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Abstract: This paper presents a performance analysis of two open-source, laser  

scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., 

Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. 

Furthermore, the paper proposes a new system integration approach whereby a Linux 

virtual machine is used to run the open source SLAM algorithms. The experiments were 

conducted in two different environments; a small room with no features and a typical 

office corridor with desks and chairs. Using the data logged from real-time experiments, 

each SLAM technique was simulated and tested with different parameter settings. The 

results show that the system is able to achieve real time SLAM operation. The  

system implementation offers a simple and reliable way to compare the performance of 

Windows-based SLAM algorithm with the algorithms typically implemented in a Robot 

Operating System (ROS). The results also indicate that certain modifications to the default 

laser scanner-based parameters are able to improve the map accuracy. However, the 
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limited field of view and range of Kinect’s depth sensor often causes the map to be 

inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct 

replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. 

Keywords: Microsoft Kinect sensor; 2D SLAM; robotics; integrated system; sensor; 

virtual machine; Robot Operating System 

 

1. Introduction 

The Simultaneous Localization and Mapping (SLAM) technique is a subject of interest in mobile 

robotics studies. The main idea of this technique is to leave the robot at an unknown location and let it 

move and build a consistent map of its surroundings. Although the problem seems straightforward, in 

reality it is very complex due to the non-ideal behavior of sensors and actuators. The fact that both the 

localization and mapping task needs input from each other to complete computation further 

complicates the problem [1]. The solution to the SLAM problem allows deployment of robots in many 

applications such as search and rescue operations, underwater surveillance and gas distribution mapping. 

Numerous SLAM techniques have been developed by previous researchers utilizing different 

devices, including sonar sensors [2,3], cameras [4–6] and laser scanners [7–11]. However, the methods 

are often device-specific due to the different sensing modalities and capabilities of each device. The 

introduction of the Microsoft Kinect in 2010 has allowed an extension of the available SLAM 

methods. Most researchers take advantage of the RGB camera and the 3D depth sensor available on 

the Kinect to perform 3D or RGB-Depth (RGB-D) mapping [12–17]. Although the results seem 

promising, it requires an extensive amount of memory and processing power. Thus, 2D SLAM system 

may be preferred in certain applications, while still leveraging the Kinect’s 3D depth sensor to detect 

obstacles of variable shapes and sizes. 

Several researchers have attempted to perform 2D mapping using the Kinect with laser scanner-based 

SLAM algorithms [18–20]. However, to the authors’ knowledge, the results shown are often simplified 

and did not consider different scenarios such as mapping in a featureless area or in the conditions 

where objects of variable shapes and sizes exist. Also, the effect of modifying the SLAM parameters in 

different environments has also not been studied previously. Such an analysis enables a more thorough 

evaluation of the suitability of the Kinect as a replacement sensor for 2D laser scanners. 

Hence, in this paper, we analyzed the performance of two laser scanner-based SLAM algorithms 

(i.e., Gmapping and Hector SLAM) using a Microsoft Kinect as the only navigation sensor. The 

techniques were selected since they are open-source, widely used and more importantly, they are based 

on two different approaches: Gmapping is based on Rao-Blackwellized Particle Filter (RBPF) and uses 

odometry for pose estimation, while the Hector SLAM is based on a Gauss-Newton approach and 

relies on scan matching alone to estimate the pose. The method proposed in [21] was used to convert 

the 3D depth data from Kinect into 2D laser scan-like obstacle locations. The performance of the 

system in real-time was tested in two different environments: a small room with no features and a 

typical office corridor with desks and chairs. Then, using the data logged from the experiments, the 
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SLAM process was simulated repeatedly with different parameter settings, while observing any effect 

on the performance and accuracy of the final map. 

Another contribution of this paper is the design of a system that utilized a Linux virtual machine in 

Windows to execute the real-time 2D SLAM algorithms. The base station of the system was installed 

with Windows 7 as the main operating system and Ubuntu in a virtual machine. A LabVIEW program 

(in Windows) was developed to control the whole system execution and provide a user interface while 

the Robot Operating System (ROS) was installed in the Linux virtual machine for computation of 

SLAM using the open-source algorithms (i.e., Gmapping and Hector SLAM). The two-way 

communication between these two programs is achieved via the TCP/IP protocol and ROSBridge tool. 

2. Kinect vs. Laser Scanners 

Kinect was launched by Microsoft on November 2010. It was initially designed as a vision-based 

controller for the Microsoft Xbox 360 video game console. The device consists of several sensors 

including a RGB sensor, a 3D depth sensor, multi-array microphones and an accelerometer [22,23].  

