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Abstract: This paper reviews the most dependable heat flux sensors, which can be used 

with InfraRed (IR) thermography to measure convective heat transfer coefficient 

distributions, and some of their applications performed by the authors’ research group at 

the University of Naples Federico II. After recalling the basic principles that make IR 

thermography work, the various heat flux sensors to be used with it are presented and 

discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. 

Several applications to streams, which range from natural convection to hypersonic flows, 

are also described. 
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1. Introduction 

The main purpose of this paper is to review on how to take advantage of InfraRed Thermography 

(IRT) for measuring wall convective heat fluxes, i.e., heat transfer between a body surface and a fluid 

flowing over it, and to describe some of the IRT applications performed by the authors’ research group 

at the University of Naples Federico II on complex fluid flows.  
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Measuring heat fluxes is one of the challenging tasks of thermo-fluid-dynamics and requires  

both a proper thermal sensor (which is herein called heat flux sensor), with its related thermo-physical 

model, and, being temperature always involved in heat transfer processes, one or more temperature 

transducers.  

In more conventional techniques where temperature is measured with standard transducers  

(e.g., thermometers, thermocouples, resistance temperature detectors (RTDs), pyrometers, etc.), each 

transducer yields either the temperature at a single point, or its average over a discrete space. Hence, in 

terms of spatial resolution, the heat flux sensor itself has to be considered as zero-dimensional. This 

constraint makes measurements essentially meaningless whenever the temperature, and/or the heat flux 

fields exhibit high spatial variations. 

Instead, the infrared (IR) camera, also called infrared scanner, constitutes a truly two-dimensional 

temperature transducer since it allows accurate measurements of surface temperature maps even in the 

presence of relatively high spatial gradients [1]. Accordingly, also the heat flux sensor becomes  

two-dimensional, as long as the later shown corrections are performed. 

Infrared thermography is a methodology which allows for remote detection of thermal energy that is 

radiated from objects in one of the electromagnetic spectrum infrared bands, conversion of such 

energy into a video signal, and a two-dimensional representation of the object surface temperature 

distribution (map). The method can be exploited in many application fields and for many different 

purposes, as long as surface temperature variations are involved. For example, IRT may be used in 

various different types of diagnosis (in medicine, architecture, maintenance), or in material characterization 

and procedures assessment, which can help improve design and manufacturing of products, as well as 

in non-destructive testing. As the technology evolves, infrared systems offer new prospects for new 

applications. Almost any process which is temperature-dependent may benefit from the use of an 

infrared device. 

Infrared Thermography and Thermo-Fluid-Dynamics 

As far as convective heat transfer measurements in thermo-fluid-dynamics are concerned, when 

compared to standard methods, the use of an infrared camera as a temperature transducer for heat flux 

sensors appears advantageous from several points of view [1]. 

Since the IR camera is two-dimensional, with current systems having up to about 1 M pixels per 

frame, besides producing a whole temperature map, IRT allows an easier evaluation of errors due to 

radiation and tangential conduction in the sensor. The camera does not disturb the phenomena being 

measured (non-intrusive), and so it does not alter conduction through the test article because of 

embedded sensors and wiring, it has high sensitivity (down to 10 mK) and low response time (down to 

20 µs). As such, IR thermography can be effectively exploited to measure convective heat fluxes with 

either steady, or transient, techniques. 

The major application of infrared thermography in thermo-fluid-dynamics is the measurement of 

the convective heat flux qc (energy which flows in the heat mode per unit surface and per unit time, W/m2), 

and/or of the convective heat transfer coefficient h (heat flux per unit temperature difference, W/m2K), 

between a solid surface and a fluid flowing over it.  
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It has to be explicitly pointed out that the heat flux, as such, is a vectorial quantity. However 

initially, only its convective component normal to exchanging surface qc is going to be considered. 

The link between the quantities qc and h is the well-known Newton’s law [2]: 

qc = h( Tw–Tr ) (1)

which is herein written in a generalized form and where Tw is the surface (wall) temperature and Tr is a 

reference temperature that depends on the fluid flow actual conditions.  

For example, for simple hyposonic (i.e., small Mach number M) external flows, the reference 

temperature Tr is the static temperature of the undisturbed fluid. Instead, for high Mach number flows, 

the correct choice for Tr is the so-called adiabatic wall temperature [2,3]. It has to be pointed out that 

the adiabatic wall temperature does not depend only on the Mach number and should be also used in 

other cases, e.g., for the mixing of two hyposonic streams at different temperatures, such as a warm jet 

issuing in cold air and impinging on a plate [4]. On the other hand, for hyposonic internal flows, the 

correct choice for the reference temperature Tr is the local bulk (cup) temperature in the duct  

cross section.  

It is the present authors’ opinion that, regardless of the particular flow conditions, Tr should  

be always referred to with the generalized concept of local adiabatic wall temperature since, as  

Equation (1) shows, this is the wall temperature Tw that leads to qc = 0.  

Within its thermo-fluid-dynamic applications, sometimes, infrared thermography is used also from 

a more qualitative point of view. This occurs when it is important to characterize the flow field 

behavior (e.g., transition to turbulence, flow separation and reattachment as well as detection of 

instability phenomena) but this is of limited interest in the present quantitative frame of reference. 

Being h assumed always positive, consequently in Equation (1) the heat flux is considered to be 

positive if the energy goes from the solid surface to the fluid, i.e., when the fluid is being heated by the 

wall along which it flows.  

Heat transfer theoretical and experimental data is usually reported in terms of dimensionless 

quantities; in particular, both the Nusselt number Nu and the Stanton number St are widely used [5]. 

These two numbers are conventionally defined respectively as:  

fk

hd
Nu =  (2)

Vc

h
St

pfρ
=  (3)

where: d is a length (m) which, e.g., can be the hydraulic, or equivalent, diameter for internal flows or, 

in general, a flow characteristic length (such as the gap of an annulus, the distance from a leading 

edge, the boundary layer thickness, etc.); kf (W/m·K), cp (J/kg·K) and ρf (kg/m3) are respectively the 

fluid thermal conductivity coefficient, specific heat at constant pressure and mass density, all evaluated 

at film temperature [5]; V (m/s) is a reference velocity, which can be the free stream velocity in 

external flows, the bulk velocity in a pipe flow and so on.  

The Nusselt number is generally employed for internal flows while the Stanton number mostly in 

the case of external flows.  
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To measure either qc, or h, a thermal sensor, commonly called heat flux sensor, is necessary and this 

justifies the matter treated in this paper for its IRT use. 

As it happens when using standard transducers, also for infrared thermography applications, the 

heat flux sensor generally consists of a slab body with a well-known thermal behavior, whose surface 

temperature has to be measured by the IR camera. By properly applying to this body a suitable  

thermo-physical model and the energy conservation equation, it is generally possible to find a 

relationship between the measured temperature and the convective heat flux, and/or the heat transfer 

coefficient, between the sensor and the moving fluid.  

As far as sensor semantics is concerned, the slab surface the flow is going over, i.e., interacting with 

the fluid, is herein called front surface (its temperature being always indicated with the symbol Tw), 

while the opposite one back surface (which may have a temperature T1 different from the  

front surface).  

When the thermo-physical properties (e.g., thermal conductivity coefficient, specific heat, mass 

density) of the slab can be considered as independent of its thermodynamic state, the sensor is 

considered to be ideal. Frequently, these properties vary only slightly with temperature so that it is 

often possible to assume the heat flux sensor as ideal. This hypothesis, together with a constant  

(in time) reference temperature, is mostly adopted from now on.  

2. Basics of Infrared Thermography 

Infrared thermography is based on radiation heat transfer which is an energy transport mechanism 

that occurs under the form of electromagnetic waves. By way of this heat transfer mode, energy can 

travel also in vacuum and may partially be absorbed and reflected by a body, or even pass through  

it [5]. If the intensity of radiation is put equal to unity, and by denoting with αr the fraction being 

absorbed by the body, with ρr the fraction being reflected by it and with τr the fraction being 

transmitted (which passes through the body), energy conservation requires: 

αr + ρr + τr = 1 (4)

where: αr, ρr and τr are respectively called absorptivity, reflectivity and transmissivity coefficients of the 

body under consideration. These dimensionless coefficients may depend on both radiation wavelength 

(spectral) and wave propagation direction (directional). 

Radiation is emitted by all bodies at an absolute temperature T > 0 and, for opaque  

(non-transparent) bodies (τr = 0), it originates only from their surface. 

The body which emits the greatest amount of energy at a given temperature is called black body.  

The law [5] setting the energy flux (energy rate per unit area) per wavelength (called spectral 

hemispherical emissive power) emitted by a black body Ib(λ) [W/m3] is the Planck’s law of radiation: 

( ) ( )1e /C5

1

2 −
=

Tb

C
I

λλ
λ  (5)

where λ is the considered radiation wavelength (m), T the absolute black body temperature (K) and C1 

and C2 the first and the second universal radiation constants, equal, respectively, to 3.7418 × 10−16 Wm2 

and 1.4388 × 10−2 Km . Equation (5) shows that Ib goes to zero for both λ → 0 and λ → ∞. 
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Generally, the electromagnetic spectrum is roughly divided into a number of wavelength bands. 

The infrared spectral band, of interest within the present framework, is generally sub-divided into four 

lesser bands with subjectively chosen boundaries: near infrared (0.75 ÷ 3 μm), middle infrared (3 ÷ 6 μm), 

long (or far) infrared (6 ÷ 15 μm) and extreme infrared (15 ÷ 1000 μm). Most of currently used IR 

cameras are sensitive in the middle (MWIR, 3 ÷ 5 μm) and the long (LWIR, 8 ÷ 12 μm) spectral bands.  

By deriving and integrating Equation (5) with respect to λ, the following two laws respectively 

originate: 

Wien displacement law: The wavelength λ* at which the black body emits its maximum spectral 

emissive power is a function of the absolute black body temperature T according to: 

λ* T = 2897.8 µm K (6)

i.e., the maximum value of Ib moves toward shorter wavelengths as black body temperature increases.  

Stefan-Boltzmann law: The total (over all wavelengths) hemispherical emissive power Eb (W/m2) 

also depends on the absolute black body temperature alone: 

Eb = σT4 (7)

where σ  is the Stefan-Boltzmann constant, which is equal to 5.6704 × 10−8 W/m2K4.  

Since IR camera detectors capture only a relatively narrow band of the whole electromagnetic 

spectrum, Planck’s law (5), rather than Stefan-Boltzmann law (7), should be applied to the scanner. 

