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Abstract: Although a wide range of direction of arrival (DOA) estimation algorithms has
been described for a diverse range of array configurations, no specific stochastic analysis
framework has been established to assess the probability density function of the error on
DOA estimates due to random errors in the array geometry. Therefore, we propose a
stochastic collocation method that relies on a generalized polynomial chaos expansion to
connect the statistical distribution of random position errors to the resulting distribution
of the DOA estimates. We apply this technique to the conventional root-MUSIC and
the Khatri–Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel
approach yields a speedup by a factor of more than 100 in terms of CPU-time for a
one-dimensional case and by a factor of 56 for a two-dimensional case.
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1. Introduction

DOA estimation is a major application of the sensor array, since there are many real-world
problems where an accurate estimate of the source direction is essential: for example, in radar,
electroencephalogram, sonar and microphone array systems. The number of sources that can be resolved
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by an N -element uniform linear array using traditional subspace-based methods, such as MUSIC, is
N − 1. Recently, more advanced methods have been presented for DOA estimation, for example, the
Khatri–Rao (KR) product approach. By assuming quasi-stationary sources, this concept can identify
up to 2N − 1 sources using an N -element uniform linear array, without computing higher-order
statistics [1].

Irrespective of the DOA estimation algorithm applied, deviations between the actual steering vector
and the presumed steering vector are unavoidable in most applications that rely on an array of sensors.
Errors during fabrication, uncalibrated arrays and arrays undergoing deformations are among the
potential factors that can contribute to such errors. Moreover, the arrays may be composed of sensor
elements with directional radiation patterns [2–4]. In most papers on DOA estimation, the authors
assume that there is no steering vector error or that steering vector deviations are deterministic and
constant in time. This has resulted in the development of algorithms that estimate such errors and,
subsequently, remove them by a calibration procedure [5–9]. In many cases, however, these errors are
random and, therefore, statistical in nature. The motivation of our work is that most calibration methods
are computationally expensive and/or time consuming. Moreover, to estimate the modeling errors in the
array, often, certain assumptions have to be made, additional experiments have to be carried out and/or
specific training sequences must be transmitted. Therefore, these techniques are difficult to apply in
real-time applications or in systems where the random errors change quickly. Hence, it is interesting
to take into account the effect of uncertainty in the placement of the sensor elements by means of a
stochastic framework. Hence, there is a need for stochastic simulation tools that provide the statistical
data to quantify the effect of the random displacement of these sensor elements on the DOA estimates.

Conventionally, one may use Monte-Carlo simulations to quantify the effect of position errors of
one of the sensor elements to characterize the resulting distribution of the estimated DOAs. However,
Monte-Carlo simulations require a large amount of realizations to accurately capture the statistics of the
random process. Hence, the method is time consuming.

In this paper, we introduce the stochastic collocation method (SCM) [10] as a more effective way to
rapidly model uncertainty in the estimated DOAs, due to variations in the elements of the steering vector.
Thanks to this method, we can reduce the CPU time by a factor of more than 100 for a one-dimensional
displacement and by a factor of 56 for a two-dimensional displacement of one of the sensor elements.

In this paper, we apply the nominal steering vector of a uniform linear sensor array to estimate the
DOAs of a signal impinging on a sensor array where one of the sensors has a random position error.
We establish a stochastic framework to find the probability density function (pdf) of the DOA-estimates.
To the best of the authors’ knowledge, such a framework has not been established in the open literature
yet. In [11], a first-order sensitivity analysis is carried out to study the effect of modeling errors on
the conventional MUSIC algorithm. This sensitivity analysis results in a sensitivity parameter and
failure threshold, but does not provide the complete statistical distribution of the modeling errors.
In [12], the authors examine a resolution threshold of the MUSIC algorithm for situations in which
the array response is perturbed from its assumed value. This could be a boundary approximation for our
framework. However, they assume that the arrays are illuminated with two equal power emitters.
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In order to illustrate and validate the SCM method, we derive the statistical distribution on the DOA
estimates for the root-MUSIC algorithm and for the KR-root-MUSIC algorithm. The latter algorithm
applies the root-MUSIC method to the noise subspace matrix of the KR algorithm, as described in [1].
For the (KR)-root-MUSIC algorithm, we derive the cumulative distribution function (cdf), for one- and
two-dimensional displacements of one of the sensor elements.