The Kinect’s depth sensor (the sensor used in this research) produces depth images at 640 × 480 pixels 

(VGA size) [22]. The sensor has a field of view of 57° horizontally and 43° vertically. The optimal 

operating range of the sensor is said to be between 0.8 to 3.5 m, although several researchers claim that 

it can be extended up to 0.4 to 6 m. The Kinect’s depth sensor is able to provide depth resolution of 1 

cm and spatial x/y resolution of 3 mm at 2 m distance from the sensor. The maximal stable transfer 

rate of the frame is up to 30 Hz, depending on the driver or software used [22,23]. 

Table 1 compares the specifications of Kinect’s depth sensor with respect to the general 

specifications of 2D laser scanners. The comparison is provided since the SLAM algorithms used in 

this paper (i.e., Gmapping and Hector SLAM) are based on laser scanners and the sensor had been 

reported to work well for most robotics applications, particularly SLAM. 

Referring to Table 1, the laser scanner is superior to the Kinect in terms of range as it can detect 

obstacles up to 250 m (certain models). In addition, the laser scanner has significantly wider horizontal 

angle (i.e., field of view) of up to 360 degrees. However, the Kinect has advantages in terms of the 

extra dimensionality it provides (i.e., three dimensions) and its significantly lower cost. Although the 

laser scanner is generally better than the Kinect in terms of range and angle, the Kinect could be more 

effective as a navigation sensor since it is able to provide 3D views in a relatively fast sampling period. 

This aspect is very important in order to perform SLAM in a real environment where there exist 

objects of variable shape and size. The robot will also able to avoid certain obstacles that are typically 

unseen by 2D sensors. Further explanations can be found in Section 3.2 and [21]. 

Table 1. Technical specifications of Kinect’s depth camera as compared to a laser scanner 

which is typically used in robotics applications, particularly SLAM. 

Components Kinect 2D Laser Scanner 

Operating Range (m) 0.4–0.8 to 3.5–6.0 ~0 to 4–250 
Horizontal angle (°) 57 180–360 

Vertical angle (°) 43 - 
No. of Measurement Points 640 × 480 = 307,200 Up to 6000 

Approx. costs (USD) 150 1000–15,000 
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3. The Methods and Algorithms 

3.1. Odometry 

In this project, we were only interested in 2D localization (i.e., x, y and 	ߠ) since the robot is 

employed on flat surface. The odometry technique is used to estimate the robot’s pose with respect to 

the starting pose. However, this method is sensitive to errors since it estimates the position by 

integrating the velocity measurements over time. Rapid and accurate data collection, equipment 

calibration and efficient data processing must be done for odometry to be used effectively. 

The robot used in this project uses a differential drive mechanism. It consists of two DC motors that 

are connected to a gear and two wheels on each side. Each motor can be independently rotated either 

clockwise or anticlockwise. By varying the speed and direction of the motors, the robot can move 

forward, backwards, rotate or move along a curve. An encoder is mounted on each motor to estimate 

the rotation velocity. Using this value, the velocity of the left, 	 ௟ܸ and right, ௥ܸ wheel along the ground 

can be estimated as: 

௟ܸ = (1) ܩ/ݎ௟ߙ

௥ܸ = (2) ܩ/ݎ௥ߙ

where ߙ௟ and ߙ௥ are rotational velocity of the right and left motor respectively, r is the radius of wheel 

and G is the gear ratio. There are three different styles of movement that the robot can exhibit using  

the differential mechanism; linear motion (Equation (3)) rotation about its position (Equation (4)) and 

moving along a curve (Equations (5) and (6)). Note that the calculation of new robot pose in each case 

below is relative to the starting pose after the robot moves for a period of	ݐߜ in each time step:  [ݔᇱ, ,ᇱݕ [′ߠ = ݔ	] + ݐߜ(ߠ)ݏ݋ܸܿ , ݕ + ݐߜ(ߠ)݊݅ݏܸ , ,ᇱݔ](3) [ߠ ,ᇱݕ [′ߠ = [ ݔ , ݕ , ߠ + ݈/ݐߜ2ܸ ,ᇱݔ](4) [ ,ᇱݕ ,ݔ]	and	[′ߠ ,ݕ  represent previous and current robot pose respectively, ܸ takes the value of 		[ߠ

the robot’s right wheel ( ௥ܸ) and ݈ indicates the separation between the left and right wheels. In a special 
case where the robot moves along a curve, the center of the curvature (denoted as 	ൣܥܥܫ௫,  ௬൧) needsܥܥܫ

to be calculated first as in Equation (5): ൣܥܥܫ௫, ௬൧ܥܥܫ = ݔ] − ,(ߠ)݊݅ݏܴ ݕ +  (5) [(ߠ)ݏ݋ܴܿ

Then, the subsequent pose can be determined using: ൥	ߠ′ݕ′ݔ′	൩ = ൥cos(߱ݐߜ) −sin(߱ݐߜ) 0sin(߱ݐߜ) cos(߱ݐߜ) 00 0 1൩ ൥ݔ − ݕ௫ܥܥܫ − ߠ௬ܥܥܫ ൩ + ൥	ܥܥܫ௫ܥܥܫ௬߱ݐߜ 	൩ (6) 

where R denotes the radius of curvature and ߱  represent the angular velocity about the ܥܥܫ .  

