homogeneous WSN. For instance, Wang [22] applies the hexagonal grids to
investigate the minimal sensor density. He assumes that the whole target area is a circular plane that
can be divided into rings with a centered base station. The relationship between the sensor density and
the ring radius is studied. However, the exact positions of these sensors are not given, which leads
to a large overlap of coverage or no coverage in some areas. Gupta et al. [26] divide the target area
into regular hexagonal grids, in which sensors are deployed in the middle of the grids. They indicate
that the deployment can achieve the optimal coverage and, at the same time, satisfy the connectivity
constraints, but the energy consumption and the success transmission rate of WSN are not considered.
Tian et al. [27] also study the deployment based on the regular hexagonal grids. They address the
advantages of their method in coverage, connectivity, reliability and energy consumption, but, to achieve
the optimal lifetime and sensor deployment scheme, the distance between the neighboring sensors and
the number of sensors deployed are not optimized. Moreover, retransmission, which is an important way
to guarantee the success data transmission rate, is ignored in all of the abovementioned research works.
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In this paper, retransmission, which has a large effect on the energy consumption but is usually
neglected in previous works, is taken into account in our deployment-based lifetime optimization. A
regular hexagonal grid deployment scheme, which can achieve the optimal coverage and connectivity
as mentioned earlier, is presented as our basic deployment scheme. Based on the data transmission
and energy consumption analysis under retransmission, the optimal sensor deployment is obtained by
maximizing the lifetime under the constraints of coverage, connectivity and data success transmission
rate. As the retransmission rate is highly related to the transmission distance, the optimal sensor
deployment under retransmission is quite different from the one in which retransmission is not
considered. Moreover, our scheme can guarantee the coverage, connectivity and data success
transmission rate, which may not be achieved simultaneously in previous works.

3. Problem Description

In this paper, we assume that the target monitoring area is circular with a radius of Ra, and its base
station lies in the center (the same problem can be seen in [8,22,23,31], etc.). In this section, the static
topology of a WSN is presented for coverage and connectivity analysis, and its dynamic behaviors are
described for further discussion.

3.1. Static Topology

We discuss the sensor deployment scheme based on a regular hexagonal topology, because the
minimal overlap of coverage can be achieved by partitioning the target monitoring area into hexagonal
grids, in which the sensors are centered, without overlap of physical area (see [27]). As shown in
Figure 1, a homogeneous WSN, made up by many identical wireless sensors and a base station, is used
to monitor the target area. The base station is located in the center of the circular target area, and one or
more sensors are deployed in the middle of each hexagonal grid around the base station. The Mica2 mote,
the most commonly used sensor [32], is used in this homogeneous WSN. Its parameters can be found
in the CC1000 datasheet [33]. The sensors have the same initial energy E0, while the initial energy
of base station is unlimited. Each sensor has a sensing radius of Rs and a transmission radius of Rt.
Figure 1 depicts the geometric formulation of these regular hexagonal grids leads to multiple layers (the
layer number increases from inside to outside), where the base station is located in Layer 0. The distance
between the neighboring sensors is denoted d, so the circumcircle radius of each regular hexagonal
grid can be expressed as

√
3d
3

, and the circumcircle radius of a sensor in Layer i can be calculated as
dc(i) = id.

3.1.1. Coverage Analysis

As shown in Figure 1, to satisfy the requirement of covering the entire target area, the distance
between neighboring sensors should satisfy

d ≤
√
3Rs. (1)

The overlap of coverage of the network is minimized at d =
√
3Rs. We know that the overlap of

coverage increases as the value of d decreases, which results in energy wastage. On the other hand, the
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larger d is, the more energy will be consumed to transmit a message in a single hop. This implies the
necessity of choosing an optimal value for d.

Figure 1. The topology of homogeneous WSN.

3.1.2. Connectivity Analysis

With these regular hexagonal grids, if the whole target area is covered, when

d ≤ Rt, (2)

the sensors in the region are connected.

3.2. Dynamic Behavior

Besides the transmission distance, the energy consumption is also affected by the network protocols.
In each data gathering cycle, sensors can detect the environment information within its sensing range and
transmit a packets, each with mdata bits, to the base station hop-by-hop. Generally, the sensor will not
fail unless its energy is exhausted. In this paper, we study the sensor deployment optimization problems
based on the following protocol assumptions:

• Routing protocol. The Greedy Perimeter Stateless Routing (GPSR) algorithm is applied to
determine the next hop for transmitting data. In GPSR, it is preferred to forward the packet of a
sensor to the neighboring sensor, which is the closest one to the base station, within its transmission
range [34]. To ensure that the data can only be transmitted between the sensors of neighboring
grids, we assume

d >

√
3Rt

3
. (3)

• Sleep/wake-up protocol. Since a single sensor will run out of energy easily, it is common to
deploy some redundant units. The Probing Environment and Adaptive Sleeping (PEAS) protocol
proposed by Ye et al. [35] is adopted in our model to control the sleep/wake-up mechanism. The
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protocol wakes a sensor up only when no sensor is active within its probing range (which is usually
the same as the sensing range). Thus, we assume that

d > Rs (4)

It is reasonable that much overlap exists and energy is wasted if d ≤ Rs. According to this
protocol, at each sensor-deployed location, i.e., the center of each hexagonal grid in Figure 1, only
one sensor is active that can be used to detect, transmit and receive message. The other sensors are
in sleeping status with little energy consumption (ignorable).

• Retransmission protocol. Retransmission is widely used to improve the success rate of data
transmission. In this paper, the reduced CSMA/CA protocol without RTS/CTS is adopted.
Figure 2 illustrates the data transmission process. The transmitter sends DATA message to its
next hop according to the routing protocol. If the receiver receives the message successfully, an
ACK message will be sent back to the transmitter. Note that, the transmitter will keep on sending
DATA message repeatedly until it receives the ACK message or reaches the maximum number of
retry attempts. In our case, the maximum number of retry attempts is assumed to be “2”.

Figure 2. Reduced CSMA/CA protocol without RTS/CTS.

As suggested by Zuniga et al. [36], the retransmission rate can be measured by packet reception rate.
For a Mica2 mote using non-coherent frequency-shift keying modulation and encoded by Manchester,
according to the IEEE 802.15.4 standard [37], its retransmission rate can be expressed as follows:

RR(d) =


1−

1− 1
2
e
−
(
Pt−20 log10(

4πfd
C

)−Sr
1.28

)2m−l

, if d ≤ 8m,

1−

1− 1
2
e
−
(
Pt−20 log10(

32πf
C

)−33 log10(
d
8 )−Sr

1.28

)2m−l

, otherwise,

(5)

where Pt is the transmission power, f is the band width, C is the speed of light, d is the transmission
distance, Sr is the receiver’s sensitivity, and m and l are the lengths of a single packet and the preamble
(in bits), respectively.

4. Optimization Model

In this section, the lifetime optimization models are proposed. As Dietrich and Dressler stated in [38],
the lifetime of the WSN is largely determined by energy depletion. Therefore, the energy consumption at
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each sensor location in a data gathering cycle is applied to calculate the lifetime of the network. Our goal
is to cover the entire target area with full connectivity, and the WSN life ends when it cannot provide such
coverage or connection function. By combining Equations (1) and (4), to ensure the coverage of a WSN,
at least one sensor should be working in each hexagonal grid. To prolong the lifetime, as mentioned in
Section 3, ni,j sensors are deployed in grid (i, j), among which only one is active and the rest are in
sleeping mode due to the sleep/wake-up protocol. The lifetime of the WSN can be calculated by

τ =
L

min
i=1

[
6i

min
j=1

(
ni,jE0

Ei,j

)]
t, (6)

where E0 is the initial energy of a sensor, Ei,j is the energy consumption in a data gathering cycle at
location (i, j), t is the data gathering cycle and L is the number of layers in the target area. If the
distance between sensors, d, is too small, the overlap of coverage will be very large, which results
in huge amounts of redundant sensing information and energy waste. On the other hand, an extremely
large value of dwill dramatically increase the transmission energy of a single hop (since the transmission
distance is increased, see Equation (12)). From all of the aforementioned perspectives, our objective is
to achieve the optimal d and ni,j as well as maximize the WSN lifetime (which ends when the coverage,
the connectivity or the success transmission rate falls below the designated threshold).

Here, we analyze two types of sensor deployments, uniform and non-uniform, which are usually
discussed and compared in the deployment-based lifetime optimization. In a uniformly deployed WSN,
the sensor density will not be changed by its distance to the base station. Such a deployment is simple,
but it may cause energy hole problem. Thus, non-uniform deployment scheme was proposed (see [9]),
in which more sensors are deployed near the base station, while less ones are located at the edge.

4.1. Uniform Deployment Optimization

For a uniform deployment scheme, the value of ni,j is a constant. Full coverage of the target area is
required before the deployment is initialized. If all sensors in some grid of the network are out of energy,
the coverage requirement will not be satisfied. The problem of finding an optimal d that maximizes the
WSN’s lifetime where only one sensor is located at each grid, subject to the coverage, connectivity and
success transmission rate constraints, can be formulated as

max
L

min
i=1

(
6i

min
j=1

E0

Ei,j

)
t

subject to S > S∗,

Rs < d ≤
√
3Rs,√

3
3
Rt < d ≤ Rt,

(7)

where S∗ is the requirement of the success transmission rate. In Equation (7), S > S∗ requires that
the success transmission rate for the whole network is at least S∗, d > Rs is the assumption for
PEAS (see Equation (4)), d ≤

√
3Rs is the requirement of the full coverage for the target area (see

Equation (1)), d >
√
3
3
Rt is the assumption that data transmission is constrained between neighboring

sensors (see Equation (3)), and d ≤ Rt is the requirement of the connectivity between the locations of
neighboring sensors (see Equation (2)).
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This model is a nonlinear programming problem, which can be solved by the generalized reduced
gradient method. If the lifetime requirement of the WSN is specified as τ ∗, the minimal number of
sensors at location (i, j) can be calculated as

ni,j = d
τ ∗

τ
e, (8)

where τ is the optimal lifetime. The minimal total number of sensors is

N = 3L(L+ 1)dτ
∗

τ
e, (9)

where L is the number of layers.