In earlier work, it has been proven that underdetermined DOA estimation is possible when the
source signals are non-Gaussian stationary. In [13], by the use of fourth-order cumulants, a virtual
array with an increase in the degrees of freedom is achieved. In [14], a new array geometry, which is
capable of increasing the degrees of freedom of linear arrays, is proposed. The structure is obtained
by systematically nesting two or more uniform linear arrays. It can provide N2 degrees of freedom
using only N physical sensors and the second-order statistics of the data. Blind source separation, by
use of quasi-stationarity, has also received attention. One technique is based on the least squares fitting
(LSF) criterion, using parallel factor analysis (PARAFAC) [15]. One can prove that quasi-stationarity
enables the identification of sources when the number of sensors is lower than the number of sources.
However, the LSF is based on a multi-dimensional non-linear optimization problem. In [16], the authors
have used a method called focusing Khatri–Rao subspace (FKR) for wideband array processing. They
calculate a focusing matrix using a rotational signal-subspace [17], and then, the covariance matrices
of different frequencies are transformed and combined by means of the KR-product. Recently, in [18],
the authors used sparse covariance fitting in order to estimate underdetermined DOA estimation, and
in [19], a sparse representation of the array covariance vector is used to obtain the DOAs. In [20,21], the
Khatri–Rao approach is also extended to a uniform circular array. In [22], the Khatri–Rao approach is
used for 2D DOA-estimation. In [23], the authors make use of a maximum likelihood method to obtain
the underestimated DOAs for a multiple-input multiple-output radar.

Notations: We denote matrices and vectors by boldfaced capital letters and lower-case letters,
respectively. Superscript H denotes the transpose conjugate, whereas superscript T denotes the transpose
without the conjugate. For a given vector x ∈ C, ||x|| denotes its Euclidean norm. For a given matrix
A ∈ CM×N , the i-th column is denoted by ai. The notation vec(A) stands for vectorization; i.e., if
A = [a1, . . . , aN], then vec(A) = [a1

T , . . . , aN
T ]T .

The remainder of the paper is organized as follows. In Section 2, we present the signal model and the
KR-MUSIC algorithm [1]. Section 3 describes how the steering vector and the manifold array change if
there is a displacement in one of the sensor elements. A brief description of the SCM, which is applied
to model the uncertainty due to statistical variations of the input parameters, is given in Section 4. The
proposed method is validated in Section 5, and conclusions are drawn in the last section.

2. Signal Model and Summary of the KR-MUSIC Algorithm

In this section, we give a short summary of the KR-MUSIC algorithm (see [1]), preceded by the signal
model used.
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2.1. Signal Model

Consider K sources impinging on a uniform linear sensor array, consisting of N omnidirectional
sensors and neglecting mutual coupling. For a signal sk(t) emitted by the k-th source,
let s(t) = [s1(t), . . . , sK(t)]T denote the K × 1 source signal vector. Let a(θ) =[
1, ej2π

d
λ

sin(θ), . . . , ej2π
d
λ

(N−1) sin(θ)
]T

be the N × 1 steering vector corresponding to the direction θ, with
d the spacing between the N sensors and λ the signal wavelength. In this paper, we fix the element
spacing to d/λ = 1/2. Our aim is to study the effect of random variations in the array geometry on
algorithms estimating the directions of arrival θk corresponding to the K source signals, in the presence
of measurement noise. Therefore, A = [a(θ1) a(θ2) . . . a(θK)] describes the N × K array manifold
matrix and v(t) = [v1(t), . . . , vN(t)]T ∈ CN×1 represents the spatial and temporal white noise. For the
observed signal xn(t) of the n-th sensor, let x(t) = [x1(t), . . . , xN(t)]T denote the N × 1 receiver signal
vector. This vector equals:

x(t) = As(t) + v(t), t = 0, 1, 2, . . . . (1)

The DOA-estimation algorithms under study are the root-MUSC and KR-root-MUSIC algorithms.
These algorithms rely on the following assumptions:

• The noise v(t) is white Gaussian and zero-mean wide-sense stationary with covariance matrix
C , E{||v(t)||2}. It is statistically independent of the source signals.
• All source DOAs are distinct: θk 6= θl for k 6= l.
• The source signals sk(t) are mutually uncorrelated and have a zero mean.
• Each source signal is wide-sense quasi-stationary with frame length L, such that:

E{||sk(t)||2} = dm,k, ∀t ∈ [(m− 1)L,mL− 1],

m = 1, 2, . . . (2)

with dm,k the frame-dependent and sensor-dependent average normalized signal power. This
assumption means that the second-order statistics of the source signals are time varying, but that
they remain static over a short period of time. Under this quasi-stationarity assumption, we define
a local covariance matrix:

Rm = E{||x(t)||2} ∈ CN×N ,

∀t ∈ [(m− 1)L,mL− 1], m = 1, 2, . . . . (3)

In the remainder of the paper, we apply the DOA estimation algorithms to synthetic signals generated
by the procedure proposed in [1] to construct source signals sk(t) satisfying the above constraints, with
sequence length T = 25, 600 and an allowable range of the frame periods [Llow, Lupp] = [300, 700].
Algorithm 1 is applied to generate the synthetic signals.
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Set Tcur = 0. Tcur is the start of a new frame of the signal;
while Tcur < T do

Randomly generate Lf following a uniform distribution on [Llow, Lupp];
Randomly generate σs following a uniform distribution on [0,1];
for t = Tcur to Tcur + Lf − 1 do

Randomly generate sk(t) = sR(t) + jsI(t), where sR(t) and sI(t) are independent and
identically Laplacian distributed with zero mean and variance σ2

s/2;

end
Tcur := Tcur + Lf ;

end
Algorithm 1: The algorithm to generate synthetic signals.

