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Abstract: The road transportation sector is responsible for around 25% of total man-made 

CO2 emissions worldwide. Considerable efforts are therefore underway to reduce these 

emissions using several approaches, including improved vehicle technologies, traffic 

management and changing driving behaviour. Detailed traffic and emissions models are 

used extensively to assess the potential effects of these measures. However, if the input and 

calibration data are not sufficiently detailed there is an inherent risk that the results may be 

inaccurate. This article presents the use of Floating Car Data to derive useful speed and 

acceleration values in the process of traffic model calibration as a means of ensuring more 

accurate results when simulating the effects of particular measures. The data acquired 

includes instantaneous GPS coordinates to track and select the itineraries, and speed and 

engine performance extracted directly from the on-board diagnostics system. Once the data 

is processed, the variations in several calibration parameters can be analyzed by comparing 

the base case model with the measure application scenarios. Depending on the measure, the 

results show changes of up to 6.4% in maximum speed values, and reductions of nearly 

15% in acceleration and braking levels, especially when eco-driving is applied.  
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1. Introduction 

1.1. Transportation Sector Emissions 

Greenhouse gas (GHG) emissions and overconsumption of energy resources pose a global problem, 

which concerns both their causes and consequences [1]. The transportation sector is one of the largest 

emitters despite the advances in the field of engine technology. According to statistics provided by the 

European Environment Agency [2], GHG emissions from the road transportation sector have started to 

decline, but still account for about 93% of the emissions attributable to the transportation sector, and 

approximately 20.4% of total emissions. This value is slightly higher than reported for other developed 

countries such as Japan [3]. In the US, the contribution of road transportation to total GHG emissions is 

even higher, reaching almost 22% [4]. The transportation sector accounted for 26% of global energy 

consumption in 2010, and transportation energy use is expected to increase by 1.1% every year from 

2010 to 2040 according to the International Energy Outlook 2013 Reference case [5]. 

In addition to the global problem of GHG emissions, another major public concern is air quality in 

urban areas. According to the European Environment Agency, during the period 1997–2008 up to 62% 

of the European population living in cities (70% of the total population) may have been exposed to 

concentrations of particulate matter, ozone or nitrogen dioxide above EU-established air quality limits. 

Transportation is widely recognized to be a significant source of air pollution, especially in metropolitan 

areas where urban transportation accounts for 70% of pollutants [6].  

In this context, much of the effort dedicated to reducing energy consumption and emissions has 

focused on the road transportation sector. The European Commission [7] proposes an integrated policy 

to tackle the problem from different approaches; these include particularly demand management,  

a shift to cleaner modes, improving vehicle technologies, traffic management, and the use of information 

and communication technologies (ICT). ICT applied to transportation (Intelligent Transportation 

Systems, or ITS) is a broad field that has the potential for producing positive effects on efficiency, 

safety, comfort and the environment [8]. 

1.2. Modelling and Simulation of Road Traffic Emissions 

The implementation of certain ITS on roads and in vehicles may entail major investments, and it is 

therefore crucial to predict their potential impacts in advance. Ex-ante modelling is a very cost-effective 

tool which can be useful in selecting the best design, thereby avoiding unnecessary on-site tests.  

The simulation process in the case of emissions assessment requires a combination of traffic and emission 

models, which is not a straightforward process. 

Fuel consumption and emissions models can be classified based on their level of aggregation. 

According to Treiber and Kesting [9], these range from aggregated models normally used for national 

or regional emissions inventories, to the most microscopic modal emission models.  
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From a macroscopic point of view it can be assumed that demand, fleet composition and average 

speed determine the level of emissions [10]. However, a detailed look at each vehicle reveals that 

acceleration and deceleration processes and engine performance also play a critical role [11].  

In this framework, the ICT-Emissions research project [12] aims to find a methodology to produce  

a detailed simulation of the effects of a number of ITS measures on emissions. Evidently each of the 

ICT measures considered affects not only the traffic flow, but also the vehicle dynamics and driving 

behaviour, and thus has a considerable influence on fuel consumption and emissions. The impact 

assessment must therefore be based on detailed models such as speed profile models, as shown in this 

research. Minor changes in acceleration or speed levels may cause considerable variations in emission 

rates, which makes the need for accuracy paramount when building and calibrating micro traffic models. 