4.2. Non-Uniform Deployment Optimization Model

In the uniformly distributed homogenous WSN, sensors that are close to the sink consume energy
faster than those far away from the base station due to the unevenly distributed forwarding workloads
among sensors. Olariu and Stojmenović [39] have proved that the uneven energy depletion phenomenon
is intrinsic to the system and no routing strategy can avoid the creation of an energy hole around the sink.
However, the uneven energy depletion can be prevented by judicious system design, which can result in
balanced energy consumption in the network. In a non-uniform deployment, ni,j is a variable based on
different grids. The problem of finding the optimal d and ni,j that maximize the WSN’s lifetime subject
to coverage, connectivity, success transmission rate and number of sensors can be expressed as

max
L

min
i=1

[
6i

min
j=1

(
ni,jE0

Ei,j

)]
t

subject to S > S∗,

Rs < d ≤
√
3Rs,√

3
3
Rt < d ≤ Rt,

L∑
i=1

(
6i∑
j=1

ni,j) ≤ N∗,

(10)

where N∗ is the maximum number of sensors. The new constraint
L∑
i=1

(
6i∑
j=1

ni,j) ≤ N∗ is a requirement

that the number of sensors cannot exceed the maximum allowable number. For uniform deployment
optimization problem, the lifetime of the WSN is proportional to the number of sensors in the sensor
location. Hence, once the optimal sensor deployment scheme is determined for a WSN with only one
sensor at each sensor location, it is the optimal deployment scheme for cases with more sensors at one
location. Unlike the uniform deployment optimization problem discussed in Section 4.1, the number of
sensors in a sensor location is not limited to 1. If no maximum allowable number of sensors is specified,
the optimization objective, i.e., the WSN lifetime, steadily increases with rising number of sensors in
the network.

A genetic algorithm can be applied to solve this nonlinear integer programming problem. If the
lifetime requirement of the WSN is specified as τ ∗, the minimal number of sensors can be obtained by

N =
L∑
i=1

(
6i∑
j=1

⌈
τ ∗E ′i,j
tE0

⌉)
, (11)
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where E ′i,j is the optimal energy consumed by the sensor at location (i, j) in a data gathering cycle.

5. Energy Consumption

To determine the WSN lifetime in the optimization models, the energy consumption at each sensor
location should be calculated. Generally, three statuses, including transmitting, receiving, and idle, of a
sensor will cause energy consumption (see [40,41]). One widely used energy model presented in [42] is
adopted in our problem. The basic energy consumption models for transmitting, receiving, and idle can
be expressed as 

Et = (β1 + β2d
α)mt,

Er = β3mr,

Eid = β4tidPmdata,

(12)

where β1 depends on the amount of energy spent in the electronics circuitry for transmitting each bit
data, β2 is affected by the transmit amplifier efficiency, antenna gains and other system parameters, β3 is
the amount of energy spent in the electronics circuitry for receiving each bit data, and β4 is the energy
spent for each bit message in the idle state. Here α represents the path loss exponent (2 ≤ α ≤ 4),
which depends on the environment. The parameters mt, mr, and mdata are the lengths of the message
transmitted in bits, the message received in bits, a sensing data packet in bits, respectively. In addition,
tid is the time period of the idle state and P is the dealing rate of the message sensed by sensors. Thus,
we have the idle time as

tid = t− tt − tr = t− mt

Pmdata

− mr

Pmdata

, (13)

where t is the data gathering cycle, tt is the message transmission time, and tr is the message reception
time. Hence, the total energy consumed in a data gathering cycle for a sensor is

E = (β1 + β2d
α)mt + β3mr + β4tidPmdata

= [(β1 + β2d
α)− β4]mt + (β3 − β4)mr + β4tPmdata.

(14)

5.1. Scenario I: Without Retransmission

From Equation (13), the energy consumption model for a sensor without retransmission can be
expressed as

Enon = [(β1 + β2d
α)− β4]Nt,nonmdata

+(β3 − β4)Nr,nonmdata + β4tPmdata,
(15)

where Nt,non and Nr,non are the numbers of packets transmitted and received without
retransmission, respectively.

5.2. Scenario II: With Retransmission

When the retransmission is considered, the associated energy consumption for a sensor is
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Ere = [(β1 + β2d
α)− β4](Nt,re,datamdata +Nt,re,ackmack)

+(β3 − β4)(Nr,re,datamdata +Nr,re,ackmack) + β4tPmdata,
(16)

where mack is the length of ACK in bits, Nt,re,data and Nr,re,data are the numbers of DATA

packets transmitted and received with retransmission, and Nt,re,ack and Nr,re,ack are those of ACK
packets, respectively.

6. Data Transmission

During the data gathering period, sensors in the WSN collect their surrounding information and send
them to the base station hop-by-hop. In this section, to calculate the energy consumed by transmitting
and receiving, the possible data transmission paths and their probabilities are analyzed according to the
network topology and the routing protocol mentioned in Section 3, and the expected amount of data
transmitted and received at each sensor location is derived. Moreover, the network success transmission
rate, one constraint in our optimization models in Section 4, is computed as well.

6.1. Data Transmission Path

Theorem 1. In Figure 1, if d ≤ Rt <
√
3d, the transmitter can only transmit the sensed DATA to its

neighboring sensors centered at the surrounding grids, and the DATA are transmitted from outside to
inside layer-by-layer.

