
Sensors 2014, 14, 23365-23387; doi:10.3390/s141223365

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Performance Analysis of the Microsoft Kinect Sensor for 2D
Simultaneous Localization and Mapping (SLAM) Techniques

Kamarulzaman Kamarudin 1,2,*, Syed Muhammad Mamduh 1,2,3, Ali Yeon Md Shakaff 1,2 and

Ammar Zakaria 1,2

1 Center of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis

(UniMAP), Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia;

E-Mails: smmamduh@ieee.org (S.M.M.); aliyeon@unimap.edu.my (A.Y.M.S.);

ammarzakaria@unimap.edu.my (A.Z.)
2 School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus,

02600 Arau, Perlis, Malaysia
3 School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus,

02600 Arau, Perlis, Malaysia

* Author to whom correspondence should be addressed; E-Mail: arul.unimap@gmail.com;

Tel.: +60-4-979-8897.

External Editor: Vittorio M.N. Passaro

Received: 7 August 2014; in revised form: 29 September 2014 / Accepted: 30 October 2014 /

Published: 5 December 2014

Abstract: This paper presents a performance analysis of two open-source, laser

scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e.,

Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor.

Furthermore, the paper proposes a new system integration approach whereby a Linux

virtual machine is used to run the open source SLAM algorithms. The experiments were

conducted in two different environments; a small room with no features and a typical

office corridor with desks and chairs. Using the data logged from real-time experiments,

each SLAM technique was simulated and tested with different parameter settings. The

results show that the system is able to achieve real time SLAM operation. The

system implementation offers a simple and reliable way to compare the performance of

Windows-based SLAM algorithm with the algorithms typically implemented in a Robot

Operating System (ROS). The results also indicate that certain modifications to the default

laser scanner-based parameters are able to improve the map accuracy. However, the

OPEN ACCESS

Sensors 2014, 14 23366

limited field of view and range of Kinect’s depth sensor often causes the map to be

inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct

replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

Keywords: Microsoft Kinect sensor; 2D SLAM; robotics; integrated system; sensor;

virtual machine; Robot Operating System

1. Introduction

The Simultaneous Localization and Mapping (SLAM) technique is a subject of interest in mobile

robotics studies. The main idea of this technique is to leave the robot at an unknown location and let it

move and build a consistent map of its surroundings. Although the problem seems straightforward, in

reality it is very complex due to the non-ideal behavior of sensors and actuators. The fact that both the

localization and mapping task needs input from each other to complete computation further

complicates the problem [1]. The solution to the SLAM problem allows deployment of robots in many

applications such as search and rescue operations, underwater surveillance and gas distribution mapping.

Numerous SLAM techniques have been developed by previous researchers utilizing different

devices, including sonar sensors [2,3], cameras [4–6] and laser scanners [7–11]. However, the methods

are often device-specific due to the different sensing modalities and capabilities of each device. The

introduction of the Microsoft Kinect in 2010 has allowed an extension of the available SLAM

methods. Most researchers take advantage of the RGB camera and the 3D depth sensor available on

the Kinect to perform 3D or RGB-Depth (RGB-D) mapping [12–17]. Although the results seem

promising, it requires an extensive amount of memory and processing power. Thus, 2D SLAM system

may be preferred in certain applications, while still leveraging the Kinect’s 3D depth sensor to detect

obstacles of variable shapes and sizes.

Several researchers have attempted to perform 2D mapping using the Kinect with laser scanner-based

SLAM algorithms [18–20]. However, to the authors’ knowledge, the results shown are often simplified

and did not consider different scenarios such as mapping in a featureless area or in the conditions

where objects of variable shapes and sizes exist. Also, the effect of modifying the SLAM parameters in

different environments has also not been studied previously. Such an analysis enables a more thorough

evaluation of the suitability of the Kinect as a replacement sensor for 2D laser scanners.

Hence, in this paper, we analyzed the performance of two laser scanner-based SLAM algorithms

(i.e., Gmapping and Hector SLAM) using a Microsoft Kinect as the only navigation sensor. The

techniques were selected since they are open-source, widely used and more importantly, they are based

on two different approaches: Gmapping is based on Rao-Blackwellized Particle Filter (RBPF) and uses

odometry for pose estimation, while the Hector SLAM is based on a Gauss-Newton approach and

relies on scan matching alone to estimate the pose. The method proposed in [21] was used to convert

the 3D depth data from Kinect into 2D laser scan-like obstacle locations. The performance of the

system in real-time was tested in two different environments: a small room with no features and a

typical office corridor with desks and chairs. Then, using the data logged from the experiments, the

Sensors 2014, 14 23367

SLAM process was simulated repeatedly with different parameter settings, while observing any effect

on the performance and accuracy of the final map.

Another contribution of this paper is the design of a system that utilized a Linux virtual machine in

Windows to execute the real-time 2D SLAM algorithms. The base station of the system was installed

with Windows 7 as the main operating system and Ubuntu in a virtual machine. A LabVIEW program

(in Windows) was developed to control the whole system execution and provide a user interface while

the Robot Operating System (ROS) was installed in the Linux virtual machine for computation of

SLAM using the open-source algorithms (i.e., Gmapping and Hector SLAM). The two-way

communication between these two programs is achieved via the TCP/IP protocol and ROSBridge tool.

2. Kinect vs. Laser Scanners

Kinect was launched by Microsoft on November 2010. It was initially designed as a vision-based

controller for the Microsoft Xbox 360 video game console. The device consists of several sensors

including a RGB sensor, a 3D depth sensor, multi-array microphones and an accelerometer [22,23].