The controller on the robot has been programmed to perform the odometry calculation before  

the information is transmitted to the base station for SLAM computation (i.e., Gmapping). 
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3.2. Kinect’s Depth Data to 2D Scan  

The use of 1D or 2D sensors such as sonar and 2D laser scanners for navigation and mapping is 

believed to not be efficient due to the possibility of missing or misinterpreting an obstacle’s location. 

Figure 1 shows a scenario representing these problems. The sensor fixed at a certain height on the 

robot is unable to see the obstacle that is located below the visible range. Another possibility is that the 

sensor may mistakenly interpret an object’s location if it is non-uniform in shape (e.g., L shape). 

Figure 1. An example showing a sonar sensor placed at certain height (indicated by red 

circle) unable to detect and measure the obstacle location. 

 

A 3D vision sensor is believed to be able to solve this limitation since the object’s size and shape 

can be obtained [21]. The Kinect was chosen in this project since it has 3D depth sensor, relatively  

fast sampling rate and is available at a low price. The Kinect’s 3D depth data is converted into 2D laser  

scan-like data based on the method proposed in our previous work [21]. Firstly, the 11-bit raw data 

(which is an array of 640 × 480 elements) was retrieved from the Kinect and converted into real depth. 

Then, the X and Y coordinates that correspond to each depth pixel (i.e., Z coordinate) were  

calculated using: 

௜ܺ,௝ = ቀ݆ − 2ቁݓ ൈ ݓ320 ൈܯ ൈ ܼ௜,௝ (7)

௜ܻ	,௝ = ൬݅ − 2݄൰ ൈ 240݄ ൈ ܯ ൈ ܼ௜,௝ (8)

where i and j are the pixel’s row and column number in the Z-array respectively, w and h are the width 

and the height of the Z-array and M is the NUI Camera Depth Image to Skeleton Multiplier Constant. 

In order to remove the floor that is visible in the 3D data, the pixels located below the height of 

Kinect were replaced with an infinity value indicating that the data is invalid. The process is repeated 

for the pixels above the height of the robot since they are not considered as obstacles; thus, the 

resulting X, Y and Z array only contains the 3D obstacles with which the robot can collide. To convert 

the data into 2D obstacles (i.e., 2D scan), the minimum element in each column of the Z-array was 

selected to represent the entire column such that: ܼ′௝ = ݉݅݊ ( ܼ଴,௝, ܼଵ,௝ …ܼସ଻ଽ,௝ ) (9)

where j is the respective column number. In other word, the Z′ array (of 640 × 1 elements) contains the 

Z-coordinates of the nearest obstacle at each horizontal scan angle. Using geometry, the Z-coordinates 



Sensors 2014, 14 23370 

 

 

and the corresponding X-coordinates can be converted into polar coordinate as typically obtained  

using laser scanner. In contrast to the proposed method, we reduce the Kinect’s depth data resolution 

to QVGA (320 × 240) to minimize processing power and time. All the computations related to image 

processing (including the conversion into laser scan-like data) were carried out on the netbook onboard  

the robot. This setup enabled us to minimize the amount of data transferred to the base station;  

thus retaining a high refresh rate of 60 Hz. 

3.3. 2D SLAM Techniques 

In this paper, two SLAM techniques were used: Gmapping [9,24] and Hector SLAM [7]. Both 

implementations are available as open source packages in ROS [25,26]. The following subsections 

describe the underlying principle behind each technique. 