Proof 1 (Proof of Theorem 1).

As shown in Figure 3 (part of Figure 1), Sensor A can transmit its data to other sensors only
if the sensor transmission range exceeds the distance between neighboring sensors, i.e., d ≤ Rt

(see Equation (2)). As mentioned in Equation (3), to guarantee that data collected or received by
Sensor A can only be transmitted to its neighbors, Rt <

√
3d should hold to make non-neighboring

sensors out of its transmission range, since the distance from Sensor A to its second closest
sensor is

√
3d. According to the GPSR protocol, since the sensors in the inner layer are closer

to the base station, the transmitter can only send the sensed DATA to an inner layer that is
next to it.

Figure 3. Data transmission analysis.
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Hence, when d ≤ Rt <
√
3d holds, the sensor in layer i can only receive the data from the nearest

sensor in layer (i + 1) and send the data to the nearest node in layer (i − 1). The assumption that data
are transmitted from the outside to the inside, layer-by-layer, is widely used in WSN lifetime or energy
optimization problems. Readers are referred to [8,22,23,25,39,43], etc.

Because of the symmetry of a regular hexagon, we only need to study one-sixth of the whole network,
i.e., a regular triangular area, to obtain the data transmission path to the base station (expressed by red
lines in Figure 4). In the figure, the circles identify the sensor deployment locations. The position of a
sensor is numbered by (i, j), which indicates that the sensor is located at the j− th position of the i− th

layer. After obtaining data transmission paths for all sensor locations in one regular triangular area, since
the data transmission paths for the other five triangles are the same as the one studied, the amount of data
transmitted and received at each sensor location in the target area can then be calculated.

Figure 4. Data transmission path.

Theorem 1 shows that the sensed data will be transmitted to the neighboring sensors in an inner layer.
Then, we can find the data transmission path of WSN by computing the distance between neighboring
sensors and the base station. For sensors located at (2x, x+ 1) (x = 1, 2, . . ., e.g., (2,2), (4,3), (6,4), . . . ),

from a vertical line of the triangle, there are two next-hop possibilities since two reception sensor
locations in the next inner layer are sharing the same distance from the base station. We assume that if
a sensor has two transmission possibilities, the chance of choosing either path is 0.5. For other sensors,
there is only one possible next hop, as we can only find one sensor location close to the base station in
the next inner layer.

6.2. Number of Packets Transmitted or Received

6.2.1. Scenario I: Without Retransmission

Recall that in Section 3, we assume there are L layers in the WSN, and, in a data gathering cycle,
a packets each with m bits are sensed and transmitted by one sensor in a single location. However, in
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each data gathering cycle, the numbers of packets received or transmitted by different sensors may
be different. According to the possible data transmission paths obtained in Figure 4, the possible
transmitters of each sensor in the outer layer and the corresponding possible receivers in the neighboring
inner layer are determined. In Figure 4, one sensor location may have one or two possible transmitters
and receivers. Sensor locations with two possible transmitters are the closest sensor locations to the
base station in the neighboring inner layer. Locations with two possible receivers are those ones on
a vertical line of the triangle as mentioned in Section 6.1. Therefore, three types of locations should
be distinguished:

• Location with two possible transmitters and two possible receivers, i.e., (1,1) and (2x, x + 1)

(x = 1, 2, 3, . . .);

• Location with two possible transmitters and one possible receiver, i.e., (2x + 1, x + 1) and (2x +

1, x+ 2) (x = 1, 2, 3, . . .);

• Location with one possible transmitter and one possible receiver.

The numbers of packets transmitted and received are calculated as

Nt,non =


(L−i+1)(L−i+2)

2
a,Case 1,

(L−i+1)(L−i+4)
4

a,Case 2,

(L− i+ 1)a, Case 3,

and Nr,non =


(L−i)(L−i+3)

2
a,Case 1,

(L−i)(L−i+5)
4

a,Case 2,

(L− i)a, Case 3,

(17)

respectively (Nr,non = Nt,non − 1).

6.2.2. Scenario II: With Retransmission

Under the assumptions in Section 3.2, simplified CSMA/CA protocol without RTS/CTS is adopted to
improve the success rate of data transmission. There are three situations in a data transmission process:
(1) the receiver fails to receive the DATA; (2) the receiver successfully receives the DATA but the
transmitter fails to receive the ACK; and (3) both DATA and ACK are successfully received. For the
first two situations, the transmitter will retransmit the DATA until it receives the ACK message from the
receiver or the maximum number of retry attempts is reached.

Assume each transmission is an independent event. Let A and B be the retransmission rates of DATA
and ACK, respectively. All the transmission possibilities and the corresponding probabilities in one hop
are enumerated in Table 1 (the maximum number of retry attempts is 2). Take the case in the first row as
an example, it describes the situation that: (1) the transmitter sends DATA to the receiver; (2) the receiver
successfully receives it then sends an ACK back to the transmitter; and (3) the receiver again successfully
receives the ACK and no retransmission occurs. The transmission process is denoted in Columns 1–6,
where 1, 0 and N/A represent the transmission success, failure, and no transmission, respectively. In
this case, the number of retry attempts for either DATA or ACK is 1, and this information is recorded in
Columns 7 and 8. Since packet transmission is an independent event, the probability that this situation
happens can be calculated via the multiplication rule, and the calculation result, (1 − A)(1 − B), is in
Column 9. When DATA is finally successfully transmitted to the receiver, Column 10 shows “S”. In
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Column 10, S and F denote whether or not the sensed DATA can be transmitted successfully within the
maximum number of retry attempts.

Table 1. Data transmission possibilities in a certain hop.

Transmission Results Number of
Probability

Success or
Failure

Attempt 1 Attempt 2 Attempt 3 Attempts
DATA ACK DATA ACK DATA ACK DATA ACK

1 1 N/A N/A N/A N/A 1 1 (1−A)(1−B) S
1 0 1 1 N/A N/A 2 2 B(1−A)2(1−B) S
0 N/A 1 1 N/A N/A 2 1 A(1−A)(1−B) S
1 0 1 0 1 1 3 3 B2(1−A)3(1−B) S
1 0 1 0 1 0 3 3 B3(1−A)3 S
1 0 1 0 0 N/A 3 2 AB2(1−A)2 F
1 0 0 N/A 1 1 3 2 AB(1−A)2(1−B) S
1 0 0 N/A 1 0 3 2 AB2(1−A)2 S
1 0 0 N/A 0 N/A 3 1 A2B(1−A) F
0 N/A 1 0 1 1 3 2 AB(1−A)2(1−B) S
0 N/A 1 0 1 0 3 2 AB2(1−A)2 S
0 N/A 1 0 0 N/A 3 1 A2B(1−A) F
0 N/A 0 N/A 1 1 3 1 A2(1−A)(1−B) S
0 N/A 0 N/A 1 0 3 1 A2B(1−A) S
0 N/A 0 N/A 0 N/A 3 0 A3 F

Since packet transmission is an independent event, the probabilities of transmitting the DATA and the
ACK n times can be written as

ωdata,n =


(1− A)(1−B), n = 1,

A(1− A)(1−B) +B(1− A)2(1−B), n = 2,

A2 + 2AB(1− A) +B2(1− A)2, n = 3,

(18)

and

ωack,n =


(1− A2)(1−B) + A2(1− A)(1 + 2B), n = 1,

B(1− A)2(1−B) + AB(1− A)2(2 +B), n = 2,

B2(1− A)3, n = 3,

(19)

respectively. Thus, the expected numbers of transmission attempts of DATA and ACK, respectively, areωdata = ωdata,1 + 2ωdata,2 + 3ωdata,3,

ωack = ωack,1 + 2ωack,2 + 3ωack,3.
(20)

Hence, the numbers of packets transmitted and received, for both DATA and ACK, under the
retransmission can be expressed as

Nt,re,data =


(L−i+1)(L−i+2)

2
aωdata,Case 1,

(L−i+1)(L−i+4)
4

aωdata,Case 2,

(L− i+ 1)aωdata, Case 3,

(21)
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Nt,re,ack =


(L−i)(L−i+3)

2
aωack,Case 1,

(L−i)(L−i+5)
4

aωack,Case 2,

(L− i)aωack, Case 3,

(22)

and

Nr,re,data =


(L−i)(L−i+3)

2
aωdata,Case 1,

(L−i)(L−i+5)
4

aωdata,Case 2,

(L− i)aωdata, Case 3,

(23)

Nr,re,ack =


(L−i+1)(L−i+2)

2
aωack,Case 1,

(L−i+1)(L−i+4)
4

aωack,Case 2,

(L− i+ 1)aωack, Case 3,

(24)

respectively.

6.3. Success Rate of Data Transmission

Assume at least one sensor is functioning at each position, the success rate of data transmission for
the entire WSN is

S =
L∏
i=1

L∏
j=1

S(i, j)Nt(i,j), (25)

where S(i, j) is the success rate of data transmission and Nt(i, j) is the number of packets transmitted
at position (i, j). If no retransmission occurs then S(i, j) = Snon(i, j). Otherwise, S(i, j) = Sre(i, j).

6.3.1. Scenario I: Without Retransmission

The success rate of data transmission can be calculated according to the results in Column 10 of
Table 1. If retransmission is not considered, the data will only be transmitted once. The rate of
successfully sending a packet from a sensor in grid (i, j) to the next hop can be expressed as

Snon(i, j) = 1− A. (26)

6.3.2. Scenario II: With Retransmission

When retransmission is considered, by summing all of the successful transmission probabilities in
Table 1, the success rate of data transmission in one hop can be written as

Sre(i, j) = 1− A3 − 2A2B(1− A)− AB2(1− A)2. (27)

7. Case Study

We conduct case studies for a WSN whose parameters are presented in Table 2. For deployment-based
lifetime optimization, Section 7.1 compares the result of the case with retransmission with that of the
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case without retransmission. The results verify the importance of considering retransmission. Ignoring
retransmission may overestimate the lifetime and yield a non-optimal deployment. Section 7.2 analyzes
the optimal uniform and non-uniform deployments. The results show that the non-uniform deployment
can provide longer lifetime with a given number of sensors, and more sensors can be saved for a
long-lifetime requirement. The larger the monitoring area is, the more noticeable the strength of
non-uniform deployment will become. Compared with the random deployed WSN, the advantages of
our hexagonal deployment are verified in Section 7.3.