Observe that the frame intervals of the different impinging sources are not fixed and not synchronized.
We apply the KR subspace methods by choosing a fixed frame period of L = 512. The number of frames
is set to M = T/512 = 50.

2.2. Summary of the KR-MUSIC Algorithm

For a given receiver signal vector {x(t)}T−1
t=0 , with frame length L, where L divides T , the KR-MUSIC

algorithm proceeds as follows [1]:

• Compute the local variance estimates

R̂m = 1
L

mL−1∑
t=(m−1)L

x(t)xH(t) for m = 1 . . .M .

• Denote an orthogonal complement projector P⊥1M = IM− 1
M

1M1M
T , with IM theM×M identity

matrix and 1M the M × 1 all-one vector. Perform the projection Y = ŶP⊥1M (Y ∈ CN2×M ),
with Ŷ the data matrix formed by vectorize the covariance matrix. This projection eliminates the
unknown noise covariance.
• As in [1], perform a dimension reduction on Y obtaining Ỹ.
• To apply MUSIC to Ỹ, perform a singular value decomposition (SVD) on:

Ỹ = UΣVH (4)

where U ∈ C(2N−1)×K and V ∈ CM×K are the left and right singular matrices, respectively,
and Σ ∈ RK×K is the diagonal singular values matrix with the singular values being arranged in
descending order.
• By extracting the noise subspace matrix Un = [uK+1, . . . ,u2N−1] ∈ C(2N−1)×(2N−1−K) from U,

we compute the DOA spectrum:

PKR−MUSIC(θ) =
1

‖Un
HW

1
2 b(θ)‖2

(5)

Define br(z) ∈ C1×(2N−1) as:

br(z) =
[
z−(N−1), . . . , z−1, 1, z, z2, . . . , zN−1

]T
(6)
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and b(θ) = br(e
j2π d

λ
sin(θ)). The K largest local maxima of the DOA spectrum PKR−MUSIC(θ) are the

DOA estimates.
Instead of searching the peaks of the MUSIC spectrum, we can also apply the root-MUSIC

method [24] to ||Un
HW||2. In the remainder of the paper, we call the resulting method the

KR-root-MUSIC method.

3. Displacement of One of the Sensor Elements

In this section, we assume that one of the sensor elements is displaced due to an unintentional
movement of an element. Figure 1 depicts an array of N sensor elements, where the first sensor element
is placed at the origin of the xy-plane and the other elements along the x-axis of this plane. The l-th
sensor element is displaced by a vector ~rh with respect to its original position.

Figure 1. Displacement of the l-th sensor element.
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1 2 l N − 1 N

l′

θ

α

Denote rh = ||~rh|| and α = arg(~rh). The new coordinates of the displaced l-th sensor are given
by ~r = [(l − 1)d+ rh cos(α), rh sin(α)]. Define β = arg(~r) and r = ||~r||, such that 2π

λ
~u · ~r =

2π
λ
r sin(θ + β). ~u is the unit vector with the same direction of the position vector of the source,

which is located in the array’s far field. The l-th row of the array manifold matrix then becomes[
ej2π

r
λ

sin(θ1+β), ej2π
r
λ

sin(θ2+β), . . . , ej2π
r
λ

sin(θK+β)
]
.

4. Stochastic Collocation Method

In order to investigate the influence of a stochastic displacement of one of the sensor elements,
we need stochastic simulation tools to characterize the statistical distribution of the DOAs due to the
distribution of the random displacement vectors.

A Monte-Carlo simulation for such a task requires a large amount of realizations to accurately capture
the statistics of the random process. Therefore, we apply the SCM proposed in [10] as a more effective
way to rapidly model geometrical uncertainty, due to random variations of the array element positions.
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4.1. One-Dimensional Stochastic Input

Assume that an input random variable X (in our case, e.g., the displacement in the x- or y-direction)
is given. We want to determine the variation of the output Y = f(X) (in this paper, the DOA estimates),
due to the statistical variation of X . The random variable X follows the cumulative distribution PX

and probability density function dPX in the sample space Ω. To determine the statistics of Y , we rely
on the Askey scheme [25] to approximate the transformation Y = f(X) by a polynomial expansion of
order P .

Y ≈ fP (X) =
P∑
k=0

yXk φ
X
k (X), (7)

with φXk (X) the expansion polynomials and yXk the weights belonging to the k-th expansion polynomial.
fP (X) is the generalized polynomial chaos expansion (GPoC expansion) of Y = f(X).