3.3.1. Gmapping 

The Gmapping algorithm was developed based on the Rao-Blackwellized Particle Filter (RBPF) 

introduced by Murphy and Doucet et al. [27,28]. The RBPF was proposed to solve grid-based SLAM 

problems and it requires odometry information and the sensor’s observations (i.e., scans). The main 

idea of the RBPF is to estimate the trajectory of the robot, ݔଵ:௧ = ,ଵݔ …	, ௧ݔ  and the map, ݉ given  

the observations, ݖଵ:௧ = 	 ,ଵݖ …	, ଵ:௧ିଵݑ ,௧ and the odometry dataݖ = ,ଵݑ	 …	,   ௧ିଵ. This joint posteriorݑ

is denoted as ݔ)݌ଵ:௧,݉	|	ݖଵ:௧, (ଵ:௧ିଵݑ  and can be factorized into Equation (10) through  

Rao-Blackwellization technique: ݔ)݌ଵ:௧,݉	|	ݖଵ:௧, (ଵ:௧ିଵݑ = ݉)݌ | ,ଵ:௧ݔ .(ଵ:௧ݖ |ଵ:௧ݔ)݌ ,ଵ:௧ݖ  ଵ:௧ିଵ) (10)ݑ

The factorization simplifies the computations such that it allows the process to be carried out in two 

steps. First, the trajectory of the robot can be estimated using the odometry data and the observations. 

Then, the map (i.e., ݉)݌	|	ݔଵ:௧,  .ଵ:௧ are knownݖ ଵ:௧ andݔ ଵ:௧)) can be computed sinceݖ

The RBPF uses a particle filter to estimate the posterior ݔ)݌ଵ:௧|	ݖଵ:௧,  ଵ:௧ିଵ), where each particleݑ

represents a potential trajectory. An individual map is also computed for each of the particles, since  

the map is highly dependent on the robot’s trajectory. Finally, the particle with the highest probability  

will be chosen and the associated map will be output by the algorithm. 

The Gmapping technique was developed by Grisetti et al. [9,24] to improve the performance of  

the RBPF-based SLAM. The technique consists of an approach to compute an accurate proposal 

distribution by considering not only the movement of the robot, but also the most recent observation.  

In other words, the approximation of the posterior ݔ)݌ଵ:௧|	ݖଵ:௧, (ଵ:௧ିଵݑ  in RBPF was modified to ݔ)݌ଵ:௧|	݉௧ିଵ(௜) , ௧ିଵ(௜)ݔ , ,ଵ:௧ݖ (ଵ:௧ିଵݑ , taking into account the previous odometry data and the newest 

observation. The scan-matcher “vasco” [29,30] is used as to match up the observation against the map 

constructed so far, thus, providing information on the most likely pose. 

The Gmapping method also features an adaptive technique that selectively carries out resampling 

operations for the particle. A careful resampling step is crucial to avoid the filter from removing good 

samples (i.e., particles that contain trajectory and map data). The approach proposed by Doucet et al., 

in [31] was used in Gmapping since it is able to determine the necessity of a resampling step. The 
approach takes into account the measure of the dispersion of the importance weights,	 ௘ܰ௙௙	 which 
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indicates how well the particle set approximate the posterior trajectory. The formulation can be 

denoted as: 

௘ܰ௙௙ = 1∑ ( ෥߱(௜))ଶே௜ୀଵ  (11)

where ෥߱(௜)	  is the normalized weight of particle ݅ . The approach suggest that a resampling step  
should be carried out every time the ௘ܰ௙௙	 drops below half the number of particles, ܰ/2. Overall,  

the implementation was claimed to allow an accurate map learning while reducing the risk of  

particle depletion. 

3.3.2. Hector SLAM 

Hector SLAM is an open source implementation of the 2D SLAM technique proposed in [7].  

The technique is based on using a laser scan to build a grid map of the surroundings. In comparison to 

the majority of grid-map SLAM techniques [8,9,24,32], Hector SLAM does not require wheel 

odometry information. Thus, the 2D robot pose is estimated based on the scan matching process alone. 

The high update rate and accuracy of the modern LIDAR has been leveraged for the scan matching 

process thus allowing fast and accurate pose estimates. 

The scan matching algorithm used in Hector SLAM is based on the Gauss-Newton approach 

proposed in [33]. The algorithm seeks to find the optimum alignment of laser scan’s endpoints with the 
constructed map by finding the rigid transformation ߦ = 	 ,௫݌) ,௬݌ ߰)் that minimizes: 

ξ∗ = argminஞ ෍[1 ൫S௜(ξ)൯]ଶ௡ܯ−
௜ୀଵ  (12) 

where the function ܯ(S௜(ξ)) returns the map value at S௜(ξ) which is the world coordinates of the scan 

endpoint. Given a starting estimate of ξ, the step transformation ∆ξ can be estimated by optimizing  

the error measure such that: ෍[1 ൫S௜(ξܯ− + ∆ξ)൯]ଶ → 0௡
௜ୀଵ  (13) 

Applying first order Taylor expansion to ܯ൫ ௜ܵ(ξ+	∆ξ)൯ and setting the partial derivative with 

respect to ∆ߦ to zero yields the Gauss-Newton equation for the minimization problem: ∆ξ = Hିଵ෍ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉் [1 − ൫S௜(ξ)൯]௡ܯ
௜ୀଵ  (14) 

where: H = ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉் ቈ∇ܯ(S௜(ξ)) ߲S௜(ξ)߲ξ ቉ (15) 