Table 2. Parameters of the homogeneous WSN. The details of the symbols can be seen in
the Appendix.

Parameter Value Parameter Value Parameter Value

α 4 E0 54 J P 1 packet/s
β1 5.0× 10−8 J/bit f 8.68× 108 Hz Pt −6 dB
β2 1.3× 10−15 J/bit lack 120 bits Rs 50 m
β3 5.0× 10−8 J/bit ldata 160 bits Rt 80 m
β4 4.0× 10−8 J/bit mack 120 bits Sr −98 dB
Ra 500 m mdata 448 bits t 300 s
S∗ 0.6 a 1 τ∗ 365 days

7.1. Importance of Considering Retransmission

Either with or without retransmission, the optimal distance between the neighboring sensors can be
obtained from the associated optimization model. The results of optimal lifetime are shown in Tables 3
and 4 for uniform and non-uniform deployments, respectively.

Table 3. Optimization results of uniform deployment. The details of the symbols can be
seen in the Appendix.

Optimal Solutions With Retransmission Without Retransmission

d 58.97 m 50.00 m
L 9 11
S 0.99991 0.61510
τ 715.80 h 725.44 h
N 3510 5148

Note: the optimal lifetime is obtained by deploying only one sensor in each regular hexagonal grid using
Equation (7), and the minimal N is obtained using Equation (9).

From Tables 3 and 4, one can see that the optimal sensor deployment scheme of WSN with
retransmission (WSNWR) is quite different from that of WSN without retransmission (WSNWoR).
Basically, the distance between sensors for WSNWR is longer than that of WSNWoR, which results
in a smaller number of layers. From the two tables above, one can see that the success transmission
rate is much higher with retransmission, as retransmission can improve the success transmission rate
between hops, which enhances the whole WSN. The lifetime of WSNWoR is overestimated since the
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energy consumption of retransmission is not included. Moreover, to satisfy a given τ ∗ = 365 days,
the total number of sensors required for WSNWR is less than that of WSNWoR. This is because the
WSN will be more reliable when retransmission is considered. Therefore, it is meaningful to consider
retransmission in the sensor-deployment optimization for a WSN. In the following sections, we only
focus on the WSN under retransmission.

Table 4. Optimization results of non-uniform deployment. The details of the symbols can
be seen in the Appendix.

Optimal Solutions With Retransmission Without Retransmission

d 58.97 m 50.00 m
L 9 11
S 0.99991 0.61510
τ 835.06 h 822.32 h
N 3006 4392

Note: the optimal lifetime is obtained by the optimization model in Equation (10) under the constraint of N∗ =

500, and the minimal N is obtained using Equation (11).

7.2. Comparison of Uniform and Non-Uniform Deployment

Tables 3 and 4 also show that the optimal sensor deployment schemes are the same in uniform
and non-uniform distributions, since the optimal sensor distance is the one that can consume the least
energy with one sensor located in the center of each grid. In addition, under the optimal sensor
deployment, d = 58.97 m and L = 9, the total number of sensors required to survive for 365 days
in non-uniform deployment is 3006, whereas the number is 3510 in uniform deployment. Moreover,
when the numbers of sensors deployed are the same (N = 3510), the lifetime of WSN is 365 days if
sensors are uniformly deployed, whereas the maximum lifetime can extend to 418 days under the optimal
non-uniform deployment via Equation (11). All of the above results imply that the non-uniform sensor
deployment scheme provides longer lifetime than that of the uniform one.

Figure 5. Optimal lifetime under different N∗.
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Particularly, the constraints of the maximum number of sensors, the required lifetime and the radius
of the circular target area will affect the optimization results. When the constraint N∗ (the maximum
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number of sensors) varies, the optimal lifetime of WSN is illustrated in Figure 5. One can see that
the non-uniform deployment is useful in prolonging the lifetime of WSN. As the numbers of packets
transmitted and received at some locations are the same (see Figure 4), the energy consumptions for
sensors in these locations are the same. Thus, one can see from Figure 5 that the optimal lifetime for a
certain number of sensors does not change continuously.

To satisfy a certain required lifetime (τ ∗) varying from 100 to 500 days, the optimal number of
sensors deployed in the WSN is shown in Figure 6, and the associated energy left when the life ends is
illustrated in Figure 7. One can see that more sensors are needed to satisfy the long-lifetime requirement.
Compared with the uniform deployment, the saving in sensors by the non-uniform WSN is increasingly
evident at longer required lifetime. In Figure 7, the residual energy for the non-uniform deployment
is much less than the uniform one. As the optimal lifetime for a certain number of sensors does not
change continuously (see Figure 5), the residual energy is not always monotonically increasing in the
required lifetime.

Figure 6. Optimal numbers of sensors deployed under different τ∗.
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Figure 7. Residual energy in WSN under different τ∗.
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Similarly, when the radius of the circular target area Ra varies, the optimal number of sensors
deployed (compare the uniform case with the non-uniform case) in the WSN is shown in Figure 8 (for
a lifetime of 365 days). The associated residual energy when the life ends (under the optimal sensor
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deployment scheme) is illustrated in Figure 9. Due to the energy hole problem, sensors that are close to
the base station need to transmit more sensing data, and they consume energy much faster than the ones
in the periphery of the target area. For uniformly deployed WSN, the unbalanced energy consumption
cannot be avoided, and energy will be surely left. The non-uniform deployment scheme can solve this
problem, and both the number of sensors needed and residual energy of the non-uniform deployment
are much less than that of the uniform one. In fact, the number of sensors and the residual energy are
relatively stable as Ra increases under the non-uniform scheme, whereas they increase sharply for the
uniform one. This implies that the non-uniform scheme is much better than the uniform one when Ra

becomes large.