The Kinect’s depth sensor (the sensor used in this research) produces depth images at 640 × 480 pixels

(VGA size) [22]. The sensor has a field of view of 57° horizontally and 43° vertically. The optimal

operating range of the sensor is said to be between 0.8 to 3.5 m, although several researchers claim that

it can be extended up to 0.4 to 6 m. The Kinect’s depth sensor is able to provide depth resolution of 1

cm and spatial x/y resolution of 3 mm at 2 m distance from the sensor. The maximal stable transfer

rate of the frame is up to 30 Hz, depending on the driver or software used [22,23].

Table 1 compares the specifications of Kinect’s depth sensor with respect to the general

specifications of 2D laser scanners. The comparison is provided since the SLAM algorithms used in

this paper (i.e., Gmapping and Hector SLAM) are based on laser scanners and the sensor had been

reported to work well for most robotics applications, particularly SLAM.

Referring to Table 1, the laser scanner is superior to the Kinect in terms of range as it can detect

obstacles up to 250 m (certain models). In addition, the laser scanner has significantly wider horizontal

angle (i.e., field of view) of up to 360 degrees. However, the Kinect has advantages in terms of the

extra dimensionality it provides (i.e., three dimensions) and its significantly lower cost. Although the

laser scanner is generally better than the Kinect in terms of range and angle, the Kinect could be more

effective as a navigation sensor since it is able to provide 3D views in a relatively fast sampling period.

This aspect is very important in order to perform SLAM in a real environment where there exist

objects of variable shape and size. The robot will also able to avoid certain obstacles that are typically

unseen by 2D sensors. Further explanations can be found in Section 3.2 and [21].

Table 1. Technical specifications of Kinect’s depth camera as compared to a laser scanner

which is typically used in robotics applications, particularly SLAM.

Components Kinect 2D Laser Scanner

Operating Range (m) 0.4–0.8 to 3.5–6.0 ~0 to 4–250
Horizontal angle (°) 57 180–360

Vertical angle (°) 43 -
No. of Measurement Points 640 × 480 = 307,200 Up to 6000

Approx. costs (USD) 150 1000–15,000

Sensors 2014, 14 23368

3. The Methods and Algorithms

3.1. Odometry

In this project, we were only interested in 2D localization (i.e., x, y and 	ߠ) since the robot is

employed on flat surface. The odometry technique is used to estimate the robot’s pose with respect to

the starting pose. However, this method is sensitive to errors since it estimates the position by

integrating the velocity measurements over time. Rapid and accurate data collection, equipment

calibration and efficient data processing must be done for odometry to be used effectively.

The robot used in this project uses a differential drive mechanism. It consists of two DC motors that

are connected to a gear and two wheels on each side. Each motor can be independently rotated either

clockwise or anticlockwise. By varying the speed and direction of the motors, the robot can move

forward, backwards, rotate or move along a curve. An encoder is mounted on each motor to estimate

the rotation velocity. Using this value, the velocity of the left, 	 ௟ܸ and right, ௥ܸ wheel along the ground

can be estimated as:

௟ܸ = (1) ܩ/ݎ௟ߙ

௥ܸ = (2) ܩ/ݎ௥ߙ

where ߙ௟ and ߙ௥ are rotational velocity of the right and left motor respectively, r is the radius of wheel

and G is the gear ratio. There are three different styles of movement that the robot can exhibit using

the differential mechanism; linear motion (Equation (3)) rotation about its position (Equation (4)) and

moving along a curve (Equations (5) and (6)). Note that the calculation of new robot pose in each case

below is relative to the starting pose after the robot moves for a period of	ݐߜ in each time step: [ݔᇱ, ,ᇱݕ [′ߠ = ݔ] + ݐߜ(ߠ)ݏ݋ܸܿ , ݕ + ݐߜ(ߠ)݊݅ݏܸ , ,ᇱݔ](3) [ߠ ,ᇱݕ [′ߠ = [ݔ , ݕ , ߠ + ݈/ݐߜ2ܸ ,ᇱݔ](4) [,ᇱݕ ,ݔ]	and	[′ߠ ,ݕ represent previous and current robot pose respectively, ܸ takes the value of 		[ߠ

the robot’s right wheel (௥ܸ) and ݈ indicates the separation between the left and right wheels. In a special
case where the robot moves along a curve, the center of the curvature (denoted as 	ൣܥܥܫ௫, ௬൧) needsܥܥܫ

to be calculated first as in Equation (5): ൣܥܥܫ௫, ௬൧ܥܥܫ = ݔ] − ,(ߠ)݊݅ݏܴ ݕ + (5) [(ߠ)ݏ݋ܴܿ

Then, the subsequent pose can be determined using: ൥	ߠ′ݕ′ݔ′	൩ = ൥cos(߱ݐߜ) −sin(߱ݐߜ) 0sin(߱ݐߜ) cos(߱ݐߜ) 00 0 1൩ ൥ݔ − ݕ௫ܥܥܫ − ߠ௬ܥܥܫ ൩ + ൥	ܥܥܫ௫ܥܥܫ௬߱ݐߜ 	൩ (6)

where R denotes the radius of curvature and ߱ represent the angular velocity about the ܥܥܫ .

The controller on the robot has been programmed to perform the odometry calculation before

the information is transmitted to the base station for SLAM computation (i.e., Gmapping).

Sensors 2014, 14 23369

3.2. Kinect’s Depth Data to 2D Scan

The use of 1D or 2D sensors such as sonar and 2D laser scanners for navigation and mapping is

believed to not be efficient due to the possibility of missing or misinterpreting an obstacle’s location.

Figure 1 shows a scenario representing these problems. The sensor fixed at a certain height on the

robot is unable to see the obstacle that is located below the visible range. Another possibility is that the

sensor may mistakenly interpret an object’s location if it is non-uniform in shape (e.g., L shape).

Figure 1. An example showing a sonar sensor placed at certain height (indicated by red

circle) unable to detect and measure the obstacle location.

A 3D vision sensor is believed to be able to solve this limitation since the object’s size and shape

can be obtained [21]. The Kinect was chosen in this project since it has 3D depth sensor, relatively

fast sampling rate and is available at a low price. The Kinect’s 3D depth data is converted into 2D laser

scan-like data based on the method proposed in our previous work [21]. Firstly, the 11-bit raw data

(which is an array of 640 × 480 elements) was retrieved from the Kinect and converted into real depth.

Then, the X and Y coordinates that correspond to each depth pixel (i.e., Z coordinate) were

calculated using:

௜ܺ,௝ = ቀ݆ − 2ቁݓ ൈ ݓ320 ൈܯ ൈ ܼ௜,௝ (7)

௜ܻ	,௝ = ൬݅ − 2݄൰ ൈ 240݄ ൈ ܯ ൈ ܼ௜,௝ (8)

where i and j are the pixel’s row and column number in the Z-array respectively, w and h are the width

and the height of the Z-array and M is the NUI Camera Depth Image to Skeleton Multiplier Constant.

In order to remove the floor that is visible in the 3D data, the pixels located below the height of

Kinect were replaced with an infinity value indicating that the data is invalid. The process is repeated

for the pixels above the height of the robot since they are not considered as obstacles; thus, the

resulting X, Y and Z array only contains the 3D obstacles with which the robot can collide. To convert

the data into 2D obstacles (i.e., 2D scan), the minimum element in each column of the Z-array was

selected to represent the entire column such that: ܼ′௝ = ݉݅݊ (ܼ଴,௝, ܼଵ,௝ …ܼସ଻ଽ,௝) (9)

where j is the respective column number. In other word, the Z′ array (of 640 × 1 elements) contains the

Z-coordinates of the nearest obstacle at each horizontal scan angle. Using geometry, the Z-coordinates

Sensors 2014, 14 23370

and the corresponding X-coordinates can be converted into polar coordinate as typically obtained

using laser scanner. In contrast to the proposed method, we reduce the Kinect’s depth data resolution

to QVGA (320 × 240) to minimize processing power and time. All the computations related to image

processing (including the conversion into laser scan-like data) were carried out on the netbook onboard

the robot. This setup enabled us to minimize the amount of data transferred to the base station;

thus retaining a high refresh rate of 60 Hz.

3.3. 2D SLAM Techniques

In this paper, two SLAM techniques were used: Gmapping [9,24] and Hector SLAM [7]. Both

implementations are available as open source packages in ROS [25,26]. The following subsections

describe the underlying principle behind each technique.

3.3.1. Gmapping

The Gmapping algorithm was developed based on the Rao-Blackwellized Particle Filter (RBPF)

introduced by Murphy and Doucet et al. [27,28]. The RBPF was proposed to solve grid-based SLAM

problems and it requires odometry information and the sensor’s observations (i.e., scans). The main

idea of the RBPF is to estimate the trajectory of the robot, ݔଵ:௧ = ,ଵݔ …	, ௧ݔ and the map, ݉ given

the observations, ݖଵ:௧ = 	 ,ଵݖ …	, ଵ:௧ିଵݑ ,௧ and the odometry dataݖ = ,ଵݑ	 …	, ௧ିଵ. This joint posteriorݑ

is denoted as ݔ)݌ଵ:௧,݉	|	ݖଵ:௧, (ଵ:௧ିଵݑ and can be factorized into Equation (10) through

Rao-Blackwellization technique: ݔ)݌ଵ:௧,݉	|	ݖଵ:௧, (ଵ:௧ିଵݑ = ݉)݌ | ,ଵ:௧ݔ .(ଵ:௧ݖ |ଵ:௧ݔ)݌ ,ଵ:௧ݖ ଵ:௧ିଵ) (10)ݑ

The factorization simplifies the computations such that it allows the process to be carried out in two

steps. First, the trajectory of the robot can be estimated using the odometry data and the observations.

Then, the map (i.e., ݉)݌	|	ݔଵ:௧, .ଵ:௧ are knownݖ ଵ:௧ andݔ ଵ:௧)) can be computed sinceݖ

The RBPF uses a particle filter to estimate the posterior ݔ)݌ଵ:௧|	ݖଵ:௧, ଵ:௧ିଵ), where each particleݑ

represents a potential trajectory. An individual map is also computed for each of the particles, since

the map is highly dependent on the robot’s trajectory. Finally, the particle with the highest probability

will be chosen and the associated map will be output by the algorithm.

The Gmapping technique was developed by Grisetti et al. [9,24] to improve the performance of

the RBPF-based SLAM. The technique consists of an approach to compute an accurate proposal

distribution by considering not only the movement of the robot, but also the most recent observation.

In other words, the approximation of the posterior ݔ)݌ଵ:௧|	ݖଵ:௧, (ଵ:௧ିଵݑ in RBPF was modified to ݔ)݌ଵ:௧|	݉௧ିଵ(௜) , ௧ିଵ(௜)ݔ , ,ଵ:௧ݖ (ଵ:௧ିଵݑ , taking into account the previous odometry data and the newest

observation. The scan-matcher “vasco” [29,30] is used as to match up the observation against the map

constructed so far, thus, providing information on the most likely pose.

The Gmapping method also features an adaptive technique that selectively carries out resampling

operations for the particle. A careful resampling step is crucial to avoid the filter from removing good

samples (i.e., particles that contain trajectory and map data). The approach proposed by Doucet et al.,

in [31] was used in Gmapping since it is able to determine the necessity of a resampling step. The
approach takes into account the measure of the dispersion of the importance weights,	 ௘ܰ௙௙	 which

Sensors 2014, 14 23371

indicates how well the particle set approximate the posterior trajectory. The formulation can be

denoted as:

௘ܰ௙௙ = 1∑ (෥߱(௜))ଶே௜ୀଵ (11)

where ෥߱(௜)	 is the normalized weight of particle ݅ . The approach suggest that a resampling step
should be carried out every time the ௘ܰ௙௙	 drops below half the number of particles, ܰ/2. Overall,

the implementation was claimed to allow an accurate map learning while reducing the risk of

particle depletion.

3.3.2. Hector SLAM

Hector SLAM is an open source implementation of the 2D SLAM technique proposed in [7].

The technique is based on using a laser scan to build a grid map of the surroundings. In comparison to

the majority of grid-map SLAM techniques [8,9,24,32], Hector SLAM does not require wheel

odometry information. Thus, the 2D robot pose is estimated based on the scan matching process alone.

The high update rate and accuracy of the modern LIDAR has been leveraged for the scan matching

process thus allowing fast and accurate pose estimates.

The scan matching algorithm used in Hector SLAM is based on the Gauss-Newton approach

proposed in [33]. The algorithm seeks to find the optimum alignment of laser scan’s endpoints with the
constructed map by finding the rigid transformation ߦ = 	 ,௫݌) ,௬݌ ߰)் that minimizes:

ξ∗ = argminஞ ෍[1 ൫S௜(ξ)൯]ଶ௡ܯ−
௜ୀଵ (12)

where the function ܯ(S௜(ξ)) returns the map value at S௜(ξ) which is the world coordinates of the scan

endpoint. Given a starting estimate of ξ, the step transformation ∆ξ can be estimated by optimizing

the error measure such that: ෍[1 ൫S௜(ξܯ− + ∆ξ)൯]ଶ → 0௡
௜ୀଵ (13)

Applying first order Taylor expansion to ܯ൫ ௜ܵ(ξ+	∆ξ)൯ and setting the partial derivative with

respect to ∆ߦ to zero yields the Gauss-Newton equation for the minimization problem: ∆ξ = Hିଵ෍ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉் [1 − ൫S௜(ξ)൯]௡ܯ
௜ୀଵ (14)

where: H = ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉் ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉ (15)

Although the Hector SLAM does not provide an explicit loop closure approach, the researchers

claimed that the system managed to accurately close the loops in many real world scenarios, requires

low computation and avoids major changes to the map during runtime. They have also successfully

employed the algorithm in Unmanned Ground Robots, Unmanned Surface Vehicles, and Handheld

Mapping Devices and logged data from quad rotor UAVs.

Sensors 2014, 14 23372

4. System Overview

Figure 2 illustrates the overall architecture of the system. The main components of the system are

Robot, Netbook and Base Station. A wireless router is used as a medium of data transfer between these

three components. The Robot and Netbook are connected to the router using Ethernet cable while

the Base Station is connected through WiFi to allow remote monitoring and control. A smart phone

equipped with an Android app is utilized for controlling the robot’s movement manually

and wirelessly.

Figure 2. Architecture of the integrated system.

4.1. The Robot

Figure 3 shows front and rear view of the integrated robot. A National Instruments robot

(i.e., NI Robotics Starter Kit 1) was used as the platform of the system. It consists of a single board

controller (i.e., sbRIO-9631) featuring a real-time processor, a user-reconfigurable field-programmable

gate array (FPGA) and I/O Terminals. The controller controls the robot’s motor and processes data

from the encoders and other sensors.

Sensors 2014, 14 23373

Figure 3. (a) Front and (b) rear view of the integrated robot.

(a) (b)

4.2. The Netbook

The netbook is used to interface the Kinect and perform image processing (see Section 3.2).

It consists of a 1.8 GHz Intel Atom Processor and 1 GB Random Access Memory (RAM). The

netbook was equipped with the Windows 7 operating system, LabVIEW software and the libfreenect

library for interfacing the Kinect.

4.3. The Base Station

The base station (i.e., desktop computer) utilizes the Windows 7 operating system with Ubuntu

12.04 installed in a Virtual Machine. The system was designed as such in order to allow simultaneous

operation of LabVIEW in Windows and the Robot Operating System (ROS) in a Linux Virtual

Machine. The LabVIEW program provides a graphical user interface, controls the whole program

execution and provides online monitoring of sensors’ data and computed maps. On the other hand, the

ROS enables the computation of open-source SLAM algorithms and other useful tools such as

ROSbag for recording data. The host (i.e., Windows 7) communicates with the ROS through

ROSBridge and the TCP/IP protocol.

4.4. The Microsoft Kinect

The Kinect is mounted on top of the robot to provide a wider field of view in the vertical direction.

The center of the depth sensor was leveled at 34 cm above the floor. Two pieces of rod were used to

fix the Kinect on the robot. The mounting was also carefully designed to align the Kinect in parallel to

the robot’s body and floor.

4.5. The Synchronisation

One significant aspect in developing an integrated system is the synchronisation between multiple

controllers. The task becomes more crucial in time-critical applications such as SLAM. False results

and unresponsiveness of a system are among the problems that may arise due to synchronisation

Sensors 2014, 14 23374

errors. Figure 4 illustrates the technique employed in this project to achieve synchronization between

the robot, netbook and the base station. The TCP/IP function provided by LabVIEW was used as the

basis of the implementation.

Figure 4. Timeline of synchronization between robot, netbook and base station.

The red colored texts indicate the time-critical events which are synchronized between

multiple devices.

Initially the Kinect data is acquired by the netbook and processed to obtain a 2D obstacle location

(see Section 3.2). Once the defined cycle period is over, the netbook will attempt to transmit this data

to the robot and base station which are waiting (i.e., TCP listen) for the transmission request.

This information is required by the robot for obstacle avoidance (in auto mode) and also to perform the

SLAM calculations in the base station

As soon as the data is transferred, the robot and the netbook will start to acquire new information

from the encoder and the Kinect, respectively. Then, the odometry data is transferred from the robot

to the base station using the same approach. The remaining period of the cycle is used by the base

station to perform SLAM computation using the previous cycle’s data and to process any user

requests. The processes are repeated again for the next cycle until they are stopped by the user.