An optimal expansion is obtained when the set of expansion polynomials forms a complete orthogonal
basis in Ω with orthogonality relation:〈

φXi (x), φXj (x)
〉

=

∫
Ω

φXi (x)φXj (x)dPX(x)

=
〈(
φXi (x)2

)〉
δij, (8)

with the Kronecker δij = 0 if i 6= j and δij = 1 if i = j.
In this case, the Cameron–Martin [26] convergence theorem ensures exponential convergence to the

function Y = f(X) for P → ∞. In the remainder of the paper, we assume that the statistical variation
ofX follows a Gaussian distribution in the sample space Ω. Relying on the Askey scheme, we know that
the probabilistic Hermite polynomials Hk(X) provide an optimal expansion for the normal Gaussian
distribution [25].

To determine the unknown expansion coefficients yXk , we apply Galerkin weighting to
Equation (7) [27]:

yXk = E[Y (x)φXk (x)] =

∫
Ω

Y (x)φXk (x)dPX(x). (9)

We can approximate this integral by a Q-point Gauss–Hermite quadrature rule, being [28]:

yXk ≈
Q∑
i=1

wiY (xi)φ
X
k (xi) k = 0, 1, . . . , P. (10)

where the quadrature points xi are given by the Q zeros of φXQ (x) in Ω and with wi the corresponding
weights. In order to evaluate Equation (10), we must determine Y = f(X) for Q realizations of the
random variable X , corresponding to the quadrature points. When utilizing a Gaussian quadrature,
Equation (10) exactly integrates all polynomials of degree equal or less than 2Q−1. Given an expansion
order P , the highest order coefficient evaluation of Equation (9) can be assumed to involve integrands
of at least polynomial order 2P , being φX(x) of order P and Y (x) modeled to order P , such that a
minimal Gaussian quadrature order of P+1 will be required to obtain good accuracy in these coefficients.
Given the exponential convergence of the expansion (7), using the SCM theory, we need to apply the
KR-root-MUSIC algorithm in the Q = P + 1 quadrature points. The Monte-Carlo analysis may then
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be applied to the computationally cheap expansion (7) instead of to the KR-root-MUSIC. This results
in huge savings in CPU-time, as the Monte-Carlo method is only slowly converging with respect to the
number of samples taken, being inversely proportional to the square root of the number of samples [29].

4.2. Two-Dimensional Stochastic Input

We assume that the variation of the output Y = f(X1, X2) depends on two independent stochastic
variables X1 and X2, respectively, in the sample space Ω1 and Ω2, respectively (e.g., a displacement in
the x- and y-direction).

We first extend the GPoC expansion (7) to two dimensions. For Y = f(X1, X2), we obtain:

Y = f(X1, X2) =

P1∑
i=0

P2∑
j=0

yX1X2
ij φX1

i (X1)φX2
j (X2) (11)

which is a polynomial expansion of degree P1 in X1 and P2 in X2. The weight coefficients are given by:

yX1X2
ij =

∫
Ω1

∫
Ω2

Y (x1, x2)φX1
i (x1)φX2

j (x2)dPX1(x1)dPX2(x2) (12)

or if we approximate Equation (12) by a tensor product quadrature rule:

yX1X2
ij =

Q1∑
k=1

Q2∑
l=1

wkφ
X1
i (uk)f(uk, ul)wlφ

X2
j (ul), (13)

with the quadrature points uk and ul given by the Q1 zeros of φX1
Q1

(x1) and the Q2 zeros of φX2
Q2

(x2),
respectively. Equation (13) requires Q1 · Q2 function evaluations. If we only need a small number of
quadrature points (whenever we can model Y as a polynomial of low degree), this is a very effective
numerical tool. However, the number of function evaluations grows quadratically with the number of
quadrature points Q (in the case that Q = Q1 = Q2).

In the case that X1 and X2 are independent Gaussian distributed variables with zero mean and
dispersions σ1 and σ2, respectively, we can rewrite Equation (12) as:

yX1X2
ij =

∫
Ω1

∫
Ω2

e−x
2
1−x22

π
Hi(
√

2σ1x1)Hj(
√

2σ2x2)

· Y (
√

2σ1x1,
√

2σ2x2)dx1dx2

=

∫
Ω1

∫
Ω2

p(x1, x2)e−x
2
1−x22dx1dx2, (14)

with,

p(x1, x2) =
1

π
Hi(
√

2σ1x1)Hj(
√

2σ2x2)Y (
√

2σ1x1,
√

2σ2x2). (15)

We approximate this integral by using cubature formulas for the plane with weight function
e−r

2 ([30,31]):

yX1X2
ij =

Q∑
k=1

wkp(x1,k, x2,k), (16)



Sensors 2014, 14 21266

with (x1,k, x2,k) the quadrature points and wk the corresponding weights. For these formulas, the number
of function evaluations is limited to Q. We call de the degree of the cubature formula, meaning that
Equation (16) is exact for polynomials of degree de.

The cubature formulas that we have applied in this paper are those from [32] with Q = 44, de = 15,
those from [33] with Q = 99, de = 21 and those from [33] with Q = 172, de = 31.