Figure 8. Optimal number of sensors deployed under different Ra.
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Figure 9. Residual energy in WSN under different Ra.
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7.3. Effectiveness of the Proposed Sensor Deployment Scheme

To verify the effectiveness of our sensor deployment scheme, we use the Monte Carlo method to
simulate the lifetime of the WSN under a random sensor deployment scheme in order to provide
comparisons. The lifetime of a hexagonal deployed WSN is also simulated to analyze the simulation
error. Our Monte Carlo simulation was implemented in MATLAB, and the general simulation procedure
is described as follows.
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• Step 1. Generate the sensor locations according to the deployment scheme (i.e., the random
topology or the hexagonal topology);

• Step 2. Assign the corresponding attributes to each sensor, including initial energy, packet length
of sensing data, number of packet sensed in a data gathering cycle, sensing range, transmission
range, etc.;

• Step 3. Execute the following steps at each data gathering time until the WSN life ends;

I Determine the active sensors according to the sleep/wake-up protocol (i.e., PEAS protocol),

II Generate sensing data at all alive sensors,

III Transmit the sensing data to the base station hop-by-hop based on the routing protocol (i.e.,
GPSR protocol). For each DATA packet transmission between two hops, implement the
following procedures,

– (i) Transmit the DATA to its receiver, and determine whether it is received successfully
according to the DATA retransmission rate;

– (ii) If the DATA is received by the receiver, transmit an ACK back to the transmitter
and determine whether the ACK is received successfully according to the ACK
retransmission rate, else go to step (iii);

– (iii) If the transmitter fails to receive the ACK and the maximum number of retry times
is not achieved, go to step (i) to retransmit the DATA, else go to step (iv);

– (iv) Calculate the energy consumption of each DATA or ACK transmission and
reception. If the energy of a sensor is exhausted, remove it from the WSN.

IV Evaluate the coverage rate using pixel method proposed in [44]. If the coverage rate cannot
satisfy the coverage requirement, terminate the simulation, and record the time as the lifetime
for this simulation.

• Step 4. Count the number of DATA that is successfully received by the base station, and evaluate
the success transmission rate;

• Step 5. Go to Step 1 until the number of simulation runs is achieved. Otherwise, go to Step 6;

• Step 6. Calculate the average lifetime and success transmission rate.

7.3.1. Simulation Error Analysis

To verify the reliability of our simulation, the lifetime of a WSN under our hexagonal deployment
scheme is simulated with only one sensor per grid to explain the associated error of our Monte Carlo
method. The simulation parameters are taken from Table 2 and the optimization results of uniform sensor
deployment under retransmission are shown in Table 3, where d = 58.97 m and L = 9. The simulation
is repeated for 1000 times. The error of lifetimes of the analytical solution and the simulation result is
5.5 s, and the error of the corresponding success transmission rates is 0.0000117.
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7.3.2. Comparison of Hexagonal and Random Sensor Deployments

Our optimal hexagonal deployment scheme and the random one are compared under retransmission
via simulation. The simulation parameters are the same as in Section 7.3.1. As L = 9, the number of
sensors in the hexagonal deployed WSN isN = 270. In the WSN under the random deployment scheme,
the only difference is that 270 sensors are randomly deployed in the target area.

In the comparison simulation, the WSN lifetime is defined as the time period between the starting
time and the time when the coverage falls below 85%. We do not consider 100% coverage since it is
calculated based on the pixel method, and there is some pixel error in the coverage rate calculation. The
simulation is repeated for 1000 times, and the results are presented in Table 5.

Table 5. Optimization results of uniform deployment.

Simulation Results Hexagonal Deployment Random Deployment

τ 822.48 h 804.72 h
S 0.903943 0.300116

From Table 5, one can see that the lifetime and the success transmission rate of hexagonal deployed
WSN are 1.022 and 3.012 times of that of random deployed WSN, respectively. Apparently, the lifetime
of the sensor deployment scheme proposed in this work is better than that of a random deployment and
gives a much higher success transmission rate.

7.3.3. Case with Redundancy

Since it is easy to run out of energy for a single sensor, it is common to deploy redundancy in each
grid. As the sleep/wake-up protocol PEAS is adopted in our model, only one sensor will be active per
grid. We compare the lifetime and success transmission rate considering the number of redundant units
as 1, 2, 3, 4, 5, respectively. The simulation results are shown in Figures 10 and 11.

Figure 10. Lifetime under different redundancy rate.
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As shown in Figure 9, the lifetimes of both deployment models increase as the redundancy increases.
The lifetime of hexagonal deployment is always longer than that of a random one, and the difference
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between them grows as more redundant units become available. The data success transmission rate
of hexagonal deployment is also higher than that of the random one. Figure 10 implies that when the
redundancy rate is higher than 2, the value of S does not change significantly. However, for the random
deployment, it increases significantly as the number jumps from 1 to 2 since the sensor density is too
low when the redundancy is 1.