Sensors 2014, 14 23375

5. Experimental Environments

The experiments discussed in this paper were conducted in two different types of environment in

the CEASTech building of the University Malaysia Perlis. The maps of these environments are shown

in Figure 5.

(a) Laboratory Corridor (Figure 5a): the corridor has a length of approximately 13.5 m and consists

of features such as desks, chairs and stairs. The floor was flat and coated with blue colored

epoxy. No high reflection surfaces were observed during the experiment, particularly in the

robot’s field of view. The lowest step of the stairs has a height of 18 cm which was below the

mounting position of the Kinect.

(b) Featureless room (Figure 5b): the room has no features and has a z-shape. The floor was

covered with carpet and no reflective surfaces were observed during the experiment.

Figure 5. The map of the locations of SLAM experiments in CEASTech building,

Unimap. (a) is a corridor with features (i.e., desks, chairs and stairs) while (b) is the small

office room with no features. Dimensions shown are in centimeters.

(a) (b)

6. Real-Time SLAM

A set of two experiments have been done on each of the environments (i.e., laboratory corridor

and featureless room). In each of the experiments, the robot was placed at a different position and

orientation. The robot was manually controlled to move randomly without a specific style such as

zig-zag or wall following. This setup was preferred as to replicate an automatic SLAM operation in

an unknown structured environment where a robot is typically not able to follow a specific style of

movement due to the presence of obstacles and a non-uniform building structure.

Figures 6 and 7 show the final maps obtained during the real-time SLAM operation for Corridor

(Test 1) and Room (Test 2), respectively. Only the Gmapping algorithm was run for the real-time

SLAM experiment. The parameters used for the algorithm were modified from the default values

determined based on trial and error in previous tests. All the data during the four set of experiments

were recorded using the ROSbag tool. This is to allow offline SLAM analysis on both the Gmapping

and Hector SLAM. Table 2 shows the duration of each experiment.

Sensors 2014, 14 23376

Figure 6. Front panel showing the map of the corridor in Test 1. The red line in the raw

map shows the trajectory of the robot based on the odometry data, while the red dot and

line in Gmapping map indicate robot pose and obstacle location from the Kinect.

Figure 7. Front panel showing the map of the room in Test 2.

Referring to Figures 6 and 7, the left hand side map (i.e., raw map) is the map obtained without

any SLAM algorithm; where the odometry and the laser-like Kinect’s scan were plotted straight away

into the map. The right hand side map is the map obtained from the Gmapping algorithm. The white

and black pixels represent unoccupied and occupied areas, respectively, whereas the purple pixels are

the unexplored locations.

Sensors 2014, 14 23377

Table 2. Duration of each experiment.

Experiment Duration (s)

Corridor
Test 1 281
Test 2 247

Room
Test 1 126
Test 2 251

It can be seen that the Gmapping successfully mapped the corridor with reasonable accuracy. Even

though the raw map indicates some misalignments due to odometry errors, the Gmapping managed to

correct it. The lowest step of the stairs which was below the Kinect mounting level was also detected

and mapped during the test run. The area where the desks and chairs were located was seen to have

non-uniform shape since the Kinect only mapped the bottom part of the features. On the other hand,

the map obtained using Gmapping for the room (see Figure 7) shows serious misalignment, even

though the raw map obtained was quite accurate. This behavior was due to the fact that the Kinect

has a narrow horizontal FOV and the room was featureless. The SLAM algorithm failed to scan match

correctly and as a result mistakenly determined the pose of the robot during runtime. Detailed

explanations and analysis can be found in the Offline SLAM and Analysis Section. The results also

proved that the designed system was able to achieve real-time SLAM operation even though it consists

of multiple controllers, utilizes wireless connection and more importantly, made use of a virtual

machine for SLAM computation.

7. Offline SLAM and Analysis

In this section, we analyze the performance of the two SLAM techniques (i.e., Gmapping and

Hector SLAM) using the data recorded in the .bag file from the real-time experiments. The ROSbag

Play tool was used in order to run the recorded data, simulating the real-time experiment. The

parameters of Gmapping and the Hector SLAM were modified in order to see any changes in the

performance of SLAM with the Kinect as the only vision sensor. From this point onwards, the four

experiments (i.e., Corridor (Test 1), Corridor (Test 2), Room (Test 1) and Room (Test 2)) will be

referred to as Corridor_T1, Corridor_T2, Room_T1 and Room_T2, respectively.

7.1. Default Parameters

In the first part of the experiments, both the Gmapping and Hector SLAM were executed with

default parameters [25,26]. However, since both techniques were developed based on the laser scanner,

the parameters specifying the sensor range need to be modified. The parameters were set to 0.6 m to

6 m reflecting the useful range of the Kinect. In addition, the map resolution for both algorithms was

made consistent at 0.05 m. Figures 8 and 9 show the results of the experiments.

The maps obtained using the Hector SLAM were inaccurate because the algorithm failed to

compute accurate pose estimates. The limited horizontal field of view and range of Kinect affected the

performance of the Hector SLAM which only relies on the scans (i.e., scan matching) to estimate the

robot pose. The problem gets worse if the area is featureless or has limited features. In addition, it can

also be seen that the Room_T2 map diverged significantly from the real map. This was due to the fact

Sensors 2014, 14 23378

that the Hector SLAM has no loop closing ability and the mapping errors due to the incorrect pose

estimates were accumulated over time. This effect is less evident in Room_T1 since the duration of

experiment (see Table 2) was half the duration of the one for Room_T2.

Figure 8. Comparison of maps obtained using Gmapping and Hector SLAM using

default parameters.

Figure 9. Comparison of Gmapping and Hector SLAM maps obtained using default parameters.

The maps obtained using Gmapping are generally more accurate than the Hector SLAM ones when

using the default parameters. This is because the Gmapping takes into account the odometry data and

Corridor_T1

Corridor_T2

Gmapping

Gmapping

Hector SLAM

Hector SLAM

Room_T1

Room_T2

Gmapping Gmapping Hector SLAM Hector SLAM

Sensors 2014, 14 23379

that information helps in determining a better pose estimate. However, the same scan matching issue

also affected the algorithm’s performance. This can be seen in some parts of the corridor and room as

indicated by red circle and red arrow, respectively. The areas were mapped as smaller and shorter as

compared to the actual dimensions. This occurrence was due to the fact that the areas did not contain

any features but only long walls. The shape of the obstacles acquired at each corresponding

consecutive scan looks almost the same, causing incorrect scan matching and pose estimation.

7.2. Variable Parameters

In this section, we analyze the effect of varying some of the parameters that are believed to affect

the SLAM’s performance. In each of the specific tests, only the corresponding parameters were

changed, while keeping the other parameters consistent with the default values. Tests have been done

to all the datasets (i.e., Corridor_T1, Corridor_T2, Room_T1 and Room_T2). However, only the results

for Corridor_T1 and Room_T1 are shown in this paper since the main concern was to see the trend of

how the map changes.

Figure 10. Corridor maps obtained using Gmapping technique with different number of particles.

7.2.1. Gmapping: Number of Particles

The particles parameter corresponds to the maximum number of possible trajectories and maps

that are kept during the SLAM operation. The trajectory and map with highest probability will be

selected and output by the algorithm, so a higher number of particles would generally mean greater

possibilities that the output map can converge. The default value of particles is 30. The Gmapping

P = 10 P = 20 P = 30

P = 100

P = 200 P = 300

P = 50 P = 40

Sensors 2014, 14 23380

algorithm has been run with small number of particles (i.e., 10), up to a large number, 300. Figures 10

and 11 illustrate the results obtained during the experiments.

Figure 11. Room maps obtained using Gmapping technique with different number of particles.

Referring to both the corridor and room maps, the accuracy seems to be better at lower number

of particles, particularly when it is close to the default value, p = 30. The maps obtained at high

number of particles (i.e., more than 100) diverge significantly from the real measurement since there

are too many possibilities that the map can converge to. Thus, any odometry or scan matching error

during the SLAM process could lead to serious map inaccuracy.

We also note that the misalignment seen on the corridor maps is originated from the featureless area

marked by red circle shown in Figure 8 (Section 7.1). This phenomenon suggests that the algorithm

fails to scan match and estimate pose correctly in featureless areas, even the number of particles is set

to a higher number. In addition, the map updating period was also observed to be relatively longer for

a higher number of particles because the base station has to update each of the particle maps during

the process.

7.2.2. Gmapping: Linear and Angular Update

The linearUpdate and angularUpdate are the parameters that correspond to the required translation

and rotation of robot before a scan is processed. The default values are 1.0 m for linear update and

0.5 rad for angular update. Since the range and field of view of the Kinect are limited, we sought to test

the Gmapping SLAM with lower linear and angular update values. This will allow a higher rate of

scan matching with respect to the change in linear and angular movement of the robot; and perhaps

could lower the risk of incorrect pose estimation.

Figures 12 and 13 display the results of varying the linear and angular update values for the

Corridor_T1 and Room_T1 datasets. As can be seen from the corridor maps, no trend could be inferred

for the different linear and angular update values. However, for Room maps, it was found that the

higher linear update values improved the convergence to the real map. These results contradict the

P = 10 P = 20 P = 30 P = 40

P = 50 P = 100 P = 200 P = 300

Sensors 2014, 14 23381

initial hypothesis of the experiment (i.e., the lower the update values, the more accurate the built map)

and suggest that it is difficult to predict the correlation between Gmapping’s update parameters and

the map quality.

Figure 12. Corridor maps obtained using Gmapping technique with different combinations

of Linear and Angular Update values.

Figure 13. Room maps obtained using Gmapping technique with different combinations of

Linear and Angular Update values.

0.1

0.2

0.4

0.8

0.2 0.4 0.8
Angular Update (rad)

L
in

ea
r

U
p

d
at

e
(m

)

0.1

0.2 0.4 0.8

0.8

0.4

0.2

0.1

L
in

ea
r

U
p

d
at

e
(m

)

Angular Update (rad)

0.1

Sensors 2014, 14 23382

7.2.3. Hector SLAM: Map Update Thresholds

The map_update_distance_threshold and map_update_angle_thresh parameters indicate the required

distance or angle that the platform has to travel before a map update process is executed. The default

distance and angle are 0.4 m and 0.9 rad, respectively. Like the Linear and Angular Update tests for

Gmapping (Section 7.2.2), the Hector SLAM was also run with lower update threshold value. This

setting may allow the algorithm to provide a map update at a faster rate and thus able to perform better

scan matching and pose estimation. Figures 14 and 15 show the final maps when varying these

parameters simultaneously.

Figure 14. Corridor maps obtained using Hector SLAM technique with different

combinations of Distance and Angle Threshold values.

In both Corridor and Room maps, the effect of the angle threshold parameter was seen to be

minimal. Only slight differences could be observed when the angular parameter is changed while

keeping the distance threshold constant. On the other hand, the maps for both corridor and room are

seen to be more accurate at lower distance threshold values (i.e., 0.1 m and 0.2 m). We also note that

the featureless area of the corridor (as indicated in the Default Parameters Section) was mapped

accurately using these settings and the maps quality are seen to outperform the ones obtained using the

Gmapping algorithm.

0.8

0.4

0.2

0.1

0.2 0.4 0.8

D
is

ta
n

ce
 T

h
re

sh
ol

d
 (

m
)

Angle Threshold (rad)

0.1

Sensors 2014, 14 23383

Figure 15. Room maps obtained using Hector SLAM technique with different

combinations of Distance and Angle Threshold values.

8. Discussion and Conclusions

It was found that the integrated system has been able to achieve real-time SLAM operation

even though the Gmapping was run in parallel on a virtual machine. This proves that it is possible

to integrate open-source algorithms (in ROS) into another operating system (such as Windows) for

real-time applications. In addition, the implementation provides an easy and reliable way to compare

the performance of any Windows-based algorithms with the open-sourced algorithms that are typically

implemented in Linux.

The results of the offline experiments suggest that the Gmapping, although having odometry as

extra information, often failed to predict correct pose estimates, especially in featureless areas.

This phenomenon was due to the fact the Kinect has a relatively limited field of view (as compared to

a laser scanner) and is thus unable to provide enough information for reliable scan matching.

In addition, it is hard to predict the final map since the Gmapping is based on a particle filter

(i.e., probability method) and slight errors in pose estimation could affect the SLAM processes and

results significantly.

The modification of certain Gmapping parameters was found to vary the map accuracy. The setting

of a lower particle number has been observed to improve the results, especially when the value is close

to the default number (i.e., 30). This occurrence is due to the fact that there are so many possibilities

that the map can converge to when using high number (i.e., more than 100) and any error in

determining the best particle could finally yield a seriously inaccurate map. On the other hand, a lower

number of particles is not desirable since it increases the risk of eliminating good particles (i.e., good

maps and trajectories). Furthermore, it was found that a higher linearUpdate value produces more

0.2 0.4 0.8

0.8

0.4

0.2

0.1

D
is

ta
n

ce
 T

h
re

sh
ol

d
 (

m
)

Angle Threshold (rad)
0.1

Sensors 2014, 14 23384

accurate results in featureless areas, whereas, no trend could be inferred as the angularUpdate

parameter was varied.

Nevertheless, the determination of optimum set of parameters for the Kinect with the Gmapping

technique is a nontrivial process since there are so many parameters available (i.e., more than 30) [25]

and it is difficult to predict the correlation between them. Also, the same set of parameters that works

in a certain environment, may not work in another type of environment.

The Hector SLAM has been shown to produce similar results where the maps lack accuracy,

especially in featureless areas. Again, this is believed to be caused by the limited field of view and

range of the Kinect sensor. However, the modifications to the map update threshold parameters to

lower values has been seen to significantly improve the map convergence. Interestingly, the corridor

maps produced using a map_update_distance_thereshold of 0.2 m are relatively accurate, even though

the odometry information was not used and the technique only relies on scan registration to estimate

the robot pose. Also, the update rate of the map was seen to be faster than with Gmapping since the

Hector SLAM is not based on a particle filter and only maintains a single global map. As a

consequence, the technique has no loop closing ability.

In conclusion, the Kinect is not a direct replacement for the laser scanner in 2D SLAM applications,

mainly due to its relatively limited field of view and range (refer to Section 2 for a specification

comparison). Further enhancements include modifications of the SLAM algorithms, application of an

adaptive movement strategy or using multiple Kinect sensors to increase the field of view. Another

suggestion is to leverage the 3D data from the Kinect’s depth sensor to perform scan matching before

mapping the obstacles in a 2D map. This implementation may improve the scan matching accuracy

and thus provide reliable pose estimates. Nevertheless, the 3D depth data of Kinect has advantages

over the 2D laser scanner in terms of detecting and avoiding objects of variable shapes and size. Thus,

given that the scan matching and pose estimation issues are solved, the performance of Kinect-based

2D SLAM could be more reliable in a real-world scenario where objects of non-uniform shape exist.

Acknowledgments

The project’s equipment and devices were provided by University Malaysia Perlis (UniMAP).

Kamarulzaman appreciates the financial sponsorship under the Academic Staff Training Scheme

provided by UniMAP and Ministry of Higher Education, Malaysia.

Author Contributions

The presented work is the product of cooperative effort by the whole team members of Mobile

Olfaction group in CEASTech, UniMAP. In particular, Kamarulzaman Kamarudin performed the

experiments, analyzed the data and drafted the manuscript. Syed Muhammad Mamduh, Ali Yeon Md

Shakaff and Ammar Zakaria contributed to the ideas, developments of certain parts of the project and

did critical revisions to the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Sensors 2014, 14 23385

References

1. Hiebert-Treuer, B. An Introduction to Robot SLAM (Simultaneous Localization And Mapping).

Bachelor’s Theses, Middlebury College, Middlebury, VT, USA, 2007.

2. JinWoo, C.; Sunghwan, A.; Wan Kyun, C. Robust sonar feature detection for the SLAM of

mobile robot. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2005), Edmonton, Canada, 2–6 August 2005; pp. 3415–3420.

3. Mallios, A.; Ridao, P.; Ribas, D.; Maurelli, F.; Petillot, Y. EKF-SLAM for AUV navigation under

probabilistic sonar scan-matching. In Proceedings of the 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, 18–22 October 2010;

pp. 4404–4411.

4. Mei, C.; Sibley, G.; Cummins, M.; Newman, P.; Reid, I. RSLAM: A System for Large-Scale

Mapping in Constant-Time Using Stereo. Int. J. Comput. Vis. 2011, 94, 198–214.

5. Marks, T.K.; Howard, A.; Bajracharya, M.; Cottrell, G.W.; Matthies, L. Gamma-SLAM: Using

stereo vision and variance grid maps for SLAM in unstructured environments. In Proceedings of

the 2008 IEEE International Conference on Robotics and Automation (ICRA 2008), Pasadena,

CA, USA, 19–23 May 2008; pp. 3717–3724.

6. McDonald, J.; Kaess, M.; Cadena, C.; Neira, J.; Leonard, J.J. Real-time 6-DOF multi-session

visual SLAM over large-scale environments. Robot. Auton. Syst. 2013, 61, 1144–1158.

7. Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system

with full 3D motion estimation. In Proceedings of the 2011 IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR 2011), Kyoto, Japan, 1–5 November 2011;

pp. 155–160.

8. Eliazar, A.I.; Parr, R. DP-SLAM 2.0. In Proceedings of the 2004 IEEE International Conference

on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, 26 April–1 May 2004;

Volume1312, pp. 1314–1320.

9. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized

particle filters. IEEE Trans. Robot. 2007, 23, 34–46.

10. Grisetti, G.; Tipaldi, G.D.; Stachniss, C.; Burgard, W.; Nardi, D. Fast and accurate SLAM with

Rao–Blackwellized particle filters. Robot. Auton. Syst. 2007, 55, 30–38.

11. Pinto, M.; Paulo Moreira, A.; Matos, A.; Sobreira, H.; Santos, F. Fast 3D Map Matching

Localisation Algorithm. J. Autom. Control Eng. 2013, 1, 110–114.

12. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.J.; Davison, A.J. SLAM++:

Simultaneous Localisation and Mapping at the Level of Objects. In Proceedings of the 2013 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR 2013), Portland, OR, USA,

23–28 June 2013; pp. 1352–1359.

13. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.;

Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and

tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and

Augmented Reality (ISMAR 2011), Basel, Switzerland, 26–29 October 2011; pp. 127–136.

Sensors 2014, 14 23386

14. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the

RGB-D SLAM system. In Proceedings of the 2012 IEEE International Conference on Robotics

and Automation (ICRA 2012), St. Paul, MN, USA, 14–18 May 2012; pp. 1691–1696.

15. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation

of RGB-D SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, 7–12 October 2012;

pp. 573–580.

16. Whelan, T.; Kaess, M.; Fallon, M.; Johannsson, H.; Leonard, J.; McDonald, J. Kintinuous:

Spatially Extended KinectFusion. In RSS Workshop on RGB-D: Advanced Reasoning with Depth

Cameras, Sydney, Australia, 9–10 July 2012.

17. Hornung, A.; Wurm, K.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient

probabilistic 3D mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206.

18. Mirowski, P.; Palaniappan, R.; Tin Kam, H. Depth camera SLAM on a low-cost WiFi mapping

robot. In Proceedings of the 2012 IEEE International Conference on Technologies for Practical

Robot Applications (TePRA 2012), Woburn, MA, USA, 23–24 April 2012; pp. 1–6.

19. Oliver, A.; Kang, S.; Wunsche, B.C.; MacDonald, B. Using the Kinect as a navigation sensor for

mobile robotics. In Proceedings of the 27th Conference on Image and Vision Computing New

Zealand, Dunedin, New Zealand, 26–28 November 2012; pp. 509–514.

20. Zug, S.; Penzlin, F.; Dietrich, A.; Tran Tuan, N.; Albert, S. Are laser scanners replaceable by

Kinect sensors in robotic applications? In Proceedings of the 2012 IEEE International Symposium

on Robotic and Sensors Environments (ROSE 2012), Magdeburg, Germany, 16–18 November

2012; pp. 144–149.

21. Kamarudin, K.; Mamduh, S.M.; Shakaff, A.Y.M.; Saad, S.M.; Zakaria, A.; Abdullah, A.H.;

Kamarudin, L.M. Method to Convert Kinect’s 3D Depth Data to a 2D Map for Indoor SLAM.

In Proceedings of the 9th IEEE Colloquium on Signal Processing and its Applications (CSPA

2013), Kuala Lumpur, Malaysia, 8–10 March 2013.

22. PrimeSense, The PrimeSense 3D Awareness Sensor. Available online: www.primesense.com

(accessed on 20 February 2013).

23. Microsoft Kinect for Windows. Available online: http://www.microsoft.com/en-us/

kinectforwindows (accessed on 10 January 2013).

24. Grisetti, G.; Stachniss, C.; Burgard, W. Improving Grid-based SLAM with Rao-Blackwellized

Particle Filters by Adaptive Proposals and Selective Resampling. In Proceedings of the 2005

IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain,

18–22 April 2005; pp. 2432–2437.

25. ROS.org Gmapping: Package Summary. Available online: http://wiki.ros.org/gmapping (accessed

on 14 March 2014).

26. ROS.org Hector_mapping: Package Summary. Available online: http://wiki.ros.org/hector_

mapping (accessed on 10 March 2014).

27. Murphy, K.P. Bayesian Map Learning in Dynamic Environments. In Proceedings of the Neural

Information Processing Systems (NIPS 1999), Denver, CO, USA, 30 November–2 December

1999; pp. 1015–1021.

Sensors 2014, 14 23387

28. Doucet, A.; Freitas, N.D.; Murphy, K.P.; Russell, S.J. Rao-Blackwellised Particle Filtering for

Dynamic Bayesian Networks. In Proceedings of the 16th Conference on Uncertainty in Artificial

Intelligence, Stanford, CA, USA, 30 June–3 July 2000; pp. 176–183.

29. Montemerlo, M.; Roy, N.; Thrun, S. Perspectives on standardization in mobile robot

programming: The Carnegie Mellon Navigation (CARMEN) Toolkit; In Proceeding of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas,

NV, USA, 27–31 October 2003; pp. 2436–2441.

30. Montemerlo, M.; Roy, N.; Thrun, S.; Hähnel, D.; Stachniss, C.; Glover, J. CARMEN—The

Carnegie Mellon Robot Navigation Toolkit. Available online: http://carmen.sourceforge.net/

(acessed on 6 May 2014).

31. Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice; Springer:

Berlin, Germany, 2001.

32. Eliazar, A.; Parr, R. DP-SLAM: Fast, robust simultaneous localization and mapping without

predetermined landmarks. In Proceedings of the 18th International Joint Conference on Artificial

Intelligence, Acapulco, Mexico, 9–15 August 2003; pp. 1135–1142.

33. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo

vision. In Proceedings of the 7th international joint conference on Artificial intelligence,

Vancouver, Canada, 24–28 August 1983; Volume 2, pp. 674–679.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