Although the Hector SLAM does not provide an explicit loop closure approach, the researchers 

claimed that the system managed to accurately close the loops in many real world scenarios, requires 

low computation and avoids major changes to the map during runtime. They have also successfully 

employed the algorithm in Unmanned Ground Robots, Unmanned Surface Vehicles, and Handheld 

Mapping Devices and logged data from quad rotor UAVs. 
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4. System Overview 

Figure 2 illustrates the overall architecture of the system. The main components of the system are 

Robot, Netbook and Base Station. A wireless router is used as a medium of data transfer between these 

three components. The Robot and Netbook are connected to the router using Ethernet cable while  

the Base Station is connected through WiFi to allow remote monitoring and control. A smart phone 

equipped with an Android app is utilized for controlling the robot’s movement manually  

and wirelessly. 

Figure 2. Architecture of the integrated system. 

 

4.1. The Robot 

Figure 3 shows front and rear view of the integrated robot. A National Instruments robot  

(i.e., NI Robotics Starter Kit 1) was used as the platform of the system. It consists of a single board 

controller (i.e., sbRIO-9631) featuring a real-time processor, a user-reconfigurable field-programmable 

gate array (FPGA) and I/O Terminals. The controller controls the robot’s motor and processes data 

from the encoders and other sensors. 
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Figure 3. (a) Front and (b) rear view of the integrated robot. 

(a) (b) 

4.2. The Netbook 

The netbook is used to interface the Kinect and perform image processing (see Section 3.2).  

It consists of a 1.8 GHz Intel Atom Processor and 1 GB Random Access Memory (RAM). The 

netbook was equipped with the Windows 7 operating system, LabVIEW software and the libfreenect 

library for interfacing the Kinect. 

4.3. The Base Station 

The base station (i.e., desktop computer) utilizes the Windows 7 operating system with Ubuntu 

12.04 installed in a Virtual Machine. The system was designed as such in order to allow simultaneous 

operation of LabVIEW in Windows and the Robot Operating System (ROS) in a Linux Virtual 

Machine. The LabVIEW program provides a graphical user interface, controls the whole program 

execution and provides online monitoring of sensors’ data and computed maps. On the other hand, the 

ROS enables the computation of open-source SLAM algorithms and other useful tools such as 

ROSbag for recording data. The host (i.e., Windows 7) communicates with the ROS through 

ROSBridge and the TCP/IP protocol. 

4.4. The Microsoft Kinect 

The Kinect is mounted on top of the robot to provide a wider field of view in the vertical direction.  

The center of the depth sensor was leveled at 34 cm above the floor. Two pieces of rod were used to 

fix the Kinect on the robot. The mounting was also carefully designed to align the Kinect in parallel to 

the robot’s body and floor. 

4.5. The Synchronisation 

One significant aspect in developing an integrated system is the synchronisation between multiple 

controllers. The task becomes more crucial in time-critical applications such as SLAM. False results 

and unresponsiveness of a system are among the problems that may arise due to synchronisation 
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errors. Figure 4 illustrates the technique employed in this project to achieve synchronization between 

the robot, netbook and the base station. The TCP/IP function provided by LabVIEW was used as the 

basis of the implementation. 

Figure 4. Timeline of synchronization between robot, netbook and base station.  

The red colored texts indicate the time-critical events which are synchronized between  

multiple devices. 

 

Initially the Kinect data is acquired by the netbook and processed to obtain a 2D obstacle location 

(see Section 3.2). Once the defined cycle period is over, the netbook will attempt to transmit this data 

to the robot and base station which are waiting (i.e., TCP listen) for the transmission request.  

This information is required by the robot for obstacle avoidance (in auto mode) and also to perform the 

SLAM calculations in the base station 

As soon as the data is transferred, the robot and the netbook will start to acquire new information 

from the encoder and the Kinect, respectively. Then, the odometry data is transferred from the robot  

to the base station using the same approach. The remaining period of the cycle is used by the base 

station to perform SLAM computation using the previous cycle’s data and to process any user 

requests. The processes are repeated again for the next cycle until they are stopped by the user. 
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5. Experimental Environments 

The experiments discussed in this paper were conducted in two different types of environment in 

the CEASTech building of the University Malaysia Perlis. The maps of these environments are shown 

in Figure 5. 

(a) Laboratory Corridor (Figure 5a): the corridor has a length of approximately 13.5 m and consists 

of features such as desks, chairs and stairs. The floor was flat and coated with blue colored 

epoxy. No high reflection surfaces were observed during the experiment, particularly in the 

robot’s field of view. The lowest step of the stairs has a height of 18 cm which was below the 

mounting position of the Kinect. 

(b) Featureless room (Figure 5b): the room has no features and has a z-shape. The floor was 

covered with carpet and no reflective surfaces were observed during the experiment. 

Figure 5. The map of the locations of SLAM experiments in CEASTech building, 

Unimap. (a) is a corridor with features (i.e., desks, chairs and stairs) while (b) is the small 

office room with no features. Dimensions shown are in centimeters. 

 

(a) (b) 

6. Real-Time SLAM 

A set of two experiments have been done on each of the environments (i.e., laboratory corridor  

and featureless room). In each of the experiments, the robot was placed at a different position and 

orientation. The robot was manually controlled to move randomly without a specific style such as  

zig-zag or wall following. This setup was preferred as to replicate an automatic SLAM operation in  

an unknown structured environment where a robot is typically not able to follow a specific style of 

movement due to the presence of obstacles and a non-uniform building structure. 

Figures 6 and 7 show the final maps obtained during the real-time SLAM operation for Corridor 

(Test 1) and Room (Test 2), respectively. Only the Gmapping algorithm was run for the real-time 

SLAM experiment. The parameters used for the algorithm were modified from the default values 

determined based on trial and error in previous tests. All the data during the four set of experiments 

were recorded using the ROSbag tool. This is to allow offline SLAM analysis on both the Gmapping 

and Hector SLAM. Table 2 shows the duration of each experiment. 
  



Sensors 2014, 14 23376 

 

 

Figure 6. Front panel showing the map of the corridor in Test 1. The red line in the raw 

map shows the trajectory of the robot based on the odometry data, while the red dot and 

line in Gmapping map indicate robot pose and obstacle location from the Kinect. 

 

Figure 7. Front panel showing the map of the room in Test 2. 

 

Referring to Figures 6 and 7, the left hand side map (i.e., raw map) is the map obtained without  

any SLAM algorithm; where the odometry and the laser-like Kinect’s scan were plotted straight away 

into the map. The right hand side map is the map obtained from the Gmapping algorithm. The white 

and black pixels represent unoccupied and occupied areas, respectively, whereas the purple pixels are  

the unexplored locations. 
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Table 2. Duration of each experiment. 

Experiment Duration (s) 

Corridor 
Test 1 281 
Test 2 247 

Room 
Test 1 126 
Test 2 251 

It can be seen that the Gmapping successfully mapped the corridor with reasonable accuracy. Even 

though the raw map indicates some misalignments due to odometry errors, the Gmapping managed to 

correct it. The lowest step of the stairs which was below the Kinect mounting level was also detected 

and mapped during the test run. The area where the desks and chairs were located was seen to have 

non-uniform shape since the Kinect only mapped the bottom part of the features. On the other hand, 

the map obtained using Gmapping for the room (see Figure 7) shows serious misalignment, even 

though the raw map obtained was quite accurate. This behavior was due to the fact that the Kinect  

has a narrow horizontal FOV and the room was featureless. The SLAM algorithm failed to scan match 

correctly and as a result mistakenly determined the pose of the robot during runtime. Detailed 

explanations and analysis can be found in the Offline SLAM and Analysis Section. The results also 

proved that the designed system was able to achieve real-time SLAM operation even though it consists 

of multiple controllers, utilizes wireless connection and more importantly, made use of a virtual 

machine for SLAM computation. 

7. Offline SLAM and Analysis 

In this section, we analyze the performance of the two SLAM techniques (i.e., Gmapping and  

Hector SLAM) using the data recorded in the .bag file from the real-time experiments. The ROSbag 

Play tool was used in order to run the recorded data, simulating the real-time experiment. The 

parameters of Gmapping and the Hector SLAM were modified in order to see any changes in the 

performance of SLAM with the Kinect as the only vision sensor. From this point onwards, the four 

experiments (i.e., Corridor (Test 1), Corridor (Test 2), Room (Test 1) and Room (Test 2)) will be 

referred to as Corridor_T1, Corridor_T2, Room_T1 and Room_T2, respectively. 

7.1. Default Parameters 

In the first part of the experiments, both the Gmapping and Hector SLAM were executed with 

default parameters [25,26]. However, since both techniques were developed based on the laser scanner, 

the parameters specifying the sensor range need to be modified. The parameters were set to 0.6 m to  

6 m reflecting the useful range of the Kinect. In addition, the map resolution for both algorithms was 

made consistent at 0.05 m. Figures 8 and 9 show the results of the experiments. 

The maps obtained using the Hector SLAM were inaccurate because the algorithm failed to 

compute accurate pose estimates. The limited horizontal field of view and range of Kinect affected the 

performance of the Hector SLAM which only relies on the scans (i.e., scan matching) to estimate the 

robot pose. The problem gets worse if the area is featureless or has limited features. In addition, it can 

also be seen that the Room_T2 map diverged significantly from the real map. This was due to the fact 
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that the Hector SLAM has no loop closing ability and the mapping errors due to the incorrect pose 

estimates were accumulated over time. This effect is less evident in Room_T1 since the duration of 

experiment (see Table 2) was half the duration of the one for Room_T2. 

Figure 8. Comparison of maps obtained using Gmapping and Hector SLAM using  

default parameters. 

 

Figure 9. Comparison of Gmapping and Hector SLAM maps obtained using default parameters. 

 

The maps obtained using Gmapping are generally more accurate than the Hector SLAM ones when 

using the default parameters. This is because the Gmapping takes into account the odometry data and 
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that information helps in determining a better pose estimate. However, the same scan matching issue 

also affected the algorithm’s performance. This can be seen in some parts of the corridor and room as 

indicated by red circle and red arrow, respectively. The areas were mapped as smaller and shorter as 

compared to the actual dimensions. This occurrence was due to the fact that the areas did not contain 

any features but only long walls. The shape of the obstacles acquired at each corresponding 

consecutive scan looks almost the same, causing incorrect scan matching and pose estimation. 

7.2. Variable Parameters 

In this section, we analyze the effect of varying some of the parameters that are believed to affect 

the SLAM’s performance. In each of the specific tests, only the corresponding parameters were 

changed, while keeping the other parameters consistent with the default values. Tests have been done 

to all the datasets (i.e., Corridor_T1, Corridor_T2, Room_T1 and Room_T2). However, only the results 

for Corridor_T1 and Room_T1 are shown in this paper since the main concern was to see the trend of 

how the map changes. 

Figure 10. Corridor maps obtained using Gmapping technique with different number of particles. 

 

7.2.1. Gmapping: Number of Particles 

The particles parameter corresponds to the maximum number of possible trajectories and maps  

that are kept during the SLAM operation. The trajectory and map with highest probability will be 

selected and output by the algorithm, so a higher number of particles would generally mean greater 

possibilities that the output map can converge. The default value of particles is 30. The Gmapping 
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algorithm has been run with small number of particles (i.e., 10), up to a large number, 300. Figures 10 

and 11 illustrate the results obtained during the experiments. 

Figure 11. Room maps obtained using Gmapping technique with different number of particles. 

 

Referring to both the corridor and room maps, the accuracy seems to be better at lower number  

of particles, particularly when it is close to the default value, p = 30. The maps obtained at high 

number of particles (i.e., more than 100) diverge significantly from the real measurement since there 

are too many possibilities that the map can converge to. Thus, any odometry or scan matching error 

during the SLAM process could lead to serious map inaccuracy. 

We also note that the misalignment seen on the corridor maps is originated from the featureless area 

marked by red circle shown in Figure 8 (Section 7.1). This phenomenon suggests that the algorithm 

fails to scan match and estimate pose correctly in featureless areas, even the number of particles is set 

to a higher number. In addition, the map updating period was also observed to be relatively longer for 

a higher number of particles because the base station has to update each of the particle maps during  

the process. 

7.2.2. Gmapping: Linear and Angular Update 

The linearUpdate and angularUpdate are the parameters that correspond to the required translation 

and rotation of robot before a scan is processed. The default values are 1.0 m for linear update and  

0.5 rad for angular update. Since the range and field of view of the Kinect are limited, we sought to test 

the Gmapping SLAM with lower linear and angular update values. This will allow a higher rate of 

scan matching with respect to the change in linear and angular movement of the robot; and perhaps 

could lower the risk of incorrect pose estimation. 

Figures 12 and 13 display the results of varying the linear and angular update values for the 

Corridor_T1 and Room_T1 datasets. As can be seen from the corridor maps, no trend could be inferred 

for the different linear and angular update values. However, for Room maps, it was found that the 

higher linear update values improved the convergence to the real map. These results contradict the 
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initial hypothesis of the experiment (i.e., the lower the update values, the more accurate the built map) 

and suggest that it is difficult to predict the correlation between Gmapping’s update parameters and  

the map quality. 

Figure 12. Corridor maps obtained using Gmapping technique with different combinations 

of Linear and Angular Update values. 

 

Figure 13. Room maps obtained using Gmapping technique with different combinations of 

Linear and Angular Update values. 
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7.2.3. Hector SLAM: Map Update Thresholds  

The map_update_distance_threshold and map_update_angle_thresh parameters indicate the required 

distance or angle that the platform has to travel before a map update process is executed. The default 

distance and angle are 0.4 m and 0.9 rad, respectively. Like the Linear and Angular Update tests for 

Gmapping (Section 7.2.2), the Hector SLAM was also run with lower update threshold value. This 

setting may allow the algorithm to provide a map update at a faster rate and thus able to perform better 

scan matching and pose estimation. Figures 14 and 15 show the final maps when varying these 

parameters simultaneously. 

Figure 14. Corridor maps obtained using Hector SLAM technique with different 

combinations of Distance and Angle Threshold values. 

 

In both Corridor and Room maps, the effect of the angle threshold parameter was seen to be 

minimal. Only slight differences could be observed when the angular parameter is changed while 

keeping the distance threshold constant. On the other hand, the maps for both corridor and room are 

seen to be more accurate at lower distance threshold values (i.e., 0.1 m and 0.2 m). We also note that 

the featureless area of the corridor (as indicated in the Default Parameters Section) was mapped 

accurately using these settings and the maps quality are seen to outperform the ones obtained using the 

Gmapping algorithm. 
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Figure 15. Room maps obtained using Hector SLAM technique with different 

combinations of Distance and Angle Threshold values. 

 

8. Discussion and Conclusions 

It was found that the integrated system has been able to achieve real-time SLAM operation  

even though the Gmapping was run in parallel on a virtual machine. This proves that it is possible  

to integrate open-source algorithms (in ROS) into another operating system (such as Windows) for  

real-time applications. In addition, the implementation provides an easy and reliable way to compare 

the performance of any Windows-based algorithms with the open-sourced algorithms that are typically 

implemented in Linux. 

The results of the offline experiments suggest that the Gmapping, although having odometry as  

extra information, often failed to predict correct pose estimates, especially in featureless areas.  

This phenomenon was due to the fact the Kinect has a relatively limited field of view (as compared to 

a laser scanner) and is thus unable to provide enough information for reliable scan matching.  

In addition, it is hard to predict the final map since the Gmapping is based on a particle filter  

(i.e., probability method) and slight errors in pose estimation could affect the SLAM processes and 

results significantly. 

The modification of certain Gmapping parameters was found to vary the map accuracy. The setting 

of a lower particle number has been observed to improve the results, especially when the value is close 

to the default number (i.e., 30). This occurrence is due to the fact that there are so many possibilities 

that the map can converge to when using high number (i.e., more than 100) and any error in 

determining the best particle could finally yield a seriously inaccurate map. On the other hand, a lower 

number of particles is not desirable since it increases the risk of eliminating good particles (i.e., good 

maps and trajectories). Furthermore, it was found that a higher linearUpdate value produces more 
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accurate results in featureless areas, whereas, no trend could be inferred as the angularUpdate 

parameter was varied. 

Nevertheless, the determination of optimum set of parameters for the Kinect with the Gmapping 

technique is a nontrivial process since there are so many parameters available (i.e., more than 30) [25] 

and it is difficult to predict the correlation between them. Also, the same set of parameters that works 

in a certain environment, may not work in another type of environment. 

The Hector SLAM has been shown to produce similar results where the maps lack accuracy, 

especially in featureless areas. Again, this is believed to be caused by the limited field of view and 

range of the Kinect sensor. However, the modifications to the map update threshold parameters to 

lower values has been seen to significantly improve the map convergence. Interestingly, the corridor 

maps produced using a map_update_distance_thereshold of 0.2 m are relatively accurate, even though 

the odometry information was not used and the technique only relies on scan registration to estimate 

the robot pose. Also, the update rate of the map was seen to be faster than with Gmapping since the 

Hector SLAM is not based on a particle filter and only maintains a single global map. As a 

consequence, the technique has no loop closing ability. 

In conclusion, the Kinect is not a direct replacement for the laser scanner in 2D SLAM applications, 

mainly due to its relatively limited field of view and range (refer to Section 2 for a specification 

comparison). Further enhancements include modifications of the SLAM algorithms, application of an 

adaptive movement strategy or using multiple Kinect sensors to increase the field of view. Another 

suggestion is to leverage the 3D data from the Kinect’s depth sensor to perform scan matching before 

mapping the obstacles in a 2D map. This implementation may improve the scan matching accuracy 

and thus provide reliable pose estimates. Nevertheless, the 3D depth data of Kinect has advantages 

over the 2D laser scanner in terms of detecting and avoiding objects of variable shapes and size. Thus, 

given that the scan matching and pose estimation issues are solved, the performance of Kinect-based 

2D SLAM could be more reliable in a real-world scenario where objects of non-uniform shape exist. 
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