Figure 11. Data successful transmission rate (S) under different redundancy.
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Therefore, we can conclude that redundancy is useful in improving the lifetime of WSN under the
constraint of a required success transmission rate. Moreover, the hexagonal deployment that we proposed
is much better than a random one under different redundancy rates.

8. Conclusions

In this paper, a homogeneous WSN deployment scheme based on the regular hexagonal topology
is analyzed. To maximize the WSN lifetime, both uniform and non-uniform deployment optimization
models are proposed with considerations of coverage, connectivity and success transmission rate. To
ensure the survival of the WSN for a given lifetime, the method of obtaining the minimal total number
of sensors needed is also presented. The energy consumption and the data transmission path of each
sensor are quantified under retransmission, which makes our work more realistic. Our case studies
verify that it is necessary to consider retransmission in the deployment of WSN; otherwise, the lifetime
will be overestimated. The optimal lifetime of the non-uniform sensor deployment is longer than that
of the uniform one, and, particularly in large target areas, the total number of sensors required is much
less. In addition, simulation results show that the optimal sensor deployment scheme obtained by the
optimization models always has a longer lifetime and a higher data success transmission rate than a
random scheme.

This paper focuses on homogeneous structured WSN with a circular target area and a base station in
the center. For other types of WSNs, such as heterogeneous structured WSN with other monitoring target
(e.g., a rectangular or irregular area and a base station in the middle or on the edge), unstructured random
WSN, heterogeneous WSN, etc., retransmission should be considered in the deployment-based lifetime
optimization as well. The method of integrating retransmission into energy consumption proposed herein



Sensors 2014, 14 23718

can still be applied, but the optimization model and the data transmission path should be modified to
adapt to the specific problem and new deployment scheme may be proposed. We will study these types
of WSNs in our future research.
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Appendix

A. Acronyms

ACK Acknowledgement
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
DATA Sensing Data
GPSR Greedy Perimeter Stateless Routing
PEAS Probing Environment and Adaptive Sleeping
RTS/CTS Request to Send/Clear to Send
WSN Wireless Sensor Network
WSNWR Wireless Sensor Network with Retransmission
WSNWoR Wireless Sensor Network without Retransmission

B. Symbols

α the path loss exponent
β1 the energy spent in the electronics circuitry for transmitting each bit data
β2 the coefficient affected by the transmit amplifier efficiency, antenna gains and other system parameters
β3 the energy spent in the electronics circuitry for receiving each bit data
β4 the energy spent for each bit message in the idle state
τ the optimal lifetime
τ∗ the lifetime requirement of the WSN
ωack the expected number of transmission attempts of an ACK packet
ωack,n the probability of transmitting an ACK packet n times
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ωdata the expected number of transmission attempts of a DATA packet
ωdata,n the probability of transmitting a DATA packet n times
a the number of packets sensed by each sensor in each data gathering cycle
A the retransmission rate of a DATA packet
B the retransmission rate of an ACK packet
C the speed of light
d the distance between the neighboring sensors
dc(i) the circumcircle radius of a sensor in layer i
E the total energy consumed by a sensor in a data gathering cycle
E0 the initial energy of a sensor
Ei,j the energy consumption at location (i, j) in a data gathering cycle
E′i,j the optimal energy consumed by the sensor at location (i, j) in a data gathering cycle
Eid the energy consumption in the idle state
Enon the energy consumption of a sensor without retransmission in a data gathering cycle
Er the energy consumption of reception
Ere the energy consumption of a sensor with retransmission in a data gathering cycle
Et the energy consumption of transmission
f the bandwidth
i the layer number
j the location number in a layer
l the length of the packet preamble
L the number of layers
lack the preamble length of the ACK packet
ldata the preamble length of the DATA packet
m the length of a single packet
mack the length of the ACK packet
mdata the length of the DATA packet
mr the length of the message received
mt the length of the message transmitted
n the transmission times
ni,j the number of sensors deployed at location (i, j)

N the optimal total number of sensors deployed in the target area
N∗ the maximum number of sensors allowed to be deployed in the target area
Nt(i, j) the number of packets transmitted at location (i, j)

Nt,non the numbers of packets transmitted without retransmission
Nr,non the numbers of packets received without retransmission
Nt,re,ack the numbers of ACK packets transmitted with retransmission
Nr,re,ack the numbers of ACK packets received with retransmission
Nt,re,data the numbers of DATA packets transmitted with retransmission
Nr,re,data the numbers of DATA packets received with retransmission
P the dealing rate of the message sensed by sensors
Pt the transmission power
Ra the radius of the circular target area
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Rs the sensing radius of sensors
Rt the transmission radius of sensors
RR(d) the retransmission rate
S the success transmission rate
S∗ the requirement of the success transmission rate
S(i, j) the success transmission rate at location (i, j)

Snon(i, j) the success transmission rate without retransmission at location (i, j)

Sr the receiver’s sensitivity
Sre(i, j) the success transmission rate with retransmission at location (i, j)

t the data gathering cycle
tid the time period of the idle state
tr the message reception time
tt the message transmission time
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