Real objects almost never comply with the above described laws even if they may approach 

blackbody behavior in certain spectral bands and conditions. A real object generally emits only a 

fraction I(λ) of the radiation emitted by the black body Ib(λ), at the same temperature and wavelength.  

By introducing the spectral emissivity coefficient, defined as: 

ε(λ) = I(λ)/Ib(λ) (8)

Equation (5) can be rewritten for real bodies by simply multiplying its second term by ε(λ): 

( ) ( ) ( )1e /C5

1

2 −
=

T

C
I

λλ
λελ  (9)

Kirchhoff law states that the spectral emissivity coefficient ε(λ) is equal to the spectral absorptivity 

coefficient αr(λ), which is the absorbed fraction of the incident radiation of wavelength λ. So, for 

opaque bodies, such as those mainly used in infrared thermography, Equation (4) becomes: 

ε(λ) + ρr(λ) = 1 (10)

Therefore, materials with low emissivity ε (such as polished metallic materials) not only emit less 

energy but also reflect a large amount of the radiation, coming from the ambient and impinging on 

them. Whenever possible, they should not be employed in IR thermography or, should they be used, 

they have to be sandblasted or, if transient heat transfer is not involved, covered with a thin layer of 

thermally black paint (such as white dull enamel). Bodies with ε independent of λ are called grey. 

Besides, real objects almost never emit in an isotropic (independent of direction, diffuse) way, the 

emissivity coefficient λ being dependent also on the angle θ between the direction of emission and the 

normal to the emitting surface (viewing angle) [1]. Non-metallic materials, which are mostly used in 

IRT, emit more nigh to the normal direction. 
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Within the present context, measurement of convective heat fluxes can be performed with infrared 

thermography by means of a thermal sensor, in which appropriate surface temperatures have to be 

measured. As it will be shown in the following section, by correctly choosing a suitable heat flux 

sensor, IR thermography can be successfully exploited to resolve convective heat transfer distributions 

over a body surface with either steady, or transient, techniques.  

3. Heat Flux Sensors 

In the following, to define the various heat flux sensors, the concept of thermal thickness (thin 

thermal thickness involves Tw practically equal to T1, while, for the thick one, Tw ≠ T1), which is more 

accurately explained in Section 4.2, is used. 

With infrared thermography, five different types of heat flux sensors (all under the form of slabs), 

three steady state and two unsteady, can be essentially employed [1,6,7]. They are: 

• Heated thin foil sensor. The slab usually consists of a thermally thin metallic sheet (foil), or a 

printed circuit board, steadily and uniformly (in space) heated by Joule effect [1,6]. Strictly 

speaking, the foil may be heated also in a different way (e.g., by a radiation heat flux impinging on 

the foil) but then, the heat flux distribution should be precisely known. The convective heat 

transfer coefficient can be computed by measuring the heat input, as well as the foil surface 

temperature with the IR scanner, and by performing a complete energy balance. Due to the foil 

thermal thinness, the temperature can be measured on either one of the slab surfaces but it is 

possible to apply this steady-state sensor also to not thermally thin foils (see Section 4.2). 

• Gradient sensor. In this steady-state sensor, the slab is thermally thick and the temperature 

difference across the slab thickness is measured. Then, by knowing this thickness and the thermal 

conductivity coefficient of the slab, the heat flux across it can be computed [6]. In conventional 

methods, the temperature difference is usually measured by a thermopile of very-thin-ribbon 

thermocouples or by two thin-film resistance thermometers. To make easier the use of this sensor 

with infrared thermography, its back surface could be maintained at a given constant temperature 

(e.g., in contact with a heat sink) so only the front surface (which must be viewed by the scanner) 

temperature has to be measured.  
• Laplacian sensor. An unusual steady-state method for measuring convective heat transfer 

coefficients has been recently described and tested by Carlomagno et al. [7]. The proposed 

technique can be applied to thermally thin sensors, such as slabs made of relatively high thermal 

conductivity material. Unlike the heated thin foil method demanding a given uniform heating of 

the slab, this steady sensor is externally (out of the measuring zone) heated, and the heat input is 

not even to be known. In the energy balance, the tangential conduction (parallel to slab surface) 

and the convective heat fluxes result to be the predominant contributions. Since currently available 

IRT allows measuring the two-dimensional temperature distribution with relatively high spatial 

resolution, this occurrence makes it possible to evaluate the tangential conduction by numerical 

computation of the temperature distribution Laplacian value. Spatial filtering with a Gaussian 

window and computation of the numerical derivatives with a relatively large step are needed to 

deal with the unavoidable noise presence in the acquired data.  
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• Thin film sensor. A thermally thick slab is used as a sensor and the convective heat transfer 

coefficient is inferred from the theory of unsteady heat conduction in a semi-infinite solid, having 

a thermal input at its surface. The name of the sensor classically derives from the thin resistance 

thermometer (typically a platinum very thin film), which is bonded to the low conductivity slab 

surface. Clearly, the thin film must have negligible heat capacity and thermal resistance as 

compared to the slab layer affected by the exchanged heat flux. When this unsteady sensor is used 

in combination with an IR camera, the thin resistance thermometer does not exist but the slab 

surface in contact with the exchanging fluid must be necessarily viewed by the IR scanner. 

• Thin skin, or wall calorimeter sensor. The sensor is made of a thermally thin slab (skin) and is 

used as a perfect calorimeter. Being the slab thermally thin, the temperature can be assumed to be 

constant across its thickness and the convective heat flux is evaluated from the time rate of the 

slab temperature change. The use of this sensor with IR thermography is straightforward and 

either one of the slab surfaces can be viewed by the IR scanner. Furthermore, as for the heated thin 

foil, it is relatively easy to make the slab quite thin because it is not required to include, in this 

unsteady sensor, also a temperature transducer, such as a thermocouple or else. 

To summarize, the above described five types of one-dimensional sensors involve the measurement 

of the quantities reported in Table 1, where those in the last two lines are functions of time t and those 

in the third column refer to thermally thin sensors.  

Table 1. Quantities to be measured in the various heat flux sensors. 

Sensor Measured Quantity 

Heated thin foil Tw T1 
Gradient sensor Tw – T1 N. A. 
Laplacian sensor ∇ଶ ௪ܶ ∇ଶ ଵܶ 

Thin film Tw(t) N. A. 
Wall calorimeter Tw(t) T1(t) 

A widely-used classical heat flux sensor is the Gardon gauge (also Schmidt-Boelter) which is 

typically a zero-dimensional sensor, so of no interest herein. Quite recently, a different type of heat 

flux sensor, based on a numerical solution of Fourier’s law (typically described by an inverse heat 

transfer model) and surface temperature measurements, has been developed (e.g., Roger [8]). The 

advantage of using such an approach is that it is possible to take into account the temperature 

dependence of the material thermo-physical properties and/or to have slabs with high curvatures. 

However, for the sake of simplicity, this heat flux sensor will not be herein described. 

With conventional transducers, it is possible to measure the wall temperature only in a relatively 

small number of discrete points. Thus, to perform reliable measurements, the hypothesis that, at each 

point, the heat flux across the slab has to be considered as one-dimensional is normally needed. This 

requirement obviously implies that the heat flux vector to be measured must be normal to the sensing 

element surface, i.e., that the components of the temperature gradient, which are parallel to the slab 

surface (tangential), can be neglected and so the sensor is practically zero-dimensional.  
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The one-dimensional hypothesis can be dropped when the surface temperature is measured with an 

infrared scanner because of the high data number and spatial resolution of the measurement. This 

subject is later addressed and discussed with more details, including the needed corrections. 

Very often, the heat flux sensor is flat; however in practice, the slab surfaces can also be curved, but 

their curvatures can be ignored as long as the thickness of the layer affected by the input heat flux is 

relatively small as compared with the local radius of curvature of the sensor front surface. 

Even if the heat flux, or the convective heat transfer coefficient, may be considered as constant over 

time, both the thin film and the wall calorimeter intrinsically involve an unsteady measurement 

procedure of temperature. They definitely operate with a so-called passive heating which is due to 

some already existing temperature difference between the sensor front surface and the flowing fluid. 

Instead, the heated thin foil, the gradient and the Laplacian sensors are, generally, connected to a 

steady state procedure that requires some active heating.  

As a general comment, it has to be pointed out that, while examining gas flows, with the thermally 

thin heated thin foil, Laplacian or thin skin sensors, one may generally measure the temperature map 

on either the front, or the back, surface of the sensor (in case, performing the required corrections).  

Instead, if liquids are involved, the back surface must be generally viewed by the scanner because 

liquids are not usually transparent to infrared radiation. This means that thin film and gradient sensors 

cannot be used in liquid flows because front surface temperature cannot be detected by the camera.  

In the following, first the steady sensors and then the two unsteady ones are discussed, all for steady 

convective heat flux and/or heat transfer coefficient (Sections 4–8); afterwards, the application of some 

of them to a few thermo-fluid-dynamic problems are presented and discussed in Section 9. 

4. Heated Thin Foil Sensor 

4.1. Basics 

With IR thermography, the simplest steady state sensor that allows us to measure convective heat 

transfer coefficients, is the heated thin foil sensor which mostly constitutes also the slab front surface. 

Figure 1. Sketch of the heated thin foil sensor: (a) adiabatic back surface; (b) diabatic back surface. 

 
(a) (b) 
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Referring to the sketch of Figure 1a, where the thickness is represented much larger, in its classical 

and simplest accomplishment, the sensor consists of a thin metallic foil (frequently a stainless steel, or 

constantan, foil, typically tens of microns thick [1,9], e.g., see Figure 2 where thickness is represented 

to scale), steadily and uniformly (in space) heated by Joule effect. The foil is often thermally insulated 

at its back surface (right vertical surface in Figure 1a and inner surface of Figure 2) while its front 

surface is exposed to the fluid stream.  

Figure 2. Sketch of a foil heater for natural convection studies. From Cardone and 

Carlomagno [9]. 

 

The constant electric potential difference to the foil can be practically achieved by using a stabilized 

DC power supply and two couples of bus bars, usually made out of copper, which, as shown in  

Figure 2, are clamped at two opposite foil edges. The very large equivalent cross section (weighted 

with small electrical resistivity) of the bus bars, with respect to that of the heated foil, should ensure that 

the voltage drop along them is very small. In Figure 2, it can be seen that foil wrapping and thermal 

expansion are taken care of by the lateral stretching screws and the existing springs pushing two rods. 

Since the geometries achievable with a thin metallic foil (which has to be uniformly heated) are 

quite limited (practically, only the rectangular ones), an easily attainable extension of this sensor is to 

use a printed circuit board as a heating element. Often in this case, the closely spaced copper tracks are 

5 to 35 µm thick and arranged in a Greek fret mode over a fiberglass support (see Figure 3a) [10,11]. 

Figure 3. (a) Heated thin foil sensor realized with a printed circuit board; (b) Close-up  

of a printed circuit board with a 24 mm hole to study a jet in cross flow (wf = 2 mm,  

wc = 1.8 mm) [12]. 

(a) (b) 

wc

wf

y

x

sc

sf
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In both implementations, it is extremely easy to obtain also cylindrical geometries (e.g., see  

Section 9.5).  

A geometry conical and/or with the presence of holes (e.g., see Figure 3b) can be attained in the 

case of printed circuit boards, while more complicated shapes may be achieved by patching together 

different clothes, as long as the sensor surface has not a high double curvature. 

In principle, the foil could be heated by any mean (e.g., also by radiation) and even in a  

non-uniform way, but in such a case, the input heat flux should be precisely known in every point of 

the sensor. In many instances, this measurement could be accomplished with the evaluation of the 

heating distribution by using the foil also as a thin skin sensor (see Section 8).  

For the sake of simplicity in the following, it is always supposed that the heating is uniform in space 

and constant in time.  

Apart from the later discussed influence of the electrical resistivity temperature coefficient, from the 

heat transfer point of view, the Joule heated thin foil experimentally provides an almost constant 

convective heat flux boundary condition.  

By assuming that the back surface of the sensor is adiabatic as in Figure 1a, it is easy to perform a 

simple steady state one-dimensional energy balance per unit area of the sensor and per unit time:  

qj = qc + qr (11)

where: qj is the imposed input Joule heat flux (see Equation (17)), qc is the convective heat flux to the 

flowing fluid and qr is the radiative heat flux to the ambient environment on the fluid side. This latter 

contribution unavoidably exists (because the sensor front surface must be seen) and, from a practical 

point of view, it has to be considered as a heat loss.  

The presence of qr applies to all sensor types where temperature is measured by infrared 

thermography over one of the sensor surfaces. 

By assuming the fluid ambient environment as a black body at a constant temperature Ta and that 

the sensor surface is a grey one (assumptions which can be made in most of the cases for the involved 

wavelengths), the radiative heat flux can be computed by using Equations (7) and (8): 

( )4 4q T Tr w atε σ= −  (12)

where σ is again the Stefan-Boltzmann constant and εt is the front surface total hemispherical 

emissivity coefficient. Of course, the radiative heat flux has to be computed point by point of the 

sensor surface by means of the measured local Tw. 

When more conventional techniques are used to measure the wall temperature, it is possible to have 

a very low wall emissivity coefficient in the involved wavebands (e.g., by gold plating the exchanging 

surface) so as to neglect the radiative heat flux to ambient environment. Obviously, this is not the case 

when measuring temperatures of any surface by means of infrared thermography (the surface 

emissivity has to be high) and, besides, to view this surface, the adjacent fluid has to be (at least, 

partially) transparent in the used IR detector band. 

From the knowledge of qj, εt, Ta and Tr and by measuring Tw, through the two previous  

Equations (11) and (12) and making use of the Newton’s law (1), it is possible to directly evaluate the 

convective heat transfer coefficient [1]: 
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rw
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TT

TTq
h

−
−−

=
44σε

 (13)

By looking at Equation (13), it can be affirmed that, if the radiation contribution can be neglected in 

the energy balance, the adiabatic wall temperature Tr may be measured for qj = 0, i.e., by switching off 

the Joule power feeding the foil. 

As later shown in Section 4.2 for this sensor, under the assumption that the total Biot number,  

Bi = hts/kf (where s and kf are respectively the thickness and the thermal conductivity coefficient of the 

sensor and ht includes both convection and radiation) is quite small as compared to unity, temperature 

can be considered practically constant across the foil thickness.  

In this instance, it is also possible to measure the temperature of the back surface of the sensor, 

which, being thereupon viewed obviously becomes diabatic (see Figure 1b). 

This occurrence is very convenient when using IR thermography in liquid flows since most liquids 

are opaque in the used IR bands or whenever the sensor front surface is not accessible to the IR 

scanner for any other reason. 
When also the back surface is diabatic (see Figure 1b), Equation (13) has to be extended by 

subtracting from qj also the heat loss qa from this surface to the external ambient environment, so 

obtaining [1]: 

( )
rw

awtaj

TT

TTqq
h

−
−−−

=
44σε

 (14)

The heat flux towards the external ambient environment via the back surface is usually the sum of 

radiative and natural convection heat fluxes. Radiative heat flux can again be appraised by means of 

Equation (12) with the proper external ambient temperature, while convective heat flux to external ambient 

may be evaluated according to the existing situation by using standard correlations tables [13–15]. 

However to more carefully evaluate qa, it is much better to perform some ad hoc tests with the same 

IR scanner by thermally insulating the front surface of the sensor [16]. The main advantage of 

performing such kind of tests is that they include the radiative contribution towards the external 

ambient environment as well.  

It has to be explicitly pointed out that both the heat losses qa and qr are to be considered as 

correction terms and, in order to obtain accurate data, they should be a small fraction of the total Joule 

heating; otherwise, an error in their evaluation could produce a significant error in the measured h. 

This may be particularly true when performing natural convection studies with gases, where qr can be 

of the same order of magnitude of qc. 

4.2. Limits of the Isothermal Assumption 

Often, when using the heated thin foil heat flux sensor, it is possible to detect only the back surface 

temperature of the sensor, i.e., that opposite to the one the fluid is going over. Since in Equation (1) the 

front surface temperature Tw must be used, it is necessary to examine what are the limits of the sensor 

isothermal (across its thickness) assumption. 

From a practical point of view, two possible foil heating conditions are examined in the  

following [1]. The first one regards the case where the imposed heat flux derives from bulk Joule 
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heating of the foil. The second one is encountered when this flux occurs because of an external 

radiative heating or, in any case, the heat release arises at the sensor back surface. For both conditions, 

it is assumed that the sensor is ideal and that the measured surface is always the back one. 

In the first condition, the heat flux qj is due to the uniformly generated (except than for small 

variations due to the temperature coefficient of electrical resistivity) energy rate per unit volume G 

(heat generation, W/m3) inside the sensor wall because of the electric current passing through it.  

In terms of limits of isothermal condition and unless there is a heat input at the back surface, the 

worst case is when the back surface is adiabatic while the front one (i.e., that exchanging energy with 

the fluid) is diabatic. For such boundary conditions, the solution of the steady state Fourier equation 

leads to the following parabolic temperature distribution inside the sensor: 
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where k is the thermal conductivity coefficient of the foil material, s the foil thickness and the 

coordinate x starts from the sensor front surface being directed towards the back one. 

Therefore, the maximum temperature difference inside the slab is that which occurs between the 

front surface Tw and the back one T1 and is equal to: 
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In the meantime, the heat flux exchanged with the fluid is equal to: 
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By neglecting the radiative contribution qr, the above quantity must be equal to the convective heat 

flux at the fluid side given by Equation (1) and, by recalling the definition of the Biot number,  

it is obtained: 
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Therefore, the Biot number can be regarded as a measure of the relative importance of the 

temperature difference in the sensor with respect to that between the sensor itself and the fluid. 

In a sense, the Biot number measures the above mentioned thermal thickness of the foil (slab). A 

relatively low Biot number implies an essentially constant temperature across the foil and, therefore, 

its low thermal thickness. This is true also in the case of no Joule heating as for the thin skin and the 

Laplacian sensors. 

With regard to the second situation, when the Biot number can get to significant values (i.e., the foil 

is not thermally thin) it is still possible to detect the temperature from the back surface of the sensor 
but, in this case, an extension of Equation (14) is needed [17]. 

E.g., this extension is necessary if the sensor is made of a printed circuit board, or the metallic foil 

is bonded to a support, and the heating element is placed at the sensor back surface. These two 

configurations are usual dealing with corrosive (or electrically conducting) fluids and, for this reason, 



Sensors 2014, 14 21077 

 

 

the metallic heating element must be protected. It is easy to imagine that a similar situation may also 

develop while heating a thermally thick foil by radiation with an external lamp or else. 

The related geometry is sketched in Figure 4. In this case, it is reasonable to assume that at least the 

Biot number of the metallic heating component can be considered very small, which is easy to achieve 

both on account of its thinness and because of its relatively high thermal conductivity coefficient.  

Of course, in radiation heating the metallic heating element does not exist.  

Figure 4. Thin foil heated from the sensor back surface for a relatively high Bi. Adapted from [1]. 

 

By assuming the sensor ideal, the steady state energy balances applied to both its front and back 

surfaces become: 

ajsrc qq
dx

dT
kqq −==+  (19)

where x is the spatial coordinate, normal to the sensor surface that is directed away from the fluid, ks is 

the support thermal conductivity coefficient, which is assumed to be precisely known, and the 

derivative is clearly the same on both support sides. 

Under the hypothesis of one-dimensional steady heat flux, the derivative of Equation (19) can be 

easily calculated by noting that the temperature profile within the support thickness s may be 

considered as a linear one: 
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Since the IR scanner detects the heating element temperature T1 (at the back surface), the previous 

relation consists of a system of two equations (generally, non-linear) in the two unknown quantities h 

and Tw that can be easily solved by using standard methods.  

4.3. Tangential Conduction within the Sensor 

The assumption of a one-dimensional heat flux sensor is strictly satisfied only if the temperature 

within the slab constituting the sensor has negligible gradient components along the sensor surface 

(i.e., in the tangential to surface directions). However, the infrared camera allows researchers to better 

explore 2D effects, especially in studying complex thermo-fluid-dynamic phenomena, where the 

temperature of the sensor generally varies over its measured surface. For a heated thin foil sensor made 

of isotropic material (such as a thin metal sheet), by retaining the assumption that the slab is thermally 
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thin (i.e., isothermal across its thickness) and ideal, it is possible to evaluate the tangential conduction 

heat flux (i.e., referred to the unit sensor area, W/m2) by means of the Fourier’s law [1]: 

wsk Tskq 2∇−=  (21)

where: 2∇  is the two-dimensional Laplacian operator evaluated in the heat flux sensor plane, s and ks 

are the thickness and the thermal conductivity coefficient of the foil, respectively. 

When using an infrared scanner, a two-dimensional detailed distribution of the surface temperature 

is directly measured and, in principle, it should be straightforward to evaluate the conductive heat flux 

by numerically approximating the two-dimensional Laplacian of Equation (21) with the classical  

5 points formula. However, the infrared scanner unavoidably embodies in its signal high frequency 

random noise that is obviously amplified by the numerical derivatives. Therefore, it is indispensable to 

calculate the Laplacian only after an adequate filtering of the temperature map. One procedure for this 

signal smoothing can be accomplished by a simple convolution with a Gaussian-filtering window.  

In any case, when performing a steady state measurement, to reduce the random noise, it is always 

very helpful to make an average of several temperature maps acquired in a sequence.  

Another kind of smoothing can be accomplished before derivation in some peculiar situations. E.g., 

when experimental conditions involve temperature variations in only one direction along the sensor 

surface (such as testing a two-dimensional airfoil in a wind tunnel, or the example of Figure 2), a span 

wise average can be performed, even for unsteady conditions.  

Instead, when the investigated geometry exhibits an axial symmetry (e.g., a jet normally impinging 

on a flat surface or a disk rotating in still air [1]), it is advantageous to perform an azimuthal average of 

the temperature map so as to calculate the convective heat transfer coefficient only along the radial 

coordinate r (radial profile). In particular, in this case the Laplacian of Equation (21) reduces to the 

much simpler formula: 
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which, however, has a singularity at r = 0 that has to be carefully handled.  

Once the tangential conduction heat flux is evaluated with Equation (21), it is easy to extend the 

approach presented in the previous chapter to the multi-dimensional case. In fact, by including the 

tangential conduction additional term in the energy balance (in particular, in Equation (14), where the 

tangential conduction does not exist), the convective heat transfer coefficient can be evaluated by 

means of [1]: 
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It will be later shown that Equation (23) allows us to generalize the heated thin foil sensor to a more 

comprehensive and less complex heating condition, i.e., the Laplacian sensor, by putting qj = 0. 

As previously mentioned, in many practical realizations of the heated thin foil sensor, a spatially 

quite constant Joule heating can be achieved by using a copper-clad laminate where a printed circuit is 

carved, i.e., a printed circuit board. The printed circuit board is generally made of a not electrically 

conductive fiberglass support (typically 0.2 ÷ 0.5 mm thick) to which extremely thin (generally from 5 



Sensors 2014, 14 21079 

 

 

to 35 µm thick) conductive pure copper tracks are bonded. However, notwithstanding the copper layer 

thinness, because of the extremely high thermal conductivity coefficient of the copper (k ≅ 390 W/mK), 

the board exhibits an anisotropic thermal conduction behavior (along, or across, the tracks). Therefore, 

in order to effectively evaluate the tangential conduction term, it is necessary to generalize Equation (21) as 

extensively reported in [1,16]. 

4.4. Data Analysis and Experimental Procedure 

For what already said in Section 4.2, when using the electrically heated thin foil and if the Biot 

number is not very small, to evaluate Tw to be used in Equation (1) it is necessary to subtract the 

quantity Gs2/2k from the measured T1. If it is necessary to consider also the heat losses to ambient 

environment qa, computation gets more involved. Luckily enough, when using the electrically heated 

metallic thin foil, the Biot number turns out to be often very small (generally, less than 1%) so that 

such a correction is not usually required. Instead, for the second situation described in Section 4.2, a 

correction according to what suggested there has to be performed. 

The other operations to correct acquired data, such as taking into account the radiation terms or the 

heat flux to ambient environment, are already comprehensively addressed in Section 4.1. 

As far as the experimental procedures are concerned, the simple ones described in the following 

may improve the process of obtaining more reliable data. 

As an absolute and often overlooked general comment, it must be pointed out that, as previously 

affirmed, being the heated thin foil, a steady technique, most of the times it is strongly recommended 

to first acquire with the IR scanner a relatively large number of temperature distributions 

(thermograms) and then to average them in order to decrease the existing temporal random noise. Of 

course, in doing so the flow conditions must be kept rigorously constant.  

Furthermore, it is suggested that, in hyposonic external flows (which is an often encountered 

situation), it is much better to previously measure the adiabatic wall temperature Tr of Equation (1), 

without heating the foil but with on-going normal testing flow conditions, before measuring 

temperatures while heating the foil. This procedure can compensate the IR scanner limited thermal 

accuracy (which is worse than its sensitivity), so eliminating the unavoidable bias. 

The heat transfer boundary condition that the heated thin foil practically enforces is the constant 

heat flux one. However, since the convective heat transfer coefficient is not generally uniform over the 

whole foil, temperature differences may arise (see Equation (1)). They induce local changes of the 

electrical resistivity of the foil material that, in turn, may produce local variations of the power 

dissipated by Joule effect. Clearly, this effect is strictly linked to the magnitude of the temperature 

variations over the foil and to the temperature coefficient of the electrical resistivity but it can be 

normally neglected by using a proper material (e.g., constantan or manganin alloys).  

However also for different types of alloys, it has to be evidenced that, when the temperature 

differences over the sensor are relatively small, this effect is often negligible. E.g., for a standard 

nichrome alloy, the temperature coefficient is of the order of half a thousandth per Kelvin and, if the 

maximum temperature difference over the foil turns out to be not larger than 20 K, the error in the heat 

flux evaluation is less than 1%.  
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Instead, for printed circuit boards, it has to be stressed that copper metal has a relatively high 

temperature coefficient of electrical resistivity (about 0.004 K−1), about ten times that of nichrome, i.e., 

a temperature difference of 20 °C would cause an uncertainty in the heat flux evaluation of about ±4%. 

Therefore while conducting experiments with printed circuit boards, large temperature differences 

should be avoided or, should they exist, an adequate correction must be performed on the basis of the 

measured temperature distribution of the circuit.  

A very simple and direct way to accomplish this objective is to multiply, segment by segment of the 

circuit, the initially estimated Joule average heat flux by the sum of one plus the product of the copper 

electrical resistivity temperature coefficient times the difference between the locally measured 

temperature and the mean (over the whole heated board surface) one. 

5. Gradient Sensor 

5.1. Basics 

As already stated, for this steady state sensor, the temperature difference across the sensor thickness 

is measured and, by knowing the thickness s and the thermal conductivity coefficient ks of the slab, the 

heat flux across it can be computed [6,18].  

Obviously, the assumption that the slab thermal conductivity coefficient does not depend on 

temperature makes linear the temperature profile across the slab thickness.  

Therefore, the energy balance equation to be used for the gradient sensor is:  

( )w
s

src TT
s

k

dx

dT
kqq −==+ 1

 (24)

so that, by recalling Equation (1), the convective heat transfer coefficient may be inferred from the 

following relationship: 

rw

r

rw

ws

TT

q

TT

TT

s

k
h

−
−







−
−= 1

 (25)

One of the major problems arising when the IR camera is used as a temperature transducer for the 

gradient sensor lies in the incapability of the camera to look at two different temperature distributions 

(maps), the first over the front surface and the second over the back one. This difficulty can be 

bypassed either by scanning the wall surfaces one at a time or by viewing both of them by means of 

mirrors; the first technique is more advantageous because it allows a higher spatial resolution but 

requires a definite steady state, the second one involves the mirror calibration.  

An alternative method to make use of this sensor with IRT consists of viewing with the IR camera 

only the front sensor surface while keeping the back one at a given constant temperature T1 (e.g., in 

contact with a heat sink). If qc is not relatively large, this could be achieved by exposing the back 

surface to a boiling liquid or a condensing vapor. The high heat transfer coefficient obtained in these 

conditions allows T1 to coincide with the phase-change temperature of the fluid. Then in order to 

compensate the IR camera limited thermal accuracy (which is worse than its sensitivity), therefore 

eliminating the unavoidable bias, a small part of the slab could be removed to directly observe the heat 

sink, which emissivity however should be exactly equal to that of the sensor front surface. 



Sensors 2014, 14 21081 

 

 

5.2. Data Analysis, Tangential Conduction and Experimental Procedure 

The gradient sensor method can also be used to a certain extent in the heat transfer unsteady regime. 

In particular, if the functions Tw(t) and T1(t), which describe the time-temperature histories, do not 

contain harmonic components with frequencies greater than 0.1 α/s2 (α being the slab material thermal 

diffusivity coefficient), the heat flux can be inferred from the formula [19]:  
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which, in particular, for s2/α → 0, reduces to Equation (24).  

Even at steady state, the tangential conduction of this sensor cannot be longer appraised with 

Equation (21) that assumes a constant temperature across the slab, while in the gradient sensor, for 

multi-dimensional operation, a quasi-linear temperature profile exists. For a constant T1 and a 

harmonic variation of the front surface temperature, the tangential conduction depends on the  

ratio R between the wavelength of the variation and the sensor thickness s according to the 

approximate formula: 

2 /q sk Ts wk χ= − ∇  (27)

where the dimensionless parameter χ is a function of R.  

So, since it occurs that χ is always greater than 1, only a fraction of the Laplacian at the front side 

wT2∇  contributes to the tangential conduction along the slab. 

Values of the coefficient χ, computed to be used in Equation (27), are reported in Figure 5, as a 

function of the dimensionless wavelength R, which shows that, at high wavelengths, only one third of 

the Laplacian results to be active for tangential conduction. Obviously, for more complex conditions 

the inverse heat transfer problem should be solved. 

Figure 5. Value of χ for Equation (27) as a function of the dimensionless wavelength R. 
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As far as the experimental procedures are concerned, if they apply also to the gradient sensor, the 

same considerations already made for the heated thin foil may be employed; e.g., when performing a 

steady state temperature acquisition, it is always very helpful to make an average of several 

temperature maps picked up in a sequence so as to reduce the random temporal noise.  

6. Laplacian Sensor 

6.1. Basics 

Noticeably enough, the Laplacian sensor is governed by the same energy balance of the heated thin 

foil sensor but with a different relevance of the involved terms and the absence of Joule heating. 

As already mentioned in Section 4.3, the capability of an IR scanner, to evaluate the  

two-dimensional distribution of the conductive heat flux, allows us to generalize the heated thin foil 

sensor to a more comprehensive and less complex heating condition. In particular, it is possible to heat 

the slab not in the measurement zone but near it and this external heating can be even non-uniform and 

unknown. In this way, another peculiar heat flux sensor is practically generated: the Laplacian sensor 

(see Carlomagno et al. [7]). 

This (still steady state) sensor is based on Equation (23) where the term qj does not appear in the 

equation itself since the slab is externally heated and no Joule heating term exists in the energy balance 

equation within the measurement zone. In fact, the flow over the sensor surface induces the convective 

heat transfer that, besides the heat losses, mainly derives from the derivative of the tangential 

conduction heat flux within the slab, which can be appreciated by computing the two-dimensional 

Laplacian of the temperature distribution. 

A peculiar aspect of such a sensor is therefore associated to the fact that, while for the heated thin foil 

sensor, qj is the main term in the energy balance equation, for this sensor, the Joule heating in the measured 

zone is not needed so that qj is identically zero; hence, the most important term in Equation (23) becomes 

indeed the derivative of the tangential conduction heat flux s ݇௦∇2 Tw. So it is obtained: 
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Consequently, the critical feature of this sensor is the accurate evaluation of the temperature  

two-dimensional Laplacian because its erroneous evaluation has a direct consequence on the 

computation of the convective heat transfer coefficient h. Being dependent on the Laplacian 

evaluation, this heat flux sensor is also herein called Laplacian sensor as proposed in [7].  

6.2. Data Analysis and Experimental Procedure 

The main hindrance of the Laplacian sensor is therefore related to the importance of a correct 

estimation of the derivative of the tangential conduction heat flux which, with the convective one qc, 

are the most relevant contributions in Equation (28). As a matter of fact, being the tangential 

conduction usually a correction term, the heated thin foil sensor is less affected by this issue, the most 

important contributions arising from the convective term qc and from the imposed Joule heating qj. 
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Therefore, because of the aforementioned reasons, for the Laplacian sensor the numerical computation 

of the Laplacian of Equation (28) involves some critical aspects to be considered.  

An adaptive filtering technique, consisting of consecutive applications of the Wiener filter  

to the temperature distributions, is proposed by Rainieri et al. [20]. However, in the work of 

Carlomagno et al. [7], where a quite complex flow field is analyzed, a different approach is adopted, 

involving spatial filtering with a Gaussian window and calculating the numerical derivatives with a 

relatively large spatial distance.  

This method implies a certain reduction of the spatial resolution of the measurement so that an 

operating compromise has to be necessarily found. Practically, the authors propose to correlate the 

dimensions of the spatial filtering window and of the numerical derivatives computational step to the 

physical parameters of the investigated phenomenology. 

Besides, the use of an IR camera with Focal Plane Array introduces another error critical source, 

i.e., the spatial measurement noise generated by the different t response of the several pixels of the IR 

detector. Therefore, an accurate and reliable process of Non-Uniformity Correction (NUC) is of 

fundamental importance. As a matter of fact, both spatial filtering and computation of the derivatives, 

with a relative large step are not often sufficient to compensate the decay of the signal-to-noise ratio 

due to the non-uniformities between the various pixels response.  

Of course, the issue of tangential conduction correction is not herein treated because it constitutes 

the basic principle on which the Laplacian sensor operates. 

In the application Section 9.3, the use of this sensor and its sensitivity to the heating conditions are 

analyzed in much more detail. 

7. Thin Film Sensor 

7.1. Basics 

Since it measures a map of surface temperatures, the IR scanner output can be thought as 

originating from a two-dimensional array of an extremely large number of very small thin resistance 

thermometers with the advantage that the thickness of the equivalent thin films is exactly zero.  

A very schematic sketch of the thin film sensor is depicted in Figure 6, where the temperature to be 

measured as a function of time t is T(x = 0,t) = Tw(t), so that of the sensor front surface. With this 

sensor, since necessarily the viewed surface is that along which the fluid is flowing over, it is 

compulsory that the heat exchanging fluid has to be (at least partially) transparent in the IR band 

detected by the scanner. 

It is obvious that the wall conductive heat flux within the solid qw at the fluid/solid interface, must 

balance the sum of the radiative qr and convective qc heat fluxes towards the fluid: 

qw = qc + qr (29)

As for the thin skin, the major part of the works that use the thin film, to measure convective heat 
transfer coefficients, are associated with hypersonic flows (high values of Tr), so that, in Equation (1), 

qw becomes a negative quantity. Therefore, in the following for both this two sensors, the role of Tr and 
Tw in Equation (1) are reversed, resulting in an increase of the slab surface temperature with time. 
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Figure 6. Sketch of the thin film sensor. Adapted from [1]. 

 

From the classical heat conduction books (e.g., Carslaw and Jaeger [21]), it is possible to recover 

the one-dimensional solution for a semi-infinite wall having a constant initial temperature Twi (x, t = 0) 

and, at following times (t > 0), subjected on its surface to a uniform (in space) convective heat flux 

governed by Equation (1) with constant h and Tr (which is the most commonly encountered case): 
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T being the generic slab temperature at a certain depth x; the dimensionless quantities ξ, β and Bix 

are defined as: tx αξ 2= , ssckth ρβ /=  and Bix = hx/ks. The latter quantity represents the local 

Biot number, i.e., the Biot number based on x. 

In the previous notations: α, ρs, ks and c indicate respectively the thermal diffusivity coefficient, the 

mass density, the thermal conductivity coefficient and the specific heat of the sensor material; x and t 

are respectively the spatial coordinate (starting at the interface and directed as in Figure 6) and the time 

variable. Often, the product ρscks is called thermal inertia (or thermal effusivity); others use these 

names for the square root of the same product. 

The dimensionless parameter ξ is proportional to the square root of the reciprocal of the local 

Fourier number (Fox = αt/x2), also based on x. The Fourier number can be thought as measuring the 

relative importance of the conductive heat flux with respect to the rate of thermal energy storage but it 

may be certainly regarded also as a dimensionless time.  

Alternatively, the dimensionless parameter β can be also expressed in terms of the local Biot and 

Fourier numbers, or Bix and ξ, since: 
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The dimensionless temperature profiles into a semi-infinite wall at a constant initial temperature are 
plotted in Figure 7, as a function of ξ, for several different values of β. 

At a given time t, the increase of the front surface temperature (ξ = 0) with β can be associated to 

either an increase of h or a decrease of the sensor thermal inertia ρscks. This makes the sensor, at initial 

times, more sensitive if it is made of low thermal conductivity ks, and/or low thermal capacitance per 

unit volume ρsc, material. On the other hand, for constant h and ρscks, the increase of θ is connected to 

a time increase and, thus, to the total heat input.  
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Figure 7. Dimensionless temperature profiles, for several β values, in a semi-infinite wall 

at a constant initial temperature and subjected to a constant h and Tr. Adapted from [1]. 

 

The top curve of Figure 7 corresponds to β → ∞ (e.g., h → ∞) and, in this case, the boundary 

condition at the wall surface for t > 0 reduces to a constant fluid/solid interface temperature Tw = Tr, so 

that Equation (30) simplifies to:  

( )ξθ erfc=  (32)

However, the case of β → ∞ is of no interest to measure convective heat transfer coefficients since 

it gives a constant temperature Tw with time. This condition may be rather exploited to measure the 
adiabatic wall temperature Tr of Equation (1), as long as the radiative contribution qr of Equation (29) 

can be assumed negligible. 

7.2. Effects of the Finite Thickness of the Sensor 

In practice, the thin film sensor cannot be semi-infinite but it is always made of a slab of finite 

thickness s (so also a sensor back surface does exist) and, as it can be easily understood, the 

equivalence to the semi-infinite wall model is valid only during a relatively small measurement time 

interval tm, before the thermal wave reaches the back surface. This being the case, the boundary 

condition on the existing back surface (e.g., q = 0 or T1 = const) becomes practically irrelevant.  

As a matter of fact, for very large values of ξ (e.g., large values of x and/or small time values), the 

temperature of the slab coincides with the initial one (i.e., θ = 0), while, for ξ decreasing, θ increases.  

By first supposing β → ∞, Equation (32) can be used to find a very conservative time limit for the 

correct application of the semi-infinite wall model to a finite thickness sensor.  

Really, by fixing a maximum value of θ (for instance, 1%) which can be accepted at the sensor back 

surface without substantially altering the measurement, it is possible to find (for a semi-infinite sensor 
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model) the corresponding value of ξ (indicated with ξ ) and, therefore, the maximum measurement 

time that can be practically used with a finite slab [1]: 
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where 
24ξ=p  represents a constant to be computed, which is later evaluated also in less conservative 

limits. On a quantitative basis for β → ∞, by putting in Equation (32) ξ  = 1.82, since erfc(1.82) ≈ 0.01, it 

is readily found p ≈ 13.3. 

This time limit is clearly independent of the Biot number and is a very conservative one because, 
besides the assumption ∞→β  (which, as stated before, is useless to measure convective heat transfer 

coefficients), it considers the departure from the semi-infinite model at the sensor back surface. As a 

matter of fact, in the thin film sensor, the monitored temperature, which is useful to compute the heat 

flux, is always the front surface one.  

The found time limit is in marked contrast with what affirmed by Carlomagno and de Luca [6] who 

suggest a p value equal to 2, even without specifying a back surface temperature increase as low as 

1%. However, it has to be stressed that this point is often presented in the literature in a controversial 

way (some researchers fix p = 16, e.g., see Gülhan et al. [22]) so, in the following, the problem is 

examined on the condition of a θ accuracy at the front surface of 1%, which can represent a rather 

satisfactory value.  

Being the slab back surface (x = s) adiabatic (which is an often encountered experimental condition) 

and the front one (x = 0) almost always subjected to a convective heat flux with constant h and Tr, it is 

possible to retrieve the following exact solution [21] for the slab temperature distribution:  
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where now Bi (based on the sensor thickness) is defined as in Section 4.2 by the formula (18) and γn 

are the positive roots of the equation γtanγ = Bi. Values of the first six roots of this equation can be 

found in [21].  

Therefore, with regard to Equation (33), a less conservative measurement time limit can be found 

by introducing the ratio: 
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which represents the percentage departure between the two solutions (for the finite slab  

θs—Equation (34)—and for the semi-infinite one θ∞—Equation (30)), where the subscript s and ∞ 

refer to the finite slab and to the semi-infinite wall, respectively. The quantity Ξ can be either referred 

to the front sensor surface or to the back one but, as already said, only the one referring to the front 

surface is of interest for the thin film heat flux sensor. 

The time at which Ξ is equal to a prefixed threshold (namely 0.01) can be used again as an estimate for 

the evaluation of the maximum measurement time. It turns out [1] that p is practically independent on Bi 
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(the maximum value for low Bi being p ≈ 3.1). Therefore, a dependable value for p in Equation (29) can be 

definitely established at p ≈ 3, in most of the encountered experimental conditions. 

7.3. Data Analysis and Experimental Procedure 

In the previous sub-section it has been just assessed that, if the measurement time is sufficiently 

small (t < s2/3α), a slab, which is used as a thin film heat flux sensor, is well approximated by the 

semi-infinite wall model. Then, by supposing that the slab at the initial time (t = 0) is isothermal at a 

temperature Twi, from the front surface temperature evolution Tw(t), measured with the infrared camera, 

it is possible to use the classical formula of Cook and Felderman [23] to evaluate the wall heat flux qw, 

as a function of time: 
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where ϕ (t) = Tw(t)−Twi and, obviously, qw is the total conductive wall heat flux (qw = qc + qr) at the 

fluid/solid interface.  

The previous equation is valid for a wall heat flux generally varying with time but a much simpler 

formula can be found when a constant wall heat flux is imposed: 
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πρ
ϕ

2
=  (37)

where the front temperature rise is proportional to the square root of time. 

Notwithstanding its simplicity, Equation (37) is of seldom met relevance in convective heat transfer 

measurements because, with the thin film sensor, the most commonly encountered boundary condition 

is of constant convective heat transfer coefficient and reference temperature in Equation (1), and not of 

constant wall heat flux. Anyway, a best fit, of the type later given by Equation (39), as suggested later, 

could be simply applied also in this case. 

The solution given by Equation (37) could be considered acceptable only on condition that the 

quantity ϕ remains very small as compared to Tr−Twi, during all the experimental test, so that the 

exchanged heat flux may be consequently considered almost constant. 

Instead, by numerically evaluating the integral of Equation (36), it is possible to determine the wall 

conductive heat flux but, when using standard methods, the singularity that is present for τ = t, may 

reduce the results accuracy. Cook and Felderman [23] assumed that the temperature could be 

approximated by a piecewise linear function and found the following stable method:  
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with ti = iΔt, where Δt is the time interval between the acquired data and n represents the total number 

of measured data. 

Since the wall temperature history is measured with the infrared scanner, the calculation of the 

radiative heat flux can be made with the help of Equation (12), then, by using Equations (1) and (29), it 

is straightforward to evaluate also the convective heat transfer coefficient. 
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However, the evaluation of the conductive wall heat flux with Equation (38) is particularly suited 

only when a large number of measurement points in time are available and both the initial time and 

model temperature are well known. This is not always the case when performing tests in relatively fast 

transient conditions (e.g., in short duration hypersonic blow down tunnels or, in the worst instance, in 

shock tubes or tunnels).  

In fact, in many actual unsteady measurements, it is not possible to either insert immediately the 

model in the main stream or to accelerate instantaneously the fluid to its final velocity value, so the 

initial time may be itself partially unknown.  

In these circumstances, the data acquisition frequency, even of a modern IR scanner which is often of 

the order of 100 Hz, may be not large enough to accurately evaluate the wall heat flux with Equation (38). 

Then, for a constant h and reference temperature Tr, a different approach, based on a non-linear 

least square fit, can be more advantageous as suggested by de Luca et al. [24]. 

By writing Equation (30) at the fluid/solid interface, it is found:  

( )2

1w wi
w

r wi

T T
e erfc

T T
βθ β−= = −

−
 (39)

From this equation, it may be assumed that, apart from some known slab thermo-physical properties 

and time intervals, the convective heat transfer coefficient as well as the initial time and sensor 

temperature are unknown. The best fit of the measured wall temperature Twm to the exact solution 

described by Equation (39) Tw can be found by varying h (in β) and Twi in order to minimize the 

following functional: 
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2
 (40)

A second problem is the radiative heat flux that, when using IR thermography, is not generally 

possible to neglect. Under the assumption that the convective and radiative contributions are 

uncoupled, de Luca et al. [24] propose to modify Equation (39) with the following one: 

( ) ( )[ ]
h

q
erfceTTTT r

wirwiw −−−=− ββ 2

1  (41)

Then, by using this equation, it is possible to take easily into account also the radiative heat flux in 

the minimization of the Functional (36). 

The previous approach is, in every respect, an inverse heat transfer problem and can be extended, 

by a numerical solution of the Fourier heat equation. This may be necessary in order to include the 

temperature dependence of the slab thermo-physical properties and/or to have, in case, slabs with high 

curvature (e.g., Mulcahy et al. [25]). 

7.4. Tangential Conduction within the Sensor 

In the previous sub-sections, also for thin film sensor, the temperature distribution within the slab is 

supposed to be just one-dimensional (along coordinate x). However, as said before, this is not the most 

usual case, since variations often occur over the sensor surface due to complex flow fields.  
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The analysis that follows is developed under the assumption that the sensor material is isotropic or, 

by choosing a Cartesian coordinate system with its axes directed as the two principal axes of the 

thermal conductivity tensor, it is always possible to split the conduction effects along the two 

tangential directions.  

Therefore, since the extension to any arbitrary convective heat flux distribution is straightforward, 

for the sake of simplicity, in the following it is assumed that the convective heat flux harmonically 

varies only along a direction y parallel to the front surface of the sensor, that is: 

( )yAq qc ϖcos=  (42)

where Aq is the heat flux amplitude and ϖx is the wave number. 

In Equation (42) it is not included any possible unsteady but uniform in space part of the convective 

heat flux, which is already looked upon in detail in the previous sub-sections. In fact, by considering 

that the involved phenomenology is linear (for an ideal sensor), the two effects can be treated 

separately and successively summed up. 

The solution with the boundary condition (42) at the front surface and initial sensor temperature 

spatially constant, is given by de Felice et al. [26] in terms of the difference ϕ between the front 

surface temperature Tw at time t and the initial (t = 0) sensor temperature Twi and can be put in  

the form: 

( ) ( ) ( )yFofATTty wiw ϖϕ ϖ cos , =−=  (43)

where Foϖ = 2
xϖ  α t is a modified Fourier number, A is a constant reference temperature amplitude and 

f is a function of Foϖ. A and f are equal to: 
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So, there is no phase difference (in space) between the harmonic heat flux and the front surface 

temperature response and f turns out to be an increasing function of Foϖ that varies between 0 and 1. 
Therefore, in Equation (43), A indicates the maximum amplitude (attained for Foϖ→∞) of the cosine 

wave while, for smaller values of Foϖ, the amplitudes are reduced by the attenuation factor f.  

It has to be noticed that, despite the fact that the attenuation factor is an increasing functions of the 

Fourier number, the effective temperature amplitudes Af increase for decreasing spatial frequencies 

and the opposite is true for ϖx → 0. In particular, in this latter case, the effective amplitude limit is: 
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→
 (45)

As expected, the limits is unbounded for increasing t since the problem is reduced to a constant (in 

time and space) boundary condition.  

To correct the measured temperatures so as to take into account tangential conduction effects, it is 

convenient to evaluate the ratio between the effective temperature amplitude A f(Foϖ) (as computed from 

Equation (44)) and that corresponding to the same value of Aq but in absence of tangential conduction  

(i.e., that given by the one-dimensional solution or, analogously, by the limit of Equation (45). 

By defining this ratio as the temperature modulation transfer function F, it results: 
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Once the function F represented in Figure 8 is known, the amplitude of each harmonic component 

of the measured temperature may be corrected and the restored temperature maps can be used to 

compute the effective heat flux by using the formulae already presented in Section 7.3.  

Figure 8. Temperature modulation transfer function F for the thin film sensor. Adapted from [1]. 

 

As a matter of fact, it turns out that, for the tangential conduction in a thin film sensor, there is a 

kind of modulation function in time (Foϖ) and not one in space as it happens for the modulation 

transfer function that occurs for the scanner spatial resolution [1]. 

An example of image restoration for the thin film sensor is reported in Section 9.2. 

8. Thin Skin Sensor 

8.1. Basics 

In the case of the thin skin (or wall calorimeter), the sensor, practically a thin slab (see the sketch of 

Figure 9) of thickness s, is usually modelled as a perfect calorimeter (isothermal across its thickness, 

so thermally thin) which is heated at the front surface and thermally insulated at the back one.  

As it will be shown later, the isothermal condition involves that the slab has to be not only thin but 

also with a high thermal conductivity coefficient as it happens, e.g., for metals. 

Even if the isothermal condition is not fulfilled, the unsteady one-dimensional energy balance 

applied to the slab is: 

dt

dT
csq m

sw ρ−=  (47)
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where Tm is the mean temperature across the slab thickness and qw is the external heating which must 

always fulfil the condition qw = qc + qr. In the following sub-sections, Bi and Fo are always based on 

the slab thickness s. 

Figure 9. Sketch of the thin skin sensor. 

 

Having assumed the slab isothermal (which as it will be seen is true as long as Bi << 1 and for 

relatively large Fo values), the wall heat flux qw and consequently the convective heat flux can be quite 

easily computed by numerically evaluating the time derivative of the temperature measured on either 

side of the sensor.  

If the back surface of the sensor is not adiabatic for measurement needs, Equation (47) can be 

extended, as already discussed for the heated thin foil sensor, by including the total heat flux qa to the 

ambient environment. 

When the imposed wall heat flux is constant with time and the sensor is ideal, Equation (47) can be 

easily integrated and the result is practically a linear increase of the slab mean temperature with time. 

In particular, in this case, as in the following one, it is assumed that the temperature rise is the same 

across the slab thickness.  

As shown later and apart from the influence of the radiative heat flux, an essentially exponential 

rise of the temperature with time can be easily found when a convective heat flux, with constant h and 

reference temperature Tr, is enforced at the wall (see Equation (51) in the following).  

However, in both the above described cases, the simple steady state solution is preceded by a 

transient (for low Fo values), where the temperature at every slab point rises from its initial value to an 

asymptotic dependence. As it will be seen in the next section, during this transient, the rate of variation 

of the wall temperature (on both sides of the sensor but especially at the front one) can be significantly 

different from the mean one.  

Furthermore, it has to be stressed that it is not generally convenient to directly evaluate either heat 

fluxes or convective heat transfer coefficients with derivatives of acquired temperatures because the 

measured experimental signal is unavoidably affected by noise.  

Some solutions to overcome this problem are to either previously filtering the signal or adopting an 

integral approach or else minimize a functional of the type given by Equation (40). 
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8.2. Isothermal Assumption 

There are many experimental circumstances where the testing time is relatively short, such as short 

running time blow down wind tunnels or shock tunnels, and the limits of the thin skin sensor 

isothermal conditions have to be correctly assessed. 

The isothermal condition of the thin skin can be expressed by introducing the dimensionless 

parameter: 

w

w

θ
θθ

−
−=Θ

1
1  (48)

where θ has the same definition given in Section 7.1 and the subscripts w and 1 again respectively 

indicate the front and back surfaces of the sensor. As it will be seen later, the condition |Θ| << 1 is 

realized, also at the asymptotic state (i.e., relatively large Fo values), as long as the Biot number is 

sufficiently small.  

By supposing again the slab adiabatic at its back surface and subjected to a convective heat flux, 

with constant h and Tr, and by using Equation (34), in Figure 10 the parameter Θ is plotted as a 

function of Fo for different values of the Biot number. Initially, the temperature is constant inside the 

slab so the parameter Θ is small regardless of the Biot number. Afterwards, Θ increases and reaches an 

asymptotic value, which is practically attained for Fo > 0.5 and appears to be an almost linear function 

of Bi, as it should be expected. 

Figure 10. Θ as a function of Fo for several Bi values. Adapted from [1]. 

 

The isothermal condition, previously enforced, does not imply that, as shown in Figure 11, the 

temperature across the slab, even for a quite small Biot number (e.g., Bi = 0.05), is practically constant. 

Furthermore, for very small Fo values, the thermal wave is not able to yet reach the opposite wall 

(sensor back surface).  
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Figure 11. Temperature profiles in the slab (Bi = 0.05) at several Fo values for adiabatic 

back surface. 

 

Clearly, if the IR scanner measures the back temperature T1, the time derivative of the measured 

temperature is, initially, equal to zero, thus it is necessary to wait some time before acquiring  

the measurement.  

On the contrary, the sensor front surface temperature initially increases more rapidly than the 

average one and, for small Fourier numbers, also this temperature evolution does not enable to 

correctly evaluate the time derivative of the mean slab temperature (which is the one that monitors the 

heat flux, see Equation (47)). 

The error made in the evaluation of the mean temperature time derivative can be expressed in a 

quantitative way with the dimensionless ratio: 

dt

dT

dt

dT

dt

dT mm 





 −=Π  (49)

which is a function of the position in the slab and of the Fourier and Biot numbers. 

In Figure 12 for both the front and back surfaces, the ratio Π is plotted as a function of the Fourier 

number for two Bi values. For very small times (i.e., Fo), at the back surface the condition 0dT dx=  

occurs and this event explains the initial 100% constant value of the negative error. On the contrary, at 

the front surface the temperature variation is much larger than the mean one and this is the cause for 

the extremely large positive error at very low Fo values.  

From the graph, it is evident that both absolute errors decrease for increasing Fo; they become 

smaller than 1%, for Bi = 0.01 and Fourier numbers larger than 0.5. The error curves remain 

practically unchanged as long as Bi < 0.05 while, as it can be noticed from the figure, for the larger 

Biot number the asymptotic error increases significantly but the time needed to reach its final value 

remains practically the same. 
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Figure 12. Error in the evaluation of the derivative of the mean slab temperature. Adapted 

from [1]. 

 

It is interesting to notice that, for the high Biot number, the asymptotic error for the back surface is 

smaller (about 0.075) than that for the front one (about −0.15) and this because its temperature is 

always closer to the mean one (e.g., see Figure 11). 

At the asymptotic state and when the Biot number is not appropriately small, it is still possible to 

use the thin skin sensor but it is necessary to adopt a more accurate approximation of the mean slab 

temperature or, as it is shown in the following sub-section, of the time at which evaluating it from the 

measured data. 

8.3. Data Analysis and Experimental Procedure 

The computation of the convective heat transfer coefficient can be performed by rearranging 

Equations (1), (25) and (47) so as to obtain [1]: 
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For quite small Biot numbers and Fo > 0.5, the slab can be considered as isothermal and it is 

possible to evaluate Tm with either the front Tw or the back T1 surface temperature. The solution of 

Equation (50) for a constant convective heat transfer coefficient and for qr = 0 (but a similar result is 

also obtained, whenever possible, by linearizing qr and adding to h the radiative heat transfer 

coefficient hr) is given by: 
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This relation can be used to implement a regression process to measure h as in the case of the thin 

film previously described.  
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A different approach is based on the numerical solution of Equation (50); a simple central 

difference formula may be normally sufficient: 
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2
11  (52)

where the time interval is defined as 2Δt = ti+1 − ti−1. 

However, as said above it is advisable, before using Equation (52), to filter (in time) the 

temperature signal to avoid errors due to the captured noise. 

As previously mentioned, when the slab cannot be considered as isothermal (Bi > 0.05), or the 

measurement is unsteady (as it may happen because of the continuous change of Tw in Equation (1) 

and the non-linear change of qr), approximating the mean temperature with that of one of the surfaces 

may lead to significant errors in the evaluation of the wall heat flux.  

In the following, some formulae, which are useful to reduce unsteady convective heat transfer 

measurements with the thin skin sensor (such as the case of constant h and Tr), are reported.  

By making use of the Laplace transform and considering a first order expansion, it is possible to 

find the following approximate relations (Douglas [19]) between the front surface temperature Tw, the 

mean Tm and the back surface one T1 (the right insulated surface of Figure 9): 
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where s is the sensor thickness and α its thermal diffusivity coefficient. 

By numerically differentiating Equation (53), a better estimate of the mean temperature derivative 

can be easily accomplished for unsteady measurements. In particular, if the IR scanner measures the 

back surface temperature, the use of Equation (53) enables to link easily T1 to Tm and the front surface 

temperature Tw needed in Equation (50) to evaluate the convective heat transfer coefficient.  

In the conventional heat flux measurement techniques, the temperature is normally measured with a 

thermocouple bonded to the rear of the sensor (the back surface) and higher accuracy reduction 

methods are reported. The main idea is to use a Taylor expansion (truncated at the order 2n) of the 

temperature distribution inside the slab and to exploit the adiabatic boundary condition and the Fourier 

equation so as to obtain: 
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where the coordinate x is oriented as in Figure 9 and the second equality derives from the  

Fourier’s equation. 

Equation (54), where the dependence from t has been dropped for sake of ease, can be used (by 

simply imposing x = 0) to evaluate the temperature Tw on the opposite side of the slab.  

Jepps [27] proposes the following second order discretisation: 
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By integrating Equation (54) in space, the result can be used to compute also the mean temperature:  
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By differentiating in time the previous equation, one obtains the following relation that, for 

unsteady measurements, extends to higher frequencies the field of validity of the thin skin sensor: 
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In the first order approximation (n = 0), the previous formula obviously reduces to the case of an 

isothermal slab, while for higher orders, the time derivatives can be easily numerically evaluated.  

For n = 1 Jepps [27] proposes the following discretisation (that is equivalent to a first order 

numerical approximation of Equation (53)): 
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Generally, higher order approximations are not required but, should it be necessary, they can be 

easily implemented from (57).  

As already said, since with conventional techniques the temperature that is measured in wall 

calorimeters is generally the back surface one (e.g., with a leaf-type thermocouple), in the classical 

literature there is less interest in formulae based on the front surface temperature. Instead, the latter is 

helpful with IR thermography where Tw can be easily measured when dealing with gas flows.  

Nevertheless, a formula equivalent to Equation (54) can be found by again imposing the adiabatic 

condition on the back surface: 
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where the first five coefficients bi are equal to 1, −1/3, 2/15, −17/315, 62/2835. Again, Equation (59) 

can be used directly (by simply imposing x = s) to evaluate the temperature on the back sensor  

surface or, after integrating in space, to compute the mean temperature and its derivative with 

numerical formulae.  

8.4. Tangential Conduction 

A solution in the form of (43) has been also developed by de Felice et al. [26] (see [11]). It has, 

however, to be explicitly noted that, when the temporal variations are not too fast, the tangential 

conduction correction for the thin skin sensor can be more directly appreciated as for the case of the 

heated thin foil with Equation (21) but, in this case, as a function of time. 

9. Applications 

The applications of IR thermography to thermo-fluid-dynamics encompass a very much diversified 

phenomenology which spans from turbine cooling including film cooling, to transition separation and 
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reattachment, natural and forced convection, enhanced heat transfer, micro systems, rotating bodies, 

impinging jets, flow instabilities, two-phase and hypersonic flows, etc.; a review is presented in [1]. 

The authors’ research group has been involved in IR thermography since about 30 years. In the 

following, a few significant papers of this group, essentially regarding complex fluid flows and 

specifically investigated with IR thermography, are presented and reviewed, also with the aim of 

pointing out in many of them a few relevant aspects of the used sensors. 

9.1. Natural Convection 

When studying with IR thermography natural convection in fluids transparent to infrared radiation 

(such as in gas flows), since the radiative heat flux may be often of the same order of magnitude of the 

convective one, this occurrence has to be carefully considered. For example, when determining the 

convective heat transfer coefficient between the sensor and a gas with the heated thin foil sensor, the 

substantial radiative contribution must be accurately subtracted to the Joule heat input (see Section 7.1). 

The experimental apparatus, used by Cardone and Carlomagno [9], to analyze transient and steady 

one-dimensional natural convection on a vertical plate with the heated thin foil, is shown in Figure 2 

and also reported in [28].  

The sensor is made of a vertical stainless steel foil (245 mm high, 960 mm wide and 40 µm thick), 

coated on one side with a thin layer of high emissivity (εt = 0.95) paint. The foil is Joule heated with a 

DC stabilized power supply and a step initial condition can be imposed by activating a relay with a 

relatively small (with respect to the foil characteristic time) activation time. The reached heat flux is 

varied in the range 80 ÷ 270 W/m2. By measuring apparent temperatures at both foil sides, the 

uncoated side emissivity is evaluated to correct for radiation losses also from this side. 

For a step Joule heat flux input 0 → 130.5 W/m2, the evolution with time of the temperature vertical 

profile along the foil central segment is shown in the pseudo-thermogram of Figure 13 where: abscissa 

is time (starting from the relay activation and for a total of 80 s), ordinate is position along the foil 

central vertical segment (0 ÷ 245 mm) and colors indicate local temperatures (21 ÷ 42 °C).  

Figure 13. Time evolution of the temperature vertical profile on the foil under transient 

natural convection. From Carlomagno and de Luca [28]. 
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The thermogram left region, characterized by a sequence of colored vertical bands, points out an 

initial uniform time increasing of foil temperature which indicates that the foil is acting essentially as a 

thin skin sensor with respect to the Joule input, Equation (47) with qw = qj − qr. Besides, this means 

also that a prevalent radiative and conductive heat transfer regime is initially established between the 

foil and the ambient air that produces a constant temperature along the vertical direction; so, it appears 

that the convective flow is not started yet. This initial foil temperature evolution well agrees with 

theoretical calculations which include conduction and radiation from the foil to ambient. 

The temperature variation which later occurs along the vertical direction shows the progressive 

onset of the natural convection boundary layer. When steady state is reached, Equation (14) applies 

and, as represented in Figure 14, where local Nu data are plotted as a function of the local modified 

Rayleigh number Ra defined in the standard way, the measured data well agrees (within ±5%) with the 

theoretical prediction of Sparrow and Gregg [29] for laminar flow. 

Figure 14. Nusselt number on a vertical plate cooled by natural convection as a function of 

the Rayleigh number. From Carlomagno and de Luca [28]. 

 

Obviously, all data is corrected for the radiative contribution, that is subtracted to the Joule input as 

a function of position, but not for tangential conduction, which mainly affects the low Ra data.  

9.2. Hypersonic Flow over a Ramp 

A relatively old example of the restoration of a degraded image, which considers both the IR system 

modulation transfer function (MTF) and the tangential conduction in the thin film, is reported by  

de Luca et al. [30]. They perform heat transfer tests on a ramp which follows a delta wing in a 

hypersonic wind tunnel. Since heat transfer measurements are performed with the thin film sensor, 

after starting of the tunnel, the model (which is initially in a remote position at room temperature)  

is suddenly injected into the high stagnation temperature (800 K) hypersonic stream and its 

temperature monitored.  
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The gas flows over a ramp, placed downstream of a 70° delta wing at zero angle of attack, at Mach 

number M = 8.15. Figure 15a shows a detected thermogram with the coarse footprints (T in °C) of the 

Görtler vortices on the solid 15° RTV elastomer ramp as recorded by the camera. The Görtler vortices 

develop on the ramp reattachment zone due to the streamlines curvature induced by the ramp presence 

(flow going from the thermogram bottom, hinge line, upwards). In the raw thermogram of Figure 15a, 

the vortices are barely evident in the span wise quasi-periodic horizontal variation of wall temperature. 

Figure 15. Images of Görtler vortices on a 15° ramp placed downstream of a 70° delta 

wing in a hypersonic flow at M = 8.15: (a) coarse; (b) restored. Flow from bottom to top. 

From de Luca et al. [30]. 

 

(a) (b) 

The amplitude of each harmonic component of measured temperatures has been corrected for the 

MTF and by means of the function F (see Equation (46). The restored temperature map, that shows the 

effective temperatures, is represented in Figure 15b. It has to be observed that, even if the used interlaced 

880LW camera (AGEMA, Sweden) has a limited spatial resolution (140 × 140 pixels), being operated with 

(36 + 20) mm extension rings at the minimum focus distance (with a 21 mm × 21 mm field of view), the 

image is well sampled so degradation is due to camera and sensor. Anyhow, the restored image allows 

us to correctly identify the rather regular Görtler vortices structure which exhibits a mean pitch of 

approximately 2 mm.  

The horizontal striping, which is evident in the vortices prints for both the coarse and restored 

thermograms, is exclusively due to the camera interlacing and to the transient heating of the ramp that 

is connected to the unsteady thin film sensor functioning mode. In their work, de Luca et al. [30] 

address also the problem of the signal digital sampling, which is not herein analyzed. A similar 

investigation has been performed by de la Chevalerie et al. [31]. 

De Luca et al. [32] report flow visualizations and convective heat transfer measurements on a 

double ellipsoid model in a hypersonic stream at M = 8.15 and several angles of attack α. To obtain 

heat transfer data, the models are made of NORCOAT® 4000 (Norco Industries, Compton, CA, USA) 

which is a silicon elastomer filled with hollow silica microspheres that has a relatively low thermal 

conductivity coefficient (k = 0.129 W/m K) and a high emissivity coefficient (εt = 0.93). Besides 

performing standard oil film visualizations and in order to exploit the capability of the infrared camera 

to detect an induced transition, several trip cylindrical wires (0.5 mm high, 0.22 mm in diameter and 

placed at 5 mm steps) are implanted 30 mm away from the ellipsoid nose, on the windward surface, 

with their axes normal to this surface.  
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The thermogram of Figure 16, where temperatures are in Celsius, shows the effect produced by the 

trip wires on the temperature distribution over the model windward surface, 0.48 s after model 

injection. To better distinguish the flow behavior downstream of the trip wires, the temperature range 

of the used 880LW camera (AGEMA, Sweden) is set so as to have the ellipsoid forepart in saturated 

conditions. 

Figure 16. Temperature (in Celsius) map of the ellipsoid side (windward) of the double 

ellipsoid model at M = 8.15, α = 30°, 0.48 s after model injection. Flow from left to right. 

From de Luca et al. [32]. 

 

The wakes of the wires are made evident by the various stripes, which indicate the surface flow 

streamlines direction over the model surface. They start downstream of the transversal violet line of 

the thermogram, where the transition trips are approximately located. In the model lateral zones, where 

the fluid particles following curved divergent path lines accelerate, the turbulisation induced to the 

flow by the trips seems to damp out, denoting a flow re-laminarization. On the contrary, near the 

symmetry axis, the flow after re-laminarization becomes downstream unstable and the occurrence of 

turbulence seems evident in the two hot red and pink spots located close to the model trailing edge. 

Unlike standard oil film visualizations, this procedure does not need to have the model surface 

sullied and renovated after each test; e.g., if the angle of attack has to be changed, it is only necessary 

to retrieve the model back in the remote position and let it recover a uniform temperature. 

9.3. Jet Impinging on a Plate 

The group of Carlomagno has extensively studied jets impinging on a plate with IR  

Thermography [4,6,7,28,33–35]; herein first, the measurement of the convective heat transfer 

coefficient by means of the Laplacian sensor [7] is presented, then the adiabatic wall temperature 

detection [4] is treated. 

The first tackled application task is the measurement of the distribution of the convective heat 

transfer coefficient over a thermally thin plate subjected to a jet normally impinging on it, at a short 

nozzle-to-plate distance, which originates a quite known but rather complex thermal field.  

The experimental procedure and apparatus are the same used by Meola et al. [4]. The main 

difference is that the impinging sensor plate is no longer a heated thin foil as in [4] but rather an 
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externally heated 1.1 mm thick metal sheet horizontally placed, with the jet normally impinging 

underneath, in order to minimize the effects of hot air recirculation in the measurement zone. 

An aluminum alloy (Al–3105, k = 185 W/mK) hexagonal plate, constitutes the impinging target 

which has a free circumscribed circle about 300 mm in diameter. To correctly evaluate tangential 

conduction, both thickness and thermal conductivity of the sensor plate are precisely known. 

Figure 17. Schematic configurations of the peripheral heaters in the plan view of the plate: 

(a) Hexagonal; (b) Triangular; (c) One-side. From Carlomagno et al. [7]. 

 

The heat input is provided by means of electric cartridge heaters, placed inside copper bars, which 

are positioned at the plate sides. In order to investigate the sensitivity of the sensor to the heating 

geometry, three different peripheral positions of the external heaters are tested (see Figure 17): 

hexagonal (six heathers on all hexagon sides, Figure 17a), triangular (three heathers on each other 

side, Figure 17b) and one-side (three heaters placed on three adjacent sides, Figure 17c). The  

black-painted hexagonal zones of Figure 17 coincide with the measurement region. In order to reduce 

the total radiative heat flux towards the ambient, only these zones observed by the IR camera are 

covered with black paint. 

Even if compared with the relatively high local convective heat transfer coefficient, the rather small 

thermal thickness of the aluminum plate determines a very small Biot number. Consequently, the 

temperature can be considered as practically constant across the plate, so allowing for measuring the 

surface temperature distribution with the IR camera by observing the sensor back surface, i.e., that 

opposite to the jet impinging one. An infrared camera QWIP FLIR SC6000 LW (640 × 512 pixels 

resolution) operating in the LWIR band is employed to measure the surface temperature map. 

The jet issues from a slightly convergent axisymmetric nozzle with an exit diameter D = 18.7 mm. 

The Reynolds number Re = 30,000 is based on the nozzle diameter D and jet initial velocity. The 

convective heat transfer coefficients are presented in terms of Nusselt number (2), also based on D. 

Tests are carried out by varying the dimensionless nozzle-to-plate distance z/D but herein only 

results for z/D = 2 are reported, being them the most intriguing ones in terms of Nu radial profile. For 

each test, the heat input is chosen by trying to maintain on the slab a minimum temperature difference 

of at least 15 K with respect to the jet temperature. Obviously, as shown by Equation (28), the higher 

the minimum temperature difference, the more accurate the results while evaluating h.  

Anyhow, a limit is imposed on the maximum operative temperature of the plate; e.g., restriction are 

imposed by the camera calibration range, the maximum heat input of the heating elements and, overall, 

the melting point of the black paint. Since in the performed experiments the calibration of the IR 

a) b) c)
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camera system is made between 15 and 80 °C, the heaters are shielded with insulated material in order 

to avoid saturated pixel values. 

The physical and the geometrical parameters of the experimental apparatus are carefully chosen. 

E.g., the distance between the heaters, the slab thermal thickness and the outflow conditions directly 

influence the distribution of the convective heat transfer and, consequently, a suitable temperature 

distribution for the Laplacian numerical computation. For these reasons, it is suggested that an accurate 

preliminary study of the phenomenology has to forego the application of this sensor. 

First, the effect of different sources of measurement noise, affecting the Laplacian computation, is 

investigated. Results show that the temporal noise can be consistently reduced if each temperature  

map is obtained by averaging a relatively high number of images. In the present investigation,  

100 instantaneous images are averaged to obtain each steady-state temperature map. 

Then as already stated, the use of an IR camera with Focal Plane Array introduces another error 

critical source, i.e., the spatial measurement noise generated by differences in the response of each 

detector pixel. Therefore, the application of an accurate and reliable process of Non-Uniformity 

Correction (NUC) is of fundamental importance. In fact, tests demonstrate that both spatial filtering 

and computation of the derivatives with a relative large step are not sufficient to compensate the  

decay of the signal-to-noise ratio due to the non-uniformities between the various pixels response. 

Carlomagno et al. [7] show that even a small local error (of the order of 0.1 K) can completely 

jeopardize the accuracy of the computed Nusselt number distribution in a region whose dimension is 

connected to both the spatial filtering window and the step for the derivatives numerical computation. 

In Figure 18, the steady state temperature maps for the three configurations without the impinging 

jet are reported. As previously stated, the slab sides are shielded in order to avoid saturated pixel 

values in the viewed scene. The temperature distributions are convolved with a 30 × 30 pixels wide 

(about 0.5D × 0.5D) Gaussian filtering window, with a standard deviation equal to 6. From the 

temperature maps, it is evident that a more regular distribution occurs for the hexagonal heating 

configuration that allows us to better evaluate the convective heat transfer coefficient from the 

temperature Laplacian.  

Figure 18. Steady state temperature (K) of the plate without the jet. From left to right: 

hexagonal heating configuration; triangular; one-side. From Carlomagno et al. [7]. 

 

Further increase of the signal-to-noise ratio influence is recovered by computing the numerical 

derivatives with a spatial step of one nozzle diameter. 

In Figure 19, the computed Nusselