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Abstract: Many intelligent transportation system applications require accurate, reliable, 

and continuous vehicle positioning. How to achieve such positioning performance in  

extended GPS-denied environments such as tunnels is the main challenge for land vehicles. 

This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in 

tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency 

Identification (RFID) technology is introduced to achieve preliminary positioning in the 

tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances 

between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is 

designed to provide the preliminary position information for subsequent global fusion. 

Further, to improve the positioning performance in the tunnel, an interactive multiple 

model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary 

positioning results and low-cost in-vehicle sensors, such as electronic compasses and 

wheel speed sensors. In the actual implementation of IMM, the strong tracking extended 

Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman 

filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is 
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evaluated through experiments. The results validate the feasibility and effectiveness of the  

proposed strategy. 

Keywords: vehicle positioning; sensor fusion; tunnel; RFID; interactive multiple model 

 

1. Introduction 

In the last decade, there has been a significant amount of progress in intelligent transportation 

systems (ITSs). This is largely attributed to the recent developments in vehicle positioning  

technologies [1]. In various vehicle guidance- and safety-related applications such as traveler 

information, route guidance, automatic emergency calls, freight management, advanced driver 

assistance, or electronic fee collection [1,2], the importance of positioning system accuracy and 

reliability has increasingly been emphasized.  

Global positioning systems (GPSs) are the most widely used technology in vehicle positioning 

nowadays [1,3,4]. However, a GPS is unable to provide accurate and reliable navigation solutions in 

the presence of signal interruption or blockage such as occurs in a tunnel [2,3,5,6]. With the rapid 

development of three-dimensional transportation, more and more tunnels have been increasingly 

constructed on highways or in cities. How to achieve accurate, reliable positioning in these tunnele has 

become a huge challenge for vehicle navigation [7]. 

To overcome the GPS signal blockage in a tunnel, a common solution is to integrate that GPS  

with an inertial navigation system (INS) due to the complementary nature of these two types of  

sensors [5,8,9]. However, only low-cost inertial sensors based on microelectromechanical system 

(MEMS) technology are affordable [10] for automotive applications due to the high cost of accurate 

INS systems. As an alternative, dead reckoning (DR) has been integrated with GPS for vehicle 

positioning [11]. However, INS and DR will accumulate large errors over time due to factors such as 

the measurement errors of MEMS-based inertial sensors and the characteristics of the integration 

process. These large errors can cause the rapid performance degradation during GPS outages [12,13], 

especially in the long tunnel. Other sensors, such as vehicle motion sensors [14,15], cameras [16] or 

radar, are used to compensate for the errors. These methods can partially correct the accumulated 

errors by INS or DR, but the compensation effect is poor when GPS is in a long-time failure scenario. 

The main reason is the lack of position observations to correct the errors. 

Since GPS is usually not available for a long time in a tunnel, the GPS-based positioning 

technologies mentioned above always lead to incorrect positioning information, and are not suited to 

the tunnel environment. As an alternative, there has been rapid development of wireless location 

technologies [17–20] in recent years, such as Wireless Local Area Networks (WLAN), Bluetooth, 

Ultra Wide Band (UWB) and Radio Frequency Identification (RFID). Among them, RFID has 

attracted wide attention and research efforts due to its advantages of being non-contact, low-cost, high 

accuracy, with long-distance communication and the capability of working in a variety of harsh 

environments [21–23]. RFID is an automatic identification technology that relies on remotely storing 

and retrieving data using tags and readers. Although the original purpose of RFID technology was to 

identify objects [24], it has become a possible solution to obtain the object’s location information in 
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recent years, especially in the field of indoor positioning. RFID-based indoor positioning technology 

typically employs the received signal strength (RSS), the time of arrival (TOA), the time difference of 

arrival (TDOA) or angle of arrival (AOA) to compute an object’s location [23,25,26].  

With the rapid development of RFID-based technology, it has also been studied for outdoor 

applications. Chon applied RFID technology to the vehicle positioning field for the first time, and the 

feasibility of RFID-based vehicle positioning at high speed was preliminarily verified [27]. Zhang used 

the Active RFID Positioning (ARP) technology to achieve vehicle positioning [28]. Yang and Cheng 

employed passive RFID tags for vehicle navigation [29,30]. In these methods mentioned above, only 

the RFID information is used. Therefore, the positioning accuracy and the output frequency are not 

high enough to meet the performance requirements for many ITS applications [31]. In addition, these 

methods can only provide the position information, but they cannot provide the speed or attitude 

information which is also important for the location-related services.  

To improve the performance of the RFID-based positioning method, the multi-sensor fusion method 

provides us a viable solution whereby the RFID information can be fused with that from several  

in-vehicle sensors. However, to the authors’ knowledge, the fusion of the RFID technique and  

in-vehicle sensors has seldom been discussed in the related literature. 

Several information fusion algorithms have been proposed in the field of vehicle positioning and 

navigation [12–16], such as extended Kalman filter (EKF) [1,2], unscented Kalman filter (UKF) [32], 

strong tracking Kalman filter (STKF) [6] and particle filter (PF) [33]. For these filtering methods, one 

important aspect that influences the positioning performance is the choice of an appropriate process 

model for the filter. In most of the literature, a single process model, whether simple or complicated, is 

built and utilized. However, in practice, it is very difficult to choose an optimal model to represent all 

driving situations. As an alternative, multiple model (MM) approaches [14,34] were proposed. These 

approaches assume that the system follows one of a finite number of different models. The possible 

vehicle driving patterns are represented by a set of models, and vehicle state information is obtained by 

combining specific model filters. Among several MM estimate methods, the interacting MM (IMM) [14] 

estimator is the most popular due to its high performance and low computational power requirements. 

Therefore, the IMM filter has been used for localization and tracking problems in several studies. In 

the actual implementation of IMM, EKF is the most widely used algorithm. However, it is well known 

that in conventional EKF, the system model, the system initial conditions, and the noise characteristics 

all have to be specified a priori. Therefore, in various circumstances, there are uncertainties in the 

noise description and system models due to the wide driving-maneuver range of vehicle operation, and 

the assumptions on the statistics of disturbances are violated since the availability of precisely known 

models is unrealistic in practical situations. 

This paper aims to propose a multi-sensor fusion strategy based on RFID and in-vehicle sensors for 

vehicle positioning in a tunnel. In this strategy, the algorithms for both RFID-based preliminary 

positioning and global fusion are developed to obtain higher performance. The novel aspects of this 

paper can be summarized as follows: 

(1) A RFID-based preliminary positioning algorithm is developed to provide preliminary position 

information for subsequent global fusion. In this algorithm, a Least Mean Square (LMS) [35] 

federated filter is designed to preliminary estimate the position of the vehicle. Compared to 
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other RFID positioning algorithms, the proposed algorithm has many advantages, such as 

good fault-tolerance, and high precision, which can significantly improve the performance of 

the subsequent global fusion.  

(2) An IMM-strong tracking extended Kalman filter (STEKF) algorithm is proposed to realize the 

global fusion. To overcome the disadvantages of the preliminary positioning algorithm, i.e., 

low accuracy, low positioning frequency and the lack of speed or attitude information, low 

cost in-vehicle sensors, such as electronic compasses and wheel speed sensors, are introduced 

to fuse with the preliminary positioning results to extend the state, correct the preliminary 

positioning errors and improve the output frequency. Rather than single model-based filtering 

methods, the IMM-based algorithm considers the variety of driving conditions in which a 

vehicle can be operated and thus provides a better positioning accuracy. Meanwhile, to 

overcome the defects of the conventional EKF, the STEKF is developed to replace the EKF in 

the actual implementation of IMM to achieve model individual filtering. 

The remainder of the paper is organized as follows: Section 2 gives an overview of the structure of 

the proposed multi-sensor fusion strategy. The preliminary positioning algorithm based on RFID is 

presented in Section 3. Section 4 presents the IMM-STEKF-based algorithm for further enhancing the 

positioning performance in the tunnel. Experimental results are provided in Sections 5. Section 6 is 

devoted to the conclusions. 

2. Proposed Multi-Sensor Fusion Strategy 

The proposed multi-sensor fusion strategy is mainly composed of three parts, i.e., multi-sensor 

module, the preliminary positioning algorithm based on RFID, and the IMM-STEKF-based global 

fusion algorithm, as shown in Figure 1. 

The multi-sensor module includes such sensors as MEMS-based inertial sensors, wheel speed 

sensors, electronic compass, and the low-cost active RFID hardware devices (a reader and a number of 

tags). The low-cost active RFID hardware devices are characterized by low price and low output 

frequency, typically 1 Hz. The MEMS-based inertial sensors used here only include two orthogonal 

accelerometers (i.e., along the longitudinal and lateral axes in vehicle body frame) and a yaw gyro, 

rather than a full expensive INS. The wheel speed sensors and electronic compass are also  

low-cost sensors. 

Because of the similarity between the tunnel and the indoor environment, the RFID technology  

can be used to achieve preliminary positioning for vehicles in the tunnel. The RSS-based location 

algorithms are the most widely used for indoor positioning because the algorithms are simple and need 

no additional hardware. This paper employs a two-step approach, namely, the calculation of the 

distances between the RFID tags and the reader based on RSS, and then the estimation of vehicle 

position. A decentralized LMS filter [35] in federated configuration is designed to estimate the position 

of the vehicle. Rather than other RFID positioning algorithms, the proposed LMS federated filter can 

effective improve the positioning accuracy and reliability in real world applications. 
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Figure 1. Proposed multi-sensor fusion strategy for vehicle positioning in a tunnel. 
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The IMM-STEKF algorithm is proposed to realize the fusion of the data from the preliminary 

positioning results and the low-cost in-vehicle sensors. The output frequency of fusion positioning is 

increased to 10 Hz from the 1 Hz value of the preliminary positioning. Meanwhile, the fusion 

algorithm can provide the speed and attitude information which RFID was unable to provide. The 

constant acceleration (CA) and constant turn (CT) models are adopted to represent two typical vehicle 

movements, i.e., straight line and curvilinear motions, respectively. In the actual implementation of 

specific filtering of IMM, the STEKF algorithm is developed to replace the conventional EKF. For the 

vehicle, compared to the conventional EKF, it has the following advantages: (1) strong robustness 

toward changes of the actual system parameters during the vehicle operation process; (2) strong 

tracking ability during the mutation driving status; (3) lower sensitivity to system noise, measurement 

noise and the initial statistical properties [6,36]. By combining estimates from individual model-based 
STEKFs using the interacting process of the IMM filter, the fusion algorithm improves the accuracy 

and output frequency of positional information over a wide range of driving conditions in tunnels. 

3. Preliminary Positioning Algorithm Based on RFID in the Tunnel 

3.1. System Setup 

An active RFID reader is installed on the top of the vehicle, and active RFID tags are placed on the 

both side walls of the tunnel, as shown in Figure 2. On each side, the tags are placed at regular 

intervals which is set according to the characteristics of the reader and tags to ensure at least four tags 
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can be detected by reader at any moment. The exact position of each tag can be determined 

beforehand, and the position of the reader can be considered as the position of the vehicle. 

Figure 2. The RFID tag layout style. 
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3.2. The Distance Estimation Based on RSS 

It seems that the first challenge of the two-step algorithm for preliminary positioning is how to 

mathematically model the relationship between the RSS and the distance. Theoretically, a propagation 

model can be applied to calculate the distance between the RFID reader and a tag according to the 

signal strength of the RFID tags. In unobstructed free space, the Friis transmission equation [23] shows 

that the signal strength level decreases at a rate inversely proportional to the distance traveled: 

2

2 216
t r

r t

G G
P P

L r

λ
π

=  (1)

where Pr is the power received by receiver antenna, Pt is the power input to transmitter antenna, Gt is 

transmitter antenna gain, Gr is receiver antenna gain, L is system loss factor, λ is wavelength, and r is 

the distance between transmitter antenna and receiver antenna. Based on this relationship, we can 

estimate the distance between the RFID tag and the reader if the RSS is known. In real world 

applications, the parameters of this model must be determined in a specific environment by statistical 

analysis of the experimental data.  

3.3. The Preliminary Positioning Algorithm Based on RFID 

The second step is how to estimate the vehicle position based on the distances between reader and 

tags. For indoor location, the most widely used method is so-called multilateration method [23,25–27]. 

However, the values of calculation distance usually have a great error due to the failure of tags, which 

may cause large positioning errors. To solve the problem discussed above, a LMS-federated filter is 

designed as shown in Figure 1. In the federated filter, each local filter is a LMS filter. Assuming that 

the RSSs of N tags can be measured by the reader at the time k, the distance between each RFID tag 
and the reader, 1 2, ... Nr r r , can be calculated by Equation (1). To improve the accuracy of estimation 

distance, N local LMS filters are designed to further estimate the distances, as 1 2ˆ ˆ ˆ, ... Nr r r . Then the least 
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squares (LS) algorithm is employed to estimate the position of reader, LSX̂ . LSX̂  is filtered by using the 

global LMS filter, and the final estimation of position, RFIDX̂ , is output at time k. By utilizing RFIDX̂ , the 

distances between reader and tags, 1 2ˆ ˆ ˆ, ...g g gNr r r , and the information distribution coefficients, 

1 2, ...g g gNu u u , are recalculated to update each local LMS filter. The significant advantage of this 

algorithm is that any false information from tags can be effectively isolated because of the federated 

filter structure. 

LMS filter is a transverse filter [37]. mi is the transverse dimension of the i-th LMS filter. In each 
discrete time k, j

iv  (j = 0, 1,…, mi−1) represents the input of the i-th LMS filter at the moment (k-j). 

( )i kz  indicates the output of the i-th LMS filter at the moment k. Let:  

( ) 10 1 ... ... imj
i i i i ik v v v v − ′ =  v  (2)

The transverse weighted vector of the i-th LMS filter, ( )i kw , is defined as: 

( ) 10 1 ... im
i i i ik w w w − ′ =  w  (3)

The calculations in the LMS filter algorithm at each step k are as follows: 

( ) ( ) ( )i i ik k k′=z w v  (4)

( ) ( ) ( )i i ik k k= −e d z  (5)

( ) ( ) ( ) ( ) ( )1i i i i ik k k k k+ = +w w u v e  (6)

Assuming that (xi, yi) are the coordinates of the i-th tag, the coordinates of the reader estimated by 

LS algorithm is:  

( ) ( ) ( )LS LS LS
ˆ ˆ ˆk x k y k ′=   X  (7)

And the finally estimation result of coordinate vector by global LMS filter is:  

( ) ( ) ( )RFID RFID RFID
ˆ ˆ ˆk x k y k ′=   X  (8)

For each LMS filter, the values of variables are different in Equations (4)–(6). Let i = 0, 1, 2…, N,  

i = 0 represents the global filter, and i = 1, 2,…, N represent the local filters, respectively. 

When i = 1, 2,…, N:  

( ) 10 1 ... ... imj
i i i i ik r r r r − ′ =  v  (9)

( ) ( )î ir k k= z  (10)

( ) ( )ˆi gik r k=d  (11)

( ) ( )i gik u k=u  (12)

( )( ) ( )( )2 2

RFID RFIDˆ ˆ ˆgi i ir x n x y n y= − + −  (13)
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When i = 0,  

( ) 0 10 1
0 LS LS LS LS

ˆ ˆ ˆ ˆ... ... mjk − ′ =  v X X X X  (14)

( ) ( )( )RFID 0
ˆ k k ′=X z  (15)

( ) ( )( )0 RFID
ˆk k p

′= −d X  (16)

( )0 1k ≤u  (17)

where LS
ˆ jX  is the estimation result by the LS at the moment (k-j), ( )0 ku  and p are the filter 

parameters, ( )0iw is the initial weight of the i-th filter and can be set as: 

( ) [ ]0 1 1 ...1i im′=w  (18)

( )gi nu is information distribution coefficients at the moment k. ( ) ( )1 ...g gNk k  u u  can be 

designed as normalized vector: 

( ) ( )
( )

( ) ( )
( )

1 1

1

ˆ ˆ ˆ ˆ
...

ˆ ˆ
g N gN

g gN

r k r k r k r k

r k r k

 − −
 
  

 (19)

The LS algorithm at each step k can be described as follows: 

( ) ( ) ( )1

RFID 1
ˆ ˆk r

−′ ′= −X S S S λ ρ  (20)

where: 

2 1 2 1

1 1

... ...

N N

x x y y

x x y y

− − 
 =  
 − − 

S , 
2 1

1

ˆ ˆ

...

ˆ ˆN

r r

r r

− 
 =  
 − 

ρ , 

( )

( )

22 2 2 2
2 2 1 1 2 1

22 2 2 2
1 1 1

ˆ ˆ
1

...
2

ˆ ˆN N N

x y x y r r

x y x y r r

 + − − − −
 

=  
 

+ − − − −  

λ  

4. IMM-STEKF-Based Algorithm for Global Fusion 

Since the preliminary positioning algorithm utilizing only RFID has some deficiencies as discussed 

above, the in-vehicle sensors are introduced to fuse with the preliminary positioning results to further 

enhance the positioning performance in the tunnel. In practice, a single vehicle model can hardly 

represent all possible vehicle motions. Therefore, it is preferable to use multiple models to represent 

different vehicle motions. In the field of tracking or localization, there are many approaches to 

combine multiple models. Among them, the IMM approach has been proven to be effective and 

efficient. In this section, the IMM-based algorithm is proposed to realize the fusion of the results of  

RFID-based preliminary positioning and the in-vehicle sensors. In the actual implementation of IMM, 

the STEKF algorithm is developed to replace the conventional EKF and thus overcome the defects of 

the conventional EKF in present study, which can be used to solve the state estimation problem of a 

class of nonlinear systems with white noise [6]. 
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4.1. Vehicle Model Set 

For vehicles in a tunnel, typical motion patterns include straight line (acceleration or deceleration), 

curve, and lane change etc. Generally, these patterns can be represented by a combination of a  

straight-line model and a curvilinear model.  

To achieve a balance between model accuracy and computational complexity, the constant 

acceleration (CA) and constant turn (CT) models [34] are adopted in this paper to describe the  

straight-line and curvilinear motions, respectively. Both vehicle models have the same states as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )= e n e nk p k p k v k v k k kψ ω ′  X  (21)

where ( )ep k  and ( )np k  represent the east and north coordinates of the vehicle CoG in the global 

positioning frame (i.e., e-frame), respectively. ( )ev k  and ( )nv k  represent the east and north velocity. 

( )kψ  and ( )kω  represent the yaw angle and yaw rate. k is the discrete-time step. The CA model 

equation is shown as follows: 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

2

2

1 1 1 1

1
1 1 cos 1 sin 1

2

1 cos 1 sin 1

1
1 1 sin 1 cos 1, 1 1 ,

2

1 sin 1 cos 1

1

0

e e x y

e x y

n n x y

n x y

p k v k T a k a k T

v k a k a k T

p k v k T a k a k Tk k k k

v k a k a k T

k

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ψ

  − + − + − − −  
 

 − + − − −  
 
  − + − + − + −− = − =   
 

 − + − + −  
 − 
  

X f X U (22)

where ( )1 ⋅f  denotes the process function of the CA model. T is the sampling interval. 

( ) ( )1 , 1 , 1k k k k− = −X X  and ( )1 x yk a a ′ =  U are the state and input vector, respectively. ax and ay 

denote the longitudinal and lateral accelerations in the vehicle body frame, which can be measured by 

the accelerometers. 

The CT model equation is shown as follows: 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( )

2 2 2 2

cos 1sin
1 1 1

1 cos 1 sin

1 cos sin
, 1 1 , 1 1 1

1 sin 1 cos

1

1

zz
e e n

z z

e z n z

z z
n e n

z z

e z n z

z

TT
p k v k v k

v k T v k T

T T
k k k k p k v k v k

v k T v k T

k T

k

ωω
ω ω

ω ω
ω ω

ω ω
ω ω

ψ ω
ω

 − 
− + − + − 

 
 − − −
 

− − = − = − + − + − 
 

− + − 
 − + 
 − 

X f X U (23)

where ( )2 ⋅f  denotes the process function of the CT model. ( ) ( )2 , 1 , 1k k k k− = −X X  and 

( ) [ ]2 zk ω=U are the state and input vector, respectively. zω  is the yaw rate which can be measured by 

the yaw gyro. 
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4.2. Observation Model 

As shown in Figure 1, the observation information comes from two sources, i.e., RFID preliminary 

positioning results and the data from in-vehicle sensors. The observation equation can be established as 

( )

( )
( )

( ) ( ) ( ) ( )
( )

cos sin

e pe

n pn

e n v

p k n

p k n
k

v k k v k k n

k nψ

ψ ψ
ψ

 + 
 + = =    + +
 

+  

Z h X  (24)

where RFID RFID wheel compassx y v ψ ′ =  Z  is the observation vector and h is the corresponding 

observation function. RFIDx  and RFIDy  are the east and north positions observed by the RFID, wheelv  is 

the longitudinal linear velocity in the vehicle body frame, which can be calculated by wheel speed 
sensors, compassψ  is the observed yaw angle by the electronic compass. pen , pnn , vn  and nψ  denote the 

corresponding observation noise vectors with the assumption of the zero-mean and Gaussian distribution.  

4.3. Global Fusion Algorithm Based on IMM-STEKF 

Using the vehicle model set and observation model discussed above, the IMM-STEKF algorithm is 

used to achieve a precise estimation of the vehicle’s position in the tunnel. The IMM algorithm mainly 

includes the following four steps, as shown in Figure 3. 

Figure 3. The IMM-STEKF algorithm. 

( ) ( )1 1
ˆ 1 , 1k k− −X P ( ) ( )2 2

ˆ 1 , 1k k− −X P

( ) ( )2 2
ˆ ,k kX P( ) ( )1 1

ˆ ,k kX P

( ) ( )ˆ ,k kX P
 

(1) Interaction: 

The individual filter estimate ( )ˆ 1i k −X of the i-th vehicle model (i = 1,2) is mixed with the other 

data using the predicted model probability μi(k−1), and the Markov transition probability jiπ , i.e., the 

probability that the transition occurs from state j to state i:  
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( ) ( ) ( )
2

1

, 1 1 1, 2i ji j
j

k k k iμ π μ
=

− = − =  (25)

The mixing weight is given by: 

( ) ( ) ( ) ( )1 1 , 1 , 1, 2ji j ij i k k k k i jμ π μ μ− = − − =  (26)

The mixing of the state estimates ( )ˆ 1j k −X and theirs covariances ( )1k −P can be computed as: 

( ) ( ) ( ) ( )
2

1

ˆ1 1 1 1,2i jj i
j

k k k iμ
=

− = − − =X X  (27)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1

ˆ ˆ1 1 1 1 1 1 1 1, 2i j i j i jj i
j

k k k k k k k iμ
=

 ′   − = − − + − − − − − − =     
P P X X X X (28)

(2) Model individual filtering based on STEKF 

Each filter predicts and updates its state and covariance by using its corresponding model. Rather 

than EKF, the STEKF is adopted to execute this step in the present study because the performance of 

conventional EKF can be easily influenced by improper input data. Sub-optimal fading factors are 

introduced into the nonlinear smooth algorithm in the STEKF algorithm. For the model described by 

Equations (22)–(24), the specific algorithm of STEKF can be illustrated as follows: 

( )ˆ ( , 1) ( ( 1), ( )) 1, 2i i i ik k k k i− = − =X f X U  (29)

( ) ( )ˆ( ) ( ) ( , 1) 1,2i ik k k k i= − − =g Z h X  (30)

( )( , 1) ( , 1) ( 1) ( , 1) ( , 1) ( 1) ( , 1) ( )i i i i i i i i ik k k k k k k k k k k k k kλ ′ ′− = − − − + − − − +P A P A B Γ B Q
 (31)

[ ] ( )1
( ) ( , 1) ( ) ( ) ( , 1) ( ) ( ) 1,2i i ik k k k k k k k k i

−′ ′= − ⋅ ⋅ − + =K P H H P H R  (32)

( )ˆ ˆ( ) ( , 1) ( ) ( ) 1,2i i i ik k k k k i= − + =X X K g
 (33)

[ ] ( )( ) ( ) ( ) ( , 1) 1,2i i ik k k k k i= − ⋅ ⋅ − =P I K H P
 (34)

where ( , 1)i k k −A and ( , 1)i k k −B are the Jacobian matrices of the process function ( )i ⋅f  with respect 

to iX  and iU , ( , 1)i k k −P is the covariance of the state prediction, ( 1)i k −Γ  and ( )i kQ  are the 

covariance matrices of the process noise and the input noise, respectively. ( )i kK  is the Kalman gain 

associated with the
 
observation sensors, ( )kH  is the Jacobian matrice of the observation function, 

( )kR  is the covariance matrix of the measurement noises, ( )i kP  is the estimation error covariance. 

( ) ( ) ( ) ( )1 2= [ , 2 ,..., ]i i i imk diag k k kλ λ λ λ  is time-varying fading matrix; ( )( )1, 2,...,ij k j mλ =  are time 

varying fading factors. Based on the orthogonal principle of new information sequence, how to 

determine the time varying fading factor can be summarized to an unconstrained multivariate  
non-linear programming problem. The approximate calculation method of ( )ij kλ is shown as follows: 

( ) 0 0

0

1
=

1 1
i i

ij
i

k
λ λ

λ
λ

≥
 <

,

,
 (35)
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where: 

( ) ( )0 =i i itr k kλ       N M  (36)

( )
( ) ( )

( ) ( ) ( ) ( )
0 0 0

1 1 1

i i

i

i i i

g g k
k

k g k g k kρ ρ

 ′ ==  ′− + + ≥ 

S
S

 (37)

( ) ( ) ( ) ( ) ( ) ( )1 1 1i i ik k k k k kβ′= − − − − −N S H Q H R  (38)

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1i i i ik k k k k k′ ′= − − − − −M H A P A H  (39)

where 0 1ρ< ≤  stands for forgetting factor. 1β ≥  stands for softening factor. In this paper, ρ  and β  

are selected by experience. When the state mutated, the error variance matrixes ( )i kS  increased due to 

the accretion of estimation error ( ) ( )i ig k g k′ , then the corresponding time varying factor is increased 

and the tracking ability of filter will be enhanced.  

(3) Model Probability Update 

Each model probability is updated according to the innovation error. Assuming Gaussian statistics, 

the likelihood for the observation can be calculated as follows: 

( ) ( )( ) ( )
( )

( )

11 ˆ ˆexp ( ) ( , 1) ( ) ( , 1)
2

( ) 1,2
2

i i i

i

i

k k k k k k k

k i
kπ

− ′   − − − − −     Λ = =
Z h X S Z h X

S
 (40)

The
 
model probability update is calculated as: 

( ) ( ) ( )
( ) ( )

( )2

1

, 1
1,2

, 1

i i
i

j j
j

k k k
k i

k k k

μ
μ

μ
=

− Λ
= =

− Λ
 

(41)

Note that in Equation (41), 1μ  is the model probability of CA, while 2μ  denotes the model 

probability of CT. in other words, 1μ  and 2μ  can represent the degree of dependence on the CA model 

and the CT model, respectively.  

(4) Combination 

The combined state ( )ˆ kX  and its covariance matrix ( )kP  can be calculated as: 

2

1

ˆ ˆ( ) ( ) ( )i i
i

k k kμ
=

=X X  (42)

( ) ( )
2

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i i i i
i

k k k k k k kμ
=

 ′   = + − −     
P P X X X X

 (43)



Sensors 2014, 14 23107 

 

 

5. Experimental Results 

To verify the positioning performance of the proposed strategy, experiments were conducted on a 

Buick Sail SRV vehicle. It was equipped with Crossbow MEMS-based IMU-440 inertial sensors 

sampled at 100 Hz as well as wheel speed sensors sampled at 100 Hz and an electronic compass 

sampled at 10 Hz. The sensor accuracies (1σ) are 0.1 m/s2 for the accelerometers, and 0.2 °/s for the 

yaw rate sensor. Moreover, an accurate differential GPS (DGPS) NovAtel L1L2/RT2 was used as a 

reference for performance evaluation. In the experiment, the RFID hardware devices, as shown in 

Figure 4, included one NWR-01 RFID reader with an antenna, and a number of NWI-01 active RFID 

tags (417.05~435.9 MHz, −8~13 dBm).The RSS range of tag is normalized to 0–255, and the 

maximum measured distance of tag is 9 m. 

Figure 4. RFID hardware devices for the vehicle positioning experiment. 

 

Because of experimental condition limitations, the simulated tunnels were set in an outdoor open 

space where the reference trajectory can be obtained by DGPS. The width of the tunnels are set to  

7.5 m according to the width of two-lane tunnel, and the shapes of the tunnels are respectively set to 

the straight and curve in order to evaluate the performance of IMM algorithm, as shown in Figure 5. 

Figure 5. Setting the shapes of the tunnels: (a) Straight tunnel (b) Curved tunnel. 
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In Figure 5, the “*” symbols represent the active RFID tags which are placed on both sides of the 

tunnel edge. The gap along the direction of the tunnel between adjacent tags is about 6 m. During the 

experiments, all sensor data were collected, and then the positioning algorithms were evaluated using 

the logged data. 

5.1. Modeling of the Relationship between RSS and Distance 

In different situations (such as the laboratory, outdoor test site and tunnel), we fit the curve that 

shows the relationship of RSS with distance between the reader and the active tag using Equation (1). 

The RSSs are collected at different distances between the tag and the reader. In 0–1.5 m range, the 

collection gap is 0.1 m, and in the 1.5–9 m range, the collection gap is 0.25 m. There are four tags at 

each same collection location, and the collection time is 5 min. The average value of RSS is considered 

as the true RSS value of this location. The fitting results of the relationship between RSS and distance 

at the outdoor test site are shown in Figure 6. The mean and standard deviation (STD) of the RSS 

fitting errors in different situations are shown in Table 1. 

Figure 6. The fitting results of the relationship in outdoor test site. 
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Table 1. The mean and standard deviation of the RSS fitting errors in different situations. 

Situation Mean  STD 

Laboratory 0.8112 8.1897 
Outdoor test site −0.5478 8.2784 

Tunnel 1.3741 10.4355

5.2. Performance of RFID-Based Preliminary Positioning Algorithm 

To evaluate the effect of the preliminary positioning algorithm (abbreviated as LMS-Federated) 

discussed above, the multilateration method [23,25–27] is also investigated for comparison. The 

multilateration method is the most widely used method for indoor location. Figure 7 shows the 

schematic of 2-D localization using multilateration, and it can be easily extended to 3-D space. 
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Figure 7. Schematic of the multilateration method. 
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From Figure 7, if there are i tags (i >= 3) with known coordinates (xi, yi), and the distances between 

the reader with unknown coordinates (x, y) and tags are estimated to be ri, we can obtain: 

( ) ( )
( ) ( )

( ) ( )

2 22 2 2
1 1 1

2 22 2 2
2 2 2

2 22 2 2

...

i i i

r x x y y

r x x y y

r x x y y

 = − + −

 = − + −




= − + −

 (44)

Figure 8. The vehicle trajectories. 
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Figure 9. The east and north positioning errors. 
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By solving this equation group, the coordinates of the reader can be calculated. The reference and 

estimated vehicle trajectories in an experiment are shown in Figure 8, the east and north positioning 

errors are shown in Figure 9.  

From Figures 8 and 9, it can be seen that the performance of LMS-Federated is obviously improved 

compared with that of multilateration. However, From Figure 9, we can find that the positioning errors 

are large when the vehicle is outside the tunnel (0–15 s), because the reader can’t detect enough tags in 

these areas, i.e., the number of tags is less than 3. Table 2 shows statistics of Euclidean distance errors 

when the vehicle is driving in the tunnel (15–80 s). 

Table 2. Statistics of Euclidean distance errors (unit: m). 

Algorithm  Max RMS

LMS-Federated 7.33 3.01 
multilateration 11.17 5.72 

From Table 2, we can find that when the vehicle is driving in the tunnel, the RMS value of 

Euclidean distance error of LMS-Federated algorithm is decreased to 3.01 m, i.e., about 47% accuracy 

improvement over the multilateration method. The reason is that the accuracy of the estimated distance 

between reader and tags can be improved by the local LMS filter, and the error or failed RSS 

information from tags can be effectively isolated. 

This performance can meet the positioning requirement of actual driving situations since the GPS is 

available outside the tunnel. Further statistics and analysis of the preliminary positioning results will be 

described in the next section. 
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5.3. Evaluation of IMM-STEKF-Based Fusion Positioning Performance 

5.3.1. Straight Line Driving Test 

For preliminary validation and evaluation of the performance of proposed fusion positioning 

algorithm, a total of nine straight line driving tests have been carried out, and the additional 

comprehensive tests are described in Section 5.2.2. The straight line driving test situations include 

acceleration, deceleration and uniform motion under different vehicle speed conditions. For brevity, 

only one test is shown here as an example because similar conclusions can be reached from the other 

tests. The time of the test is 81 s, and the frequency of RFID-based preliminary positioning is 1 Hz. 

The reference and estimated vehicle trajectories in the experiment are shown in Figure 10. Figure 11 

gives the positioning errors of the proposed preliminary positioning based on LMS-federated filter 

(abbreviated as RFID-based) and the global fusion positioning (abbreviated as IMM-based).  

Figure 10. The vehicle trajectories. 
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Figure 11. The east and north positioning errors. 
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From Figure 10, it can be seen the estimated position of vehicle is approximately the reference 

position. From Figure 11, we can find that the preliminary positioning errors are large when the vehicle 

is outside the tunnel (0–5 s and 75–81 s), and when the vehicle is driving in the tunnel (6–74 s), the 

positioning error is relatively small. The mean and standard deviation of the east and north positioning 

errors are shown in Table 3. Table 4 gives the Euclidean distance error statistics (i.e., horizontal 

position errors). In order to illustrate the effectiveness of the fusion algorithm for positioning in the 

tunnel, the positioning performances at the stage when the vehicle driving in the tunnel completely (6–74 s) 

are listed separately in Tables 3 and 4. 

Table 3. The mean and standard deviation of east and north positioning error (unit: m). 

Test Scenario 

RFID-Based Preliminary Positioning IMM-Based Fusion Positioning

East Errors North Errors East Errors North Errors 

Mean STD Mean STD Mean STD Mean STD 

Whole Test (1–81 s) 1.39 0.86 4.18 4.75 1.31 0.29 1.63 0.56 
In tunnel test (6–74 s) 1.21 0.84 2.35 2.32 1.20 0.38 1.50 0.47 

Table 4. Statistics of the Euclidean distance errors in different tests (unit: m). 

Test Scenario 
RFID-Based Preliminary Positioning IMM-Based Fusion Positioning

Max RMS Max RMS 

Whole Test (1–81 s) 19.01 4.64 3.90 2.12 
In tunnel test (6–74 s) 8.57 2.82 2.87 1.73 

From Figure 11 and Table 3, we can find that the east and north positioning errors are greatly 

reduced whether outside or in the tunnel by using the IMM-based fusion algorithm. From Table 4, it 

can be seen that the positioning accuracy of IMM-based fusion algorithm is obviously improved 

compared with that of the RFID-based preliminary positioning algorithm. For instance, in 6–74 s when 

the vehicle is driving in the tunnel, the RMS value of the Euclidean distance error of the IMM-based 

algorithm is decreased to 1.73 m, i.e., about 39% accuracy improvement over the RFID-based 

algorithm. The reason is that the in-vehicle sensors provide more accurate and richer vehicle state 

information to correct the preliminary positioning errors. Meanwhile, the preliminary positioning results 

are used as the position observations to compensate the accumulation errors of the in-vehicle sensors. 

The experiments results show that the IMM-STEKF-based fusion algorithm can achieve better 

performance than the RFID-based preliminary positioning algorithm. Due to the in-vehicle sensors, the 

velocity and heading angle information can be provided by the fusion algorithm, and the positioning 

frequency of fusion algorithm is increased to 10 Hz from the value 1 Hz of the RFID-based algorithm. 

5.3.2. Comprehensive Test 

To further validate and evaluate the performance of the proposed fusion positioning algorithm 

(abbreviated as IMM), the comprehensive test scenario containing a straight line situation and a 

curvilinear situation is set, as shown in Figure 5b. The following representative methods are also 

investigated for comparison. 
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(1) The proposed preliminary LMS-federated filter-based positioning method only using RFID 

(abbreviated as RFID). 

(2) The dead reckon method using the low-cost Crossbow MEMS-based IMU-440 inertial 

sensors sampled at 100 Hz, as well as wheel speed sensors sampled at 100 Hz and an 

electronic compass sampled at 10 Hz. (abbreviated as DR). 

(3) The EKF fusion positioning algorithm (abbreviated as EKF). This method uses the single 

model (CA model) to realize the fusion of the data from RFID-based preliminary positioning 

and the in-vehicle sensors.  

(4) The STEKF fusion positioning algorithm (abbreviated as STEKF). This method uses the 

single CA model to realize the fusion.  

A total of 12 comprehensive tests have been carried out. For brevity, only one test is shown here as 

an example because similar conclusions can be reached from the other tests. The vehicle trajectories in 

the comprehensive test are shown in Figure 12. 

Figure 12. The reference and estimated vehicle trajectories in comprehensive test. 
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Table 5. The positioning performance of different methods. 

Method 

Statistics of Euclidean  
Distance Errors (unit: m) 

Velocity 
Information

Positioning Frequency 
(unit: Hz) 

Max RMS 

RFID 12.43 4.50 No 1 
DR 9.48 4.04 Yes 10 
EKF 5.77 3.62 Yes 10 

STEKF 3.16 2.31 Yes 10 
IMM 2.03 1.45 Yes 10 
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Table 5 gives the performances of the five positioning methods, RFID, DR, EKF, STEKF and 

IMM. They include the statistics of Euclidean distance errors (i.e., horizontal position errors), the 

positioning frequency and the velocity information. 

From Table 5, we can find that five methods exhibit different positioning performance. It is clear 

that the RFID has the worst positioning performance, i.e., both the maximum and RMS values of its 

Euclidean distance error are the largest. The reason is that the RFID reader can’t detect enough tags at 

the stage when the vehicle is driving outside the tunnel (0–5 s and 70–76 s).  

To verify the positioning performance in the tunnel, we will firstly compare and discuss of RFID, 

STEKF and IMM. Table 6 shows statistics of the Euclidean distance errors when the vehicle is driving 

in the tunnel (6–69 s). Figure 13 illustrates the east and north positioning errors of the three methods. 

Table 6. Statistics of the Euclidean distance errors when the vehicle is driving in the tunnel. 

Method 
Statistics of Euclidean Distance Errors (unit: m) 

Max RMS 

RFID 6.70 3.18 
STEKF 2.98 2.19 
IMM 2.07 1.44 

Figure 13. The east and north positioning errors in the comprehensive test. 
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From Table 6 and Figure 13, we can find that the positioning accuracy of STEKF is obviously 

improved compared with RFID. For example, the RMS value of the Euclidean distance error of 

STEKF is reduced to 2.19 m from the 3.18 m value of RFID. The reason is that the in-vehicles sensors 

provide more accurate and richer vehicle state information for fusion positioning, which can 

remarkably improve the system observability and enhance the positioning reliability. However, since 

the STEKF only uses a single model, its performance is still poor when the actual driving situation is 

different from the driving situation of the model. 
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The IMM can achieve better performance than the STEKF, especially when there exists a 

curvilinear driving situation. For instance, the RMS value of the Euclidean distance error of IMM is 

decreased to 1.44 m, i.e., about a 34% accuracy improvement over STEKF. These results verify the 

effectiveness of the IMM algorithm. This can be attributed to the fact that the CT model of IMM is 

adapted to the curvilinear driving, and the IMM algorithm can adaptively switch to the CT model when 

the vehicle is driving in the curve. The STEKF only uses the CA model and is unsuited to the 

curvilinear driving situation. The errors of STEKF are obviously larger than that of IMM when the 

vehicle driving in the curve, as shown in Figure 13 (after 35 s). 

Therefore, among the three methods the IMM one achieves the optimal accuracy and reliability. 

Compared with RFID, IMM provides a significant performance improvement, e.g., over 55%. Its 

positioning frequency is increased to 10 Hz from the value 1 Hz of RFID, and the velocity information 

can be provided. 

As can be seen in Table 5, the STEKF method has the better positioning performance than EKF 

since there are unrealistic uncertainties in the noise description in the experiments. The DR has worse 

positioning performance due to the accumulated errors. The proposed IMM method can remarkably 

improve the system observability by using the RFID-based preliminary positioning results to 

compensate the accumulated errors.  

The low-cost GPS is the most widely used vehicle positioning sensor with accuracies (1σ) of about  

3 m for position. From Table 5, we can find that the positioning accuracy of IMM is approximately the 

same as that of low-cost GPS with higher frequency. The positioning performance of the proposed 

strategy can meet the requirements of vehicle positioning in tunnels when low-cost GPS is unavailable. 

6. Conclusions 

To realize accurate and reliable positioning for vehicles in tunnels, this paper has presented a  

multi-sensor fusion strategy, which integrates low-cost sensors, including MEMS-based inertial 

sensors, wheel speed sensor, electronic compass, and RFID.  

In the proposed strategy, both a RFID-based preliminary positioning algorithm and IMM-STEKF-based 

global fusion algorithm have been developed. First, a LMS-Federated filter is designed to obtain 

preliminary position information as the observation for the subsequent global fusion. Further, the 

IMM-STEKF algorithm has been proposed to realize the global fusion. The IMM-STEKF algorithm is 

designed to fusion multiple observation sources with different sample rates to achieve better 

performance. Through real-world experiments, the proposed strategy has been evaluated and compared 

with other representative methods. For the proposed strategy, the effectiveness of both its  

RFID-based preliminary positioning and global fusion algorithms has been comprehensively verified. 

During GPS outages in the tunnel, the proposed strategy has shown more obvious advantages and 

achieved more accurate and reliable performance compared with other methods. 

The proposed vehicle positioning strategy in tunnels can be adapted to other GPS-denied 

environments such as urban areas. It should be noted that, the experiments have only been conducted 

in an outdoor environment rather than the real enclosed environments due to the limitations of our 

experimental conditions. In the enclosed environments, the multipath phenomenon may seriously 
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affect the positioning performance. Our future work will be concerned with how to solve this problem, 

and how to reduce the number of tags for cutting costs with very little sacrifice of accuracy. 
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