Given the exponential convergence of the polynomial expansions, for the two-dimensional expansion,
we have to apply the KR-root-MUSIC algorithm only Q1 ·Q2 times, when making use of the tensor rule
Equation (13). Whereas, if we use the cubature formulas following Equation (16), we need to apply the
KR-root-MUSIC algorithm Q times. Once we have estimated the DOAs in the quadrature points, the
whole distribution can be obtained by applying the Monte-Carlo method to the computationally cheap
polynomial expansion instead of to the DOA estimation algorithms.

5. Results

In all simulation examples below, the signal-to-noise ratio SNR (in dB) is defined as:

SNR = 10 log10

(
E {||As(t)||2}
E {||v(t)||2}

)
(17)

In order to validate the efficiency of the SCM method, we will provide several numerical examples.
We first consider the case where the displacement vector ~rh is a constant vector. Next, we focus on the
more general case where the x- and/or the y-coordinates of the displacement vector are random variables.

In Section 5.1, we investigate the influence on the DOA estimates obtained by root-MUSIC and
KR-root-MUSIC for a displacement of one sensor element, in absence of noise. In Section 5.2, we use
the SCM method to approximate the curves obtained in Section 5.1. In Section 5.3, we analyze the cdf
for a displacement of the sensor element in one direction, for noisy data signals. In Section 5.4, we
derive the GPoC expansion by means of the SCM method for a two-dimensional shift.

5.1. One Shifted Sensor Element: DOA Estimation in Absence of Noise

Consider the case of K = 3 sources and N = 4 sensor elements. The true DOAs are assumed to be
[−18◦, 5◦, 25◦]. We apply the synthetic signal generation procedure of Section 2.1 to generate a random
source signal and use this signal vector throughout the simulations. We furthermore assume that no noise
has been added to the impinging signal. We assume that one of the sensor elements has moved along
the x-axis. For erelx , being the relative displacement (with respect to the distance d between two sensor
elements) of the sensor element, ~rh corresponds to coordinates [erelx d, 0].

In Figures 2 and 3, we plot the estimated DOAs, as a function of erelx for a relative displacement of
each of the sensor elements for the root-MUSIC algorithm and the MUSIC algorithm. As a reference,
the figures also show the true DOAs as dashed lines. We observe that even without any noise, the MUSIC
algorithm is sensitive to a shift of one of the sensor elements and that if that shift is too large, in some
cases, we do not find peaks in the MUSIC spectrum, such as in Figure 3 for erelx > 0.2. On the same
figure, we observe that the root-MUSIC algorithm [24] estimates all DOAs, even in these cases where
the conventional MUSIC algorithm does not find enough peaks. Furthermore, we observe that the DOAs
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estimated by the root-MUSIC algorithm and those estimated by the MUSIC algorithm are almost the
same. The figures for a displacement of the first and fourth array element and those for a displacement
of the second and third array element will almost be symmetric.

Figure 2. The estimated DOAs by means of (root)-MUSIC as a function of a shift of the first
sensor element along the x-axis for true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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Figure 3. The estimated DOAs by means of (root)-MUSIC as a function of a shift of the
second sensor element along the x-axis for true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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In Figures 4 and 5, we have plotted the estimated DOAs, as a function of erelx , for a random relative
displacement of the first and second sensor element for the KR-MUSIC and KR-root-MUSIC algorithm.
In contrast to MUSIC, the KR-MUSIC algorithm is more robust to shifts in one of the sensor elements.
The Khatri–Rao transformation expands the dimension of the vector on which we perform the SVD
and the extracted noise subspace matrix. This increases the probability of finding K peaks. We also
observe that in the KR-MUSIC case, the estimated curves are almost linear as a function of the shifts.
Furthermore, we observe that DOAs estimated by using the KR-MUSIC algorithm are almost the same
as those estimated by the KR-root-MUSIC algorithm.
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Figure 4. The estimated DOAs by means of Khatri–Rao (KR)-(root)-MUSIC as a function
of a shift of the first sensor element along the x-axis for true DOAs = [−18◦, 5◦, 25◦] and
(N,K) = (4, 3).
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Figure 5. The estimated DOAs by means of KR-(root)-MUSIC as a function of a shift of the
second sensor element along the x-axis for true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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5.2. One-Dimensional GPoC Expansion

In this section, we start from the same assumptions as in Section 5.1, concerning the impinging signal
and the sensor array.

Let f(erelx ) be the estimation of the second DOA (true DOAs = [−18◦, 5◦, 25◦]) as a function of the
relative displacement of the second sensor element along the x-axis erelx . As plotted in the top figure of
Figure 6, the relative displacement erelx is assumed to be Gaussian distributed with dispersion σpl = 0.08.
As outlined in Section 4, we therefore apply Hermite polynomials in the GPoC expansion of f(erelx ).
We use the SCM method (with Q quadrature points and a polynomial expansion of order P = Q − 1)
to determine the expansion coefficients for the GPoC expansion. In the bottom figure of Figure 6, we
have plotted the function f(erelx ) and the GPoC expansion of f(erelx ). We remark that, for erelx between
−0.16 and 0.16, all plotted curves coincide within 1%. We also observe that, if we make use of a higher
expansion order for the polynomials, the GPoC expansions better approximate the curve representing
f(erelx ). For a polynomial expansion of order 16, the GPoC curve coincides with the f(erelx ) curve within
8% in the observed interval.



Sensors 2014, 14 21269

Figure 6. (Top) The Gaussian distribution with zero mean and σpl = 0.08;
(Bottom) root-MUSIC DOA estimate, approximated by the generalized polynomial chaos
(GPoC) of order P , with Q quadrature points as a function of erelx , for a displacement of the
second sensor element, true DOA = 5◦ and (N,K) = (4, 3).
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Figure 7. (Top) The Gaussian distribution with zero mean and σpl = 0.2;
(Bottom) root-MUSIC DOA estimate, approximated by the GPoC of order P , with Q

quadrature points as a function of erelx , for a displacement of the second sensor element,
true DOA = 5◦ and (N,K) = (4, 3).
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Figure 8. (Top) The Gaussian distribution with zero mean and σpl = 0.2;
(Bottom) KR-root-MUSIC DOA estimate, approximated by the GPoC of order P , with Q
quadrature points as a function of erelx , for a displacement of the second sensor element, true
DOA = 5◦ and (N,K) = (4, 3).
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In Figure 7, we apply the SCM method with P = Q− 1 for erelx Gaussian distributed with dispersion
σpl = 0.2. We observe that, in the 95% confidence interval [−0.4, 0.4] for erelx , the GPoC based on the
Hermite polynomials of order 12 or higher provides an accurate approximation for f(erelx ). However,
beyond the 95% confidence interval, the Hermite polynomials rapidly oscillate, and they do not yield a
good approximation for the f(erelx ) curve.

In Figure 8, we have made the same assumptions as in Figure 7, but we have estimated the DOA using
the KR-root-MUSIC algorithm. The curves coincide, even when restricting the GPoC to only P = 4.

5.3. One Shifted Element: Statistical Distribution of DOA Estimates

In this section, we again apply the synthetic signal generation procedure of Section 2.1 to generate a
source signal. We construct an arbitrary complex Gaussian distributed noise vector v(t) = vR(t)+vI(t).
vR(t) and vI(t) are both Gaussian distributed with zero mean and dispersion σ = 0.3 providing an
SNR = 7.78 dB. Throughout the simulations, we use this source signal vector and noise vector. We
also assume that the first sensor element is displaced along the x-axis and that the relative displacement
erelx is Gaussian distributed with zero mean and dispersion σpl = 0.12. To obtain the cdfs, we use two
different methods: Monte-Carlo (MC) simulation and SCM. We carry out an MC simulation (where we
vary erelx ) with 10,000 realizations. The CPU-time to carry out this simulation equals about 126 s for the
root-MUSIC algorithm and 157 s for the KR-root-MUSIC algorithm. The simulations were performed
on a Dell Latitude E6520PC with an Intel(R) Core(TM)i5-2520M 2.5 GHz processor and 4 GB RAM.
The MATLAB version used is 8.0.0.783 (R2012b).
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Table 1. The measured value Dn,n′ of the Kolmogorov–Smirnov (KS) test (critical value
= 0.0192), one-dimensional shift along the x-axis of first sensor element, root-MUSIC
algorithm, true DOAs = [−18◦, 5◦, 25◦]; the last column is the simulation time.

root-MUSIC, σpl = 0.12

Dn,n′ for

P Q θ1 θ2 θ3 time

4 5 0.0088 0.0004 0.0190 0.16 s

8 9 0.0002 0.0002 0.0006 0.17 s

12 13 0.0002 0.0001 0.0005 0.25 s

16 17 0.0001 0.0001 0.0002 0.39 s

Table 2. The measured value Dn,n′ of the KS test (critical value = 0.0192),
one-dimensional shift along the x-axis of first sensor element, KR-root-MUSIC algorithm,
true DOAs = [−18◦, 5◦, 25◦]; the last column is the simulation time.

KR-root-MUSIC, σpl = 0.12

Dn,n′ for

P Q θ1 θ2 θ3 time

4 5 0.0002 0.0001 0.0003 0.09 s

8 9 0.0001 0.0001 0.0001 0.33 s

12 13 0.0001 0.0001 0.0001 0.36 s

16 17 0.0001 0.0001 0.0001 0.55 s

We also apply the SCM theory for different values of the quadrature points Q and a polynomial
expansion of Y of order P = Q−1. We perform a two-sample Kolmogorov–Smirnov test (KS test) [34],
to compare the samples obtained by the MC method with those obtained by the SCM method. The
two-sample KS test verifies the null hypothesis that the two samples come from the same distribution.
The test statistic is defined as:

Dn,n′ = sup
x

(|F1,n(x)− F2,n′(x)|), (18)

with supx(f(x)) the supremum of the function f(x). F1,n(x) is the empirical cdf obtained with the MC
and F2,n′(x) the empirical cdf obtained with SCM. n = n′ = 10, 000 are the number of samples used

for the MC and SCM method. The null hypothesis is rejected at level α if Dn,n′ > c(α)
√

n+n′

nn′ , where,
for example, α = 0.05 corresponds to c(α) = 1.36. In our case, the critical value is Dn,n′ = 0.0192.
In Tables 1 and 2, we show the values of the test statistic Dn,n′ , for different values of the number of
quadrature points Q and orders of polynomial expansion P = Q − 1. We consider the root-MUSIC
algorithm and the KR-root-MUSIC algorithm, respectively. The two-sample KS test accepts, with a
confidence of 95%, that, for the root-MUSIC algorithm and for P = Q − 1 = 4, the SCM samples and
the MC samples have the same distribution. We also show the time necessary to obtain the cdf using
the SCM method. Note that the simulation time to obtain the samples for the SCM algorithm is a factor
more than 100 smaller than the simulation time to calculate the samples obtained by the MC method.
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For the KR-root-MUSIC algorithm, both empirical distributions are the same for P = Q − 1 = 4. In
Figures 9–11, we have plotted the cdfs both obtained by the SCM method (with Q = 9 quadrature points
and a polynomial expansion of order P = 8) and the MC method. We observe that, even for a small
number of quadrature points, we see almost no difference between the curves obtained by the SCM
theory and the curves obtained by MC simulation, as indicated by the true sample KS test. Moreover, for
the first and third estimated DOA, the root-MUSIC algorithm estimates the DOA very accurately. For
the estimation of the second DOA, however, the KR-root-MUSIC algorithm performs better.

Figure 9. P = Q − 1 = 8, the cdf of θ̂1 when the first sensor element is displaced in the
x-direction, σpl = 0.12, true DOA = −18◦ and (N,K) = (4, 3).
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Figure 10. P = Q − 1 = 8, the cdf of θ̂2 when the first sensor element is displaced in the
x-direction, σpl = 0.12, true DOA = 5◦ and (N,K) = (4, 3).
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Figure 11. P = Q − 1 = 8, the cdf of θ̂3 when the first sensor element is displaced in the
x-direction, σpl = 0.12, true DOA = 25◦ and (N,K) = (4, 3).
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5.4. Two-Dimensional Displacement of One Sensor Element

In this section, we assume that the first sensor element is displaced by ~rh = [erelx d, erely d]

(Figure 1). The relative displacements in both the x-direction erelx and y-direction erely are independently
Gaussian distributed, with zero mean and dispersion σpl. This means that the relative length of the
displacement vector is Rayleigh distributed with mean σpl

√
π
2

and variance 4−π
2
σ2
pl and that the argument

of the displacement vector is uniformly distributed in [−π, π].

Table 3. The measured value Dn,n′ of the KS test (critical value = 0.0192), two-dimensional
displacement of first sensor element, root-MUSIC, true DOAs = [−18◦, 5◦, 25◦]; upper part of
table: DOAs obtained by the two-dimensional stochastic collocation method (SCM) method
Equation (13); bottom part of table: DOAs obtained by cubature formulas (16); the last
column is the simulation time.

root-MUSIC, σpl = 0.12

Dn,n′ for
P1 = P2 Q1 = Q2 θ1 θ2 θ3 time

7 8 0.0251 0.0039 0.0731 4.14 s
10 11 0.0102 0.0025 0.0255 5.63 s
13 14 0.0038 0.0033 0.0112 6.40 s
P Q θ1 θ2 θ3 time
7 44 0.0134 0.0052 0.0486 0.76 s
10 99 0.0061 0.0021 0.0309 1.54 s
15 172 0.0044 0.0021 0.0219 2.22 s

Table 4. The measured valueDn,n′ of the KS test (critical value = 0.0192), KR-root-MUSIC,
true DOAs = [−18◦, 5◦, 25◦]; upper part of table: DOAs obtained by two-dimensional SCM
method Equation (13); bottom part of table: DOAs obtained by cubature formulas (16); the
last column is the simulation time.

KR-root-MUSIC, σpl = 0.12

Dn,n′ for

P1 = P2 Q1 = Q2 θ1 θ2 θ3 time

7 8 0.0002 0.0002 0.0002 4.74 s

10 11 0.0001 0.0002 0.0001 6.01 s

13 14 0.0001 0.0001 0.0001 7.33 s

P Q θ1 θ2 θ3 time

7 44 0.0002 0.0002 0.0002 0.83 s

10 99 0.0003 0.0003 0.0004 1.62 s
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For the same impinging signal as in Section 5.3, we have plotted the cdfs of the different estimated
DOAs, for σpl = 0.12. We have carried out an MC simulation with 10,000 realizations. The simulation
time is about 128 s for the root-MUSIC algorithm and 157 s for the KR-root-MUSIC algorithm. We also
apply the two-dimensional GPoC expansion (11) with degree P in both variables to obtain the cdfs for
the DOAs. We calculate the weight coefficients using Q1 = Q2 = P − 1 quadrature points in the x- and
y-directions using Equation (13). Tables 3 and 4 show the KS test to compare the samples obtained by
the SCM method and the MC method. Furthermore, we compare this with the two-dimensional SCM
theory that relies on the cubature formulas with Q = 44, Q = 99 and Q = 172, respectively, and with
polynomial expansions of order P = 7, P = 10 and P = 15, respectively. The measured value of the
KS test, which compares the samples of the MC method with those obtained with the cubature formulas,
is also presented in Tables 3 and 4. Furthermore, the simulation times are shown in the last column of
the tables. We observe that now, for the root-MUSIC algorithm, we need 14 quadrature points in each
direction to satisfy the null hypothesis of the KS test (α = 0.05). Using cubature formulas, only for the
estimates of the third DOA, 172 quadrature points are insufficient to satisfy the null hypothesis. For the
KR-root-MUSIC algorithm, four quadrature points in each direction are sufficient. If we use cubature
formulas, Q = 44 quadrature points are sufficient to satisfy the null hypothesis. We also observe that,
using the SCM theory, the simulation time is reduced by a factor of about 20, and using the cubature
formulas, we can reduce the simulation time by a factor of 56.

In Figures 12–14, we have plotted the empirical cdf for the MC simulation and for the SCM method
P = Q− 1 = 13. We observe that both curves almost coincide.

Figure 12. P = Q−1 = 13, the cdf of θ̂1 for a two-dimensional displacement of first sensor
element, true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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Define Qp as the p-th percentile of the estimated DOA, meaning that p% of the estimates for the true
DOA are below Qp. Define S = Q84−Q16

2
, such that 68% of the estimates lie in an interval of length

2S around the true DOA. For a Gaussian distribution, the value S will correspond to the dispersion. In
Figures 15 and 16, we have plotted the value S as a function of σpl, for a two-dimensional displacement
of the first sensor element. Again, we observe that the SCM method provides a good approximation
for the estimates, both for the root-MUSIC algorithm as for the KR-root-MUSIC algorithm. Observe
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that for values σpl less than 0.4, the root-MUSIC yields better estimates for the first and third DOA than
the KR-root-MUSIC algorithm. However, the KR-root-MUSIC estimates the second DOA better. We
furthermore observe that, for the KR-root-MUSIC algorithm, the S-values are straight lines as a function
of σpl.

Figure 13. P = Q−1 = 13, the cdf of θ̂2 for a two-dimensional displacement of first sensor
element, true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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Figure 14. P = Q−1 = 13, the cdf of θ̂3 for a two-dimensional displacement of first sensor
element, true DOAs = [−18◦, 5◦, 25◦] and (N,K) = (4, 3).
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Figure 15. (Q84 − Q16)/2 as a function of σpl for a two-dimensional displacement of
the sensor element and when applying root-MUSIC, true DOAs = [−18◦, 5◦, 25◦] and
(N,K) = (4, 3).
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Figure 16. Q84−Q16

2
as a function of σpl for a two-dimensional displacement of the

sensor element and when applying KR-root-MUSIC, true DOAs = [−18◦, 5◦, 25◦] and
(N,K) = (4, 3).
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Figure 17. Q84−Q16

2
as a function of σpl for a two-dimensional displacement

of the sensor element and when applying KR-root-MUSIC, true DOAs =
[−65◦,−40◦,−20◦, 10◦, 25◦, 42◦] and (N,K) = (4, 6).
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In Figure 17, we consider the (N,K) = (4, 6) case with a displacement of the first
sensor element and with the KR-root-MUSIC algorithm. The true DOAs to be estimated are
[−65◦,−40◦,−20◦, 10◦, 25◦, 42◦]. Observe that, with the same array configuration as in Figure 16, we
estimate twice as many DOAs. Looking at the S = Q84−Q16

2
, we observe that the KR-root-MUSIC

algorithm finds the first estimate for θ̂1 = −65◦ with a large error, even for small values of σpl. The
estimation error for the remainder of the DOAs starts to increase dramatically for values of σpl larger
than 0.2.

6. Conclusions

In this paper, we have investigated the effect of a displacement of one of the sensor elements.
We have applied the SCM formalism to efficiently predict the cdfs of the estimated DOAs, in the
case that the relative displacement is Gaussian distributed. Comparison of the SCM method to the
Monte-Carlo method demonstrates that SCM is an accurate method to predict the cdfs of the DOAs.
For the one-dimensional case, the SCM method decreases the simulation time by a factor of more than
100. For the two-dimensional case and using cubature formulas, we can reduce the simulation time
by a factor of 56. In the future, we will extend the applied method to array configurations in which
more sensor elements are displaced. Moreover, the SCM will be applied to other DOA estimation
algorithms and for other array configurations. The flexibility and non-intrusive character of the proposed
method only requires that DOA-estimates need to be computed in the quadrature points, by use of the
appropriate algorithm.
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