Micro traffic models are traditionally calibrated with aggregated traffic data such as average speed 

and traffic flow [13], which may not reflect changes in individual driving behaviour, and thus in fuel 

consumption and emissions. Calibration processes including real vehicle trajectories have become 

more common in recent years, although few methodologies are available in the scientific literature. 

Worth noting is the work of Treiber and Kesting, who present a systematic approach to the whole 

calibration process, which includes the use of Floating Car Data (FCD) and Extended Floating Car 

Data (xFCD) [14]. A number of other authors investigate the validity of car-following models using 

FCD; Punzo and Simoneli [15] compared different car-following models with real data obtained from 

floating cars driving in platoons, similar to the methodology used in [16]. Along the same lines, 

Kesting and Treiber [17] focused their research on the calibration of car-following models by means of 

floating vehicles equipped with front radar.  

All these studies provide interesting results on the validity of these models under general driving 

conditions and behaviours. In the present article, FCD is used to analyse the impact of certain ITS measures 

on driving patterns. 

This paper is organized as follows: after explaining the research objectives and methodology  

(Section 2), Section 3 outlines the tracking and data collection campaign, the measures tested and the 

data processing. Section 4 briefly describes the traffic micro simulation tools and their calibration 

parameters. The results of the data analysis and discussion are presented in Section 5. The article ends 

with some conclusions and final remarks in Section 6. 

2. Objectives and Methodology 

As mentioned in the previous section, the accuracy of the speed and acceleration values is critical 

when calculating road traffic emissions at the micro scale. The level of accuracy is even more 

important in the simulation process of certain ITS measures, as it could affect some of the model 

parameters that would otherwise be considered fixed.  

This research therefore aims to analyse the changes in some key variables of real speed profiles as  

a result of applying certain measures to traffic, vehicles and drivers. The methodology is based on 

tracking equipped vehicles, and the results serve as a reference for adjusting the simulation parameters 

in other application areas with similar characteristics.  

In summary, the methodology comprises the following steps, which will be explained in detail in 

the sections below:  



Sensors 2014, 14 21361 

 

 

- Selection and description of application sections and measures to be tested 

- Tracking and data collection methodology 

- Trip performance and Floating Car Data acquisition 

- Data processing  

- Calculation of the speed profile variables applicable in the calibration process of the traffic 

micro simulator  

- Comparison of results between the base case and the different application scenarios. 

3. Data Collection and Processing 

3.1. The Case Study of Madrid 

Madrid is a city of about 3.5 million inhabitants, with 6 million in its greater metropolitan area.  

The city is surrounded by three ring motorways: M-30, M-40 and M-50, this last incomplete. The 

renovation works on the inner M-30 ring, also known as Calle30, were completed in 2007 with the aim 

of improving traffic performance, reducing pollutant levels and creating new public spaces [18]. Now the 

ring is a 3 + 3 lane (depending on the sections) urban motorway which extends for 38 km, including  

12 km of tunnels. The road is equipped with the most advanced ICT-based equipment such as variable 

message signs, traffic sensors and vision cameras, which allows stakeholders to collect real-time 

information. All this equipment is managed from a 24-h control centre. 

The speed limit is 90 km/h in surface sections, except for about 3 km of the north section which is  

a signalized urban avenue where the speed limit is 50 km/h. The speed limit in the tunnel sections is  

70 km/h. The average daily traffic ranges from 65,000 to 265,000 vehicles/day, depending on the section, 

which implies traffic control measures, as well as safety problems. We decided to focus the Madrid 

case study on ICT measures applicable to motorway sections and adjacent areas with the aim of 

improving traffic performance, safety and emission levels. 

3.2. Review of Tested Measures in the Case Study of Madrid 

Four different measures were selected for testing in the Madrid case study. Two measures affect 

only individual vehicles: eco-driving affects driving behaviour, while cruise control is related to vehicle 

technology. The other two measures involve traffic control and management and depend on the 

available ITS installations in the road network. We selected Section Speed Control and Variable Speed 

Limits on account of their availability for experimentation. The following paragraphs contain the 

definition and a short review of other experiences for each of the measures, while the results are shown 

in Section 5. 

- Section Speed Control 

Section Speed Control (point-to-point speed control or average speed control) is a measure designed 

primarily to improve road safety, although it may also have effects on traffic performance and emission 

levels. The number plates of each vehicle entering a section (usually one without intersections) are read 

and stored at the beginning and end of the section. By measuring the time elapsed, average speed is 
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calculated for each vehicle, and drivers exceeding the legal speed limit are sanctioned in accordance 

with applicable regulations. 

Apart from road safety, these systems also have an impact on emissions as they prevent speeding, 

and make traffic flow more uniform. Soole et al. [19] collected studies showing that CO2 emissions are 

reduced by 11% to 29% on certain motorway sections in the United Kingdom, with a considerable  

but variable reduction in vehicles travelling at over the speed limit; while more modest fuel savings of 

about 5% are estimated in the Naples area (Italy) [20].  

- Variable Speed Limits 

Variable speed limits (in this case also called dynamic speed limits) use real-time data (intensity, 

speed, environmental conditions and so on) to dynamically change the speed limit, adapting it to the 

circumstances of the road and its environment. Through a control centre and variable message signs, 

drivers are informed of both recommended and mandatory speed limits. This system is often used on 

highways with high traffic levels and/or highly variable weather conditions. Under various scenarios 

based on simulation, Zegeye et al. [21] showed that potential fuel savings and CO2 emissions range 

between 3% and 20%, while savings in travel time and increases in throughput are summarised in [22]. 

- Cruise Control 

All driver assistance systems that influence speed control (or acceleration and deceleration processes) 

have effects on fuel consumption and emissions. Cruise control is a driver-activated control system 

that maintains a constant vehicle speed, avoiding unnecessary speed changes which cause additional 

fuel consumption. This measure is applicable only on high-capacity roads when the traffic intensity is 

relatively low. According to the review of Klunder et al. [23], the potential reduction in CO2 emissions 

varies between 5% and 10%. 

- Eco-Driving 

Eco-driving is a driving style aimed at lowering fuel consumption and producing a proportional 

decrease in CO2 emissions. Eco-driving characteristics are generally well defined and easily typified 

and, according to Barkenbus [24], involve shifting up between 1500 and 2500 rpm (depending on engine 

technology), maintaining uniform speed as much as possible, anticipating traffic flow and traffic lights, 

reducing acceleration and deceleration, and avoiding engine idling. 

Driver learning and use of these techniques can be enhanced with on-board information systems 

such as FIAT eco:Drive [25] which indicate the ideal time to shift gear, or offer recommendations 

(feedback) after analysing the speed profiles. Eco-driving techniques are most useful in urban areas with 

high traffic densities and/or traffic signals, where fuel savings can be achieved without reducing 

average speeds or increasing average travel times. 

A number of studies place individual fuel savings at between 5% and 10%, and in some cases as 

much as 20% [25–27]. The variability of these data depends largely on the characteristics of the traffic 

and roads in each case study. The driver’s ability to learn these techniques and the vehicle’s sensitivity 

to minor changes in driving style may also have a significant influence.  
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3.3. Vehicle Tracking for Data Collection 

The data collection campaign took place in March and April 2013, in coordination with the 

Department of Traffic Technologies of Madrid. The main objective was to obtain vehicle-related data 

on various itineraries of the M30 ring motorway (itineraries 1, 2, and 3) and some adjacent urban 

streets (itineraries 4, 5, and 6) (Figure 1).  

Figure 1. Monitored itineraries in the data collection campaign in Madrid. 

 

As in the case of Madrid, many motorways and urban roads are equipped with cameras and 

induction loops which record traffic flow parameters such as intensity and average speed at certain 

points. This data may be enough to gain a picture of the general traffic conditions at a macro level, but 

it lacks the necessary level of detail to determine patterns at a micro level. 

The Floating Car Data method is used to determine traffic and vehicle parameters based on 

information collected from on-board devices. Floating cars work as moving sensors and do not require 

significant investment in instrumentation installed on the roadway. This method provides information 

about individual travel and driving behaviour, simultaneously complementing the information from 

other fixed on-road sensors.  

For many applications, the speed and GPS information recorded by smartphones may be enough. 

However, the vehicles participating in this campaign also provided information extracted from  

the on-board diagnostics (OBD) system, as engine parameters needed to be recorded for other  

project requirements.  

The methodology included the installation of an OBD key to extract data from each vehicle’s  

OBD system. This was used to record instantaneous speed, acceleration, fuel consumption (l/h down  

to a precision level of five significant digits) and revolutions per minute (rpm). This device is easily 
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installed by the user in the vehicle diagnostic port, and sends the data to a mobile phone via Bluetooth 

with a frequency of 1 Hz (Figure 2). 

Figure 2. Data collection process. 

 

Simultaneously, the mobile phone also recorded GPS coordinates every second. Finally, the data 

was extracted in .csv format using an application developed by CRF FIAT, one of the partners in the 

ICT-Emissions project. GPS coordinates were used to select itineraries and split composite trips into 

urban and motorway sections. There were nine drivers involved and the total number of recorded trips 

was approximately 3000, which translates into around 12,000 km travelled. The distribution of the 

total trips is summarised in the following table (Table 1). 

Table 1. Areas of implementation according to Figure 1, number of valid trips and average 

length per tested ICT measure. 

Areas ICT Measure Type of Section Number of Trips Average Length (km) 

1 Section speed control Motorway 488 5.8 
2 Variable speed limits Motorway 336 6.7 

1 + 2 + 3 Cruise control Motorway 27 21.3 
1 Eco-driving Motorway 218 5.8 
2 Eco-driving Motorway 162 6.7 
4 Eco-driving Urban 58 7.0 
5 Eco-driving Urban 162 2.8 
6 Eco-driving Urban 111 1.2 

Approximately 11% of the trips were initially rejected due to reception failure or inconsistent values. 

Once the selected itineraries were filtered, the remaining 1562 records were processed in order to obtain 

the values for 50 variables for each trip, calculated according to traffic and emissions literature [28,29]. 

Based on the instant speed values recorded, variables can be calculated for each trip, including maximum 

speed, mean speed, maximum acceleration, maximum deceleration, number of stops and so on, and 

other statistically derived values such as standard deviation, 95th percentile, among others. Idling time, 

average rpm, coasting time and other engine variables were also calculated as they are useful for 

further research into fuel consumption and emissions.  

Some of these variables can be considered direct inputs for traffic micro models, while others may 

be important during the calibration process, especially when assessing the effects of certain measures 

on emission levels. After the analysis of micro traffic models, Section 4.2 discusses the four selected 

variables in detail and their correspondence with traffic model parameters.  
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4. Traffic Models and Representative Parameters 

4.1. Traffic Simulation Models 

Traffic microscopic models describe the movements of individual vehicles as the result of individual 

disaggregate choices and interactions with other vehicles and with the road environment. Software tools 

simulate the driving behaviour of every single vehicle in every single time step based on different models: 

car following, lane change, route decision, speed and acceleration decisions, and so on. 

Traffic microscopic models require a large amount of detailed input. Some of the parameters of these 

models can be adjusted by the user as an initial model input or during the calibration process. This allows 

more accurate simulations in both the base case and in each specific scenario. 

Over the last decades, improvements in computer processing power have made possible the 

development of traffic microscopic models. At present, there are numerous software tools available 

using different approaches, both open source simulation packages like SUMO and commercial tools 

like AIMSUM, VISSIM, PARAMICS and TRANSMODELER. Although the approaches and behavioural 

models may differ, the principle of these tools is quite similar, as are the inputs and calibration parameters. 

The analysis in this article is based on two of the most widespread software tools: VISSIM and AIMSUM. 

VISSIM [30] is a microscopic, behaviour-based multi-purpose traffic simulation program. It is 

based on Wiedemann’s [31] car-following model with time steps as low as 1/10 second and a calibrated 

lane-changing model for urban and motorway/freeway traffic. Different driving behaviours (i.e., 

defensive/aggressive) are also supported in the model by adjusting the car-following and lane-change 

model parameters.  

The AIMSUN [32] microscopic simulator is one of the most widespread traffic micro-simulation 

software tools. It uses traffic flows or Origin-Destination matrices, and allows an easy calibration process 

through the use of local parameters. It is based on Gipps’ car-following model [33]. 

4.2. Parameters for Model Calibration Extracted from Real Speed Profiles 

We carried out a review of all the dynamics and behaviour-related parameters that can be adjusted 

by VISSIM and AIMSUM users, and identified desired speed, acceleration and deceleration with their 

corresponding variables, extracted from a speed profile. In the case of driving behaviour, the model 

user is able to adjust parameters such as reaction time, safety distance and aggressiveness which are 

not directly measurable from a speed profile, although they have a major influence on driving patterns. 

As the final aim is to accurately estimate emissions and fuel consumption, another variable that correlates 

well with emissions [22] was selected as a reference to calibrate car-following and lane-changing 

models inside VISSIM and AIMSUM. The following paragraphs describe the variables selected and 

their correspondence with the parameters in these two models.  

- 95th Percentile of Instantaneous Recorded Speed 

The maximum desired speed is the speed the driver intends to maintain if traffic and road conditions 

allow. It is related to the speed limit, but it cannot be directly inferred from these values.  
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In our case, the maximum desired speed might be taken as the maximum speed recorded in each 

free-flow trip. However, the selected value corresponds to the 95th percentile of instantaneous recorded 

speed (VP95), so any minor distractions the driver might have are isolated.  

Desired speed is an essential direct input in the traffic micro simulator. VISSIM presents a desired 

speed distribution for each vehicle class that can be changed manually by the user, while AIMSUM 

shows the normal distribution of desired speed in which the user can adjust the mean, deviation, and 

maximum and minimum values. Following this distribution approach, the mean, standard deviation, 

and maximum and minimum values have been calculated for each measure and all recorded trips. 

- Maximum Recorded Acceleration 

As with the maximum desired speed, the maximum desired acceleration is below the physical 

maximum acceleration the vehicle is able to achieve if the driver steps on the pedal. It is therefore 

directly related with the aggressiveness of the driver. It is calculated as the maximum value of the 

positive recorded acceleration. 

In many of the micro simulation tools reviewed, maximum acceleration is taken as the maximum 

physical capacity of each vehicle type. In this case, only VISSIM is able to distinguish between 

maximum acceleration and desired acceleration. AIMSUM only allows the physical maximum 

acceleration of the vehicle to be changed directly, but not the acceleration desired by the driver. 

- Maximum Recorded Deceleration 

Maximum recorded deceleration is calculated as the maximum braking acceleration recorded for 

each trip. Both VISSIM and AIMSUM allow the desired or normal deceleration distribution to be 

adjusted in the same way as the desired speed distribution. 

- Positive Accumulated Acceleration per Kilometre  

Following the definition found in Garcia-Castro and Monzon [22], this variable reflects the driver’s 

tendency to maintain a constant speed, and shows good correlation with fuel consumption and emissions. 

The lower the value of this variable, the more constant the speed. This is not a variable that can be used 

as direct input in any of the models, as it also depends on traffic conditions. However, its variation can 

be useful to indicate whether the vehicle is travelling more homogeneously as a result of the application 

of a particular measure. It can be indirectly used as a value for the calibration of different car-following 

model parameters such as headway or gap acceptance. Table 2 shows a summary of the variables 

analysed in the following section. 

Table 2. Variables extracted from the recorded driving profiles and their correspondence 

with VISSIM and AIMSUM parameters. 

Variable Abbreviation Units 
Corresponding Calibration 

Parameter in VISSIM 

Corresponding Calibration 

Parameter in AIMSUM 

95th percentile of 

instantaneous recorded 

speed (Mean) 

VP95_mean km/h 
Desired speed distribution 

(manual adjust) 
Mean desired speed 
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Table 2. Cont. 

Variable Abbreviation Units 
Corresponding Calibration 

Parameter in VISSIM 

Corresponding Calibration 

Parameter in AIMSUM 

95th percentile of 

instantaneous recorded 

speed (Deviation) 

VP95_Sd km/h 
Desired speed distribution 

(manual adjust) 

Standard deviation  

Desired Speed 

95th percentile of 

instantaneous recorded 

speed (Maximum) 

VP95_max km/h 
Desired speed distribution 

(manual adjust) 
Maximum desired speed 

95th percentile of 

instantaneous recorded 

speed (Minimum) 

VP95_min km/h 
Desired speed distribution 

(manual adjust) 
Minimum desired speed 

Maximum recorded 

acceleration (Mean) 
Amax_mean m/s2 

Desired acceleration 

distribution (manual adjust) 
Mean desired acceleration 

Maximum recorded 

acceleration (Deviation) 
Amax_Sd m/s2 

Desired acceleration 

distribution (manual adjust) 

Standard deviation desired 

acceleration 

Maximum recorded 

acceleration (Maximum) 
Amax_max m/s2 

Desired acceleration 

distribution (manual adjust) 
Maximum desired acceleration 

Maximum recorded 

acceleration (Minimum) 
Amax_min m/s2 

Desired acceleration 

distribution (manual adjust) 
Minimum desired acceleration 

Maximum recorded 

deceleration (Mean) 
Bmax_mean m/s2 

Desired deceleration 

distribution (manual adjust) 
Mean desired deceleration 

Maximum recorded 

deceleration (Deviation) 
Bmax_Sd m/s2 

Desired deceleration 

distribution (manual adjust) 

Standard deviation desired 

deceleration 

Maximum recorded 

deceleration (Maximum) 
Bmax_max m/s2 

Desired deceleration 

distribution (manual adjust) 
Maximum desired deceleration 

Maximum recorded 

deceleration (Minimum) 
Bmax_min m/s2 

Desired deceleration 

distribution (manual adjust) 
Minimum desired deceleration 

Positive accumulated 

acceleration per kilometre 
PAA_km m/s2 km 

Calibration of car following 

model (headway) 

Calibration of car following 

model (headway) 

5. Effects of ITS Measures and Eco-Driving on Vehicle Trajectories 

This section provides a detailed analysis of the FCD recorded. For each of the measures tested, the 

values of the selected variables (Table 2) were calculated before (base case) and after the implementation 

of the measure. These results and the variation percentage are shown in Tables 3–7, which also includes 

the results of fuel consumption (l/100 km). Significance values are also reported based on the results of 

one-way ANOVA tests for each variable (VP95, Amax, Bmax, PAA-km and Fuel Consumption).  

5.1. Section Speed Control 

The section analysed corresponds to a multilane ring motorway, varying from 3 to 4 lanes and  

3 or 4 adjacent service lanes. The speed limit is 90 km/h and the total length is 5.8 km. A total of  

488 trips were recorded in this itinerary, 262 of which corresponded to the base case and 226 to the 

section speed control activated scenario. The results are shown in Table 3. 
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Table 3. Changes in vehicle trajectory variables produced by the activation of a section 

speed control system. 

Parameters Base Scenario Section Speed Control Activated Variation % 

VP95_mean *** 90.2 88.8 −1.6% 
VP95_Sd 3.9 3.0 −23.1% 

VP95_max 101.2 98.4 −2.8% 
VP95_min 78.9 79.9 1.3% 

Amax_mean † 0.8 0.8 0.0% 
Amax_Sd 0.2 0.3 50.0% 

Amax_max 1.6 2.3 43.8% 
Amax_min 0.3 0.4 33.3% 

Bmax_mean *** 0.9 1.0 11.1% 
Bmax_Sd 0.4 0.3 −25.0% 

Bmax_max 2.4 2.1 −12.5% 
Bmax_min 0.4 0.4 0.0% 
PAA_km † 3.4 3.3 −2.9% 

Fuel consump. *** 4.67 4.49 −3.8% 

* Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01; † No statistically significant 

differences between group means. 

It is worth noting that enforcement produces a 23% reduction in the standard deviation values of  

the 95th percentile of instantaneous speed, representing a more homogeneous distribution of speed. 

The higher maximum braking values when the enforcement is activated can be explained by drivers’ 

tendency to brake when the enforcement section begins.  

5.2. Variable Speed Limits 

The section analysed corresponds to a 3-lane ring motorway with a posted speed limit of 90 km/h, 

except for the last 300 m section which has a posted limit of 70 km/h. As a function of the speed 

recorded downstream, the variable message sign displays recommended speed limits of 80, 70, 60, 50 

or 40 km/h. It is important to note that in the Madrid case study, the speed limits displayed in the 

variable message signs along the motorway are only a recommendation. Drivers react lowering their 

speed although the results do not show relevant differences among the recommended speed displayed; 

only between not activated (base case) and activated. The length of the section under analysis is 6.7 km. 

Of a total of 336 trips, 177 were recorded with the Variable Speed Limits deactivated, while the system 

was operative in the other 159. The results obtained are shown in Table 4.  

In the case of variable speed limits, no influence is observed on mean desired speed, while the extreme 

values tend to be closer to the mean, reducing the standard deviation by 23.8%. However, acceleration 

and braking values are higher, probably as a result of driver reactions to variable message signs. 
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Table 4. Changes in vehicle trajectory variables produced by the activation of a Variable 

Speed Limit system. 

Parameters Base Scenario Variable Speed Limits Activated Reduction % 
VP95_mean † 90.9 90.9 0.0% 

VP95_Sd 4.2 3.2 −23.8% 
VP95_max 101.3 96.9 −4.3% 
VP95_min 76.2 85.8 12.6% 

Amax_mean ** 0.9 1.2 33.3% 
Amax_Sd 0.6 0.6 0.0% 

Amax_max 3.0 3.1 3.3% 
Amax_min 0.3 0.5 66.7% 

Bmax_mean * 1.3 1.5 15.4% 
Bmax_Sd 0.9 0.7 −22.2% 

Bmax_max 3.4 3.0 −11.8% 
Bmax_min 0.3 0.4 33.3% 
PAA_km † 5.1 6.2 21.6% 

Fuel consump. † 4.13 4.05 −1.94% 

* Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01; † No statistically significant 

differences between group means. 

5.3. Cruise Control 

Cruise Control is measure that is applicable only to individual vehicles on certain roads and under 

specific traffic conditions, and particularly only on high-capacity roads when traffic intensity is relatively 

low. The section under study corresponds to a multilane ring motorway, with 3 or 4 lanes and a normal 

speed limit of 90 km/h and with a tunnel section with a strictly enforced limit of 70 km/h. The length 

of the section analysed is 21.3 km. Almost 277 km were driven with the system deactivated, and 298 km 

when the system was activated by the driver. The results obtained are shown in Table 5. 

Table 5. Changes in vehicle trajectory variables produced by the use of a Cruise Control system. 

Parameters Base Scenario Cruise Control Activated Variation % 
VP95_mean ** 92.5 91.0 −1.6% 

VP95_Sd 1.4 1.6 14.3% 
VP95_max 95.1 94.8 −0.3% 
VP95_min 90.3 88.4 −2.1% 

Amax_mean * 0.9 1.0 11.1% 
Amax_Sd 0.3 0.2 −33.3% 

Amax_max 1.4 1.3 −7.1% 
Amax_min 0.6 0.8 33.3% 

Bmax_mean † 0.9 0.8 −11.1% 
Bmax_Sd 0.4 0.2 −50.0% 

Bmax_max 1.9 1.4 −26.3% 
Bmax_min 0.5 0.6 20.0% 

PAA_km *** 3.4 1.8 −47.1% 
Fuel consump. † 3.61 3.44 −4.70% 

* Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01; † No statistically significant 

differences between group means. 
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Cruise control enables the driver to control speeding more effectively, and reduces the maximum 

speed by around 1.5 km/h. Maximum braking and acceleration values are reduced, although the largest 

variation in this case is in accumulated acceleration, as the system avoids the minor oscillations that 

occur under normal driving behaviour conditions.  

5.4. Eco-Driving 

Eco-driving behaviour was tested on different urban and motorway sections, so the results  

are aggregated by urban or motorway itineraries. Table 6 below presents aggregate values for  

motorway itineraries in which 212 trips correspond to normal behaviour and 168 were driven following 

eco-driving recommendations. 

Table 6. Changes in vehicle trajectory variables produced by eco-driving behaviour in 

motorway itineraries. 

Parameters Base Scenario Eco-Driving Motorway Variation % 

VP95_mean † 91.9 91.6 −0.3% 
VP95_Sd 4.0 2.8 −30.0% 

VP95_max 98.9 97.9 −1.0% 
VP95_min 71.7 83.7 16.7% 

Amax_mean *** 0.9 0.8 −11.1% 
Amax_Sd 0.3 0.3 0.0% 

Amax_max 2.0 1.8 −10.0% 
Amax_min 0.4 0.3 −25.0% 

Bmax_mean *** 1.0 0.7 −30.0% 
Bmax_Sd 0.4 0.5 25.0% 

Bmax_max 2.4 2.9 20.8% 
Bmax_min 0.4 0.3 −25.0% 

PAA_km *** 4.6 3.8 −17.4% 
Fuel consump. ** 4.18 3.82 −8.61% 

* Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01; † No statistically significant 

differences between group means. 

The results show that eco-driving in metropolitan motorways has almost no influence on average 

maximum speed, although the standard deviation is reduced considerably. Average maximum acceleration 

and deceleration values are considerably reduced, while at the same time the speed profile is much 

more homogeneous, as shown by the reduction in accumulated acceleration. 

For urban itineraries, almost the same kilometres are recorded with normal driving behaviour and 

eco-driving behaviour from a total of 776 km. The results are shown in Table 7. In the case of urban 

itineraries, the mean of the 95th percentile of instantaneous speed shows a clear reduction of 6.4%, as 

do the mean values of acceleration and braking. Speed profiles are also considerably more 

homogeneous according to the Positive Accumulated Acceleration indicator. 
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Table 7. Changes in vehicle trajectory variables produced by eco-driving behaviour in  

urban itineraries. 

Parameters Base Scenario Eco-Driving Urban Variation % 

VP95_mean *** 53.5 50.1 −6.4% 
VP95_Sd 6.1 6.0 −1.6% 

VP95_max 79.0 65.8 −16.7% 
VP95_min 34.1 37.5 10.0% 

Amax_mean *** 2.0 1.8 −10.0% 
Amax_Sd 0.3 0.3 0.0% 

Amax_max 2.7 2.6 −3.7% 
Amax_min 1.1 0.7 −36.4% 

Bmax_mean *** 2.3 2.1 −8.7% 
Bmax_Sd 0.6 0.6 0.0% 

Bmax_max 5.3 5.5 3.8% 
Bmax_min 1.2 1.1 −8.3% 

PAA_km *** 36.9 32.6 −11.7% 
Fuel consump. *** 4.34 4.03 −7.14% 

* Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01; † No statistically significant 

differences between group means. 

6. Conclusions 

Traffic modelling is one of the most widely-used tools for forecasting the effects of measures 

affecting road transportation. However, the calibration process and the accuracy and reliability of the 

results are still questioned within the research community. 

These issues can be even further compounded when evaluating the effects of certain measures on 

emission levels, since emission models are highly sensitive to minor changes in speed or acceleration rates. 

The results presented in this article provide a basis for the simulation of the selected measures in other 

similar areas where specific FCD is not available. 

However, it is important to highlight that due to the local nature of the microscopic model, the input 

values depend to a large extent on the particularities of each case study. For instance, fleet composition 

and driver behaviour vary from one area to another, while the desired speed depends largely on the 

characteristics of the infrastructure and speed limit compliance. Thus the main aim of this article is not 

to provide direct input values, but to offer a percentage of change as an order of magnitude when  

a similar road or network is affected by any of the ICT measures analysed. 

Although this article tests a limited number of measures, it describes a methodology that can be 

used to collect and analyse FCD to obtain reference values for traffic models, and be applied to any 

other ITS measure in any other application area. The advances in smartphone technologies and their 

increasingly generalised use have made it easier to track vehicle trajectories, thus offering more 

opportunities for applications relating to the accuracy of traffic and emission models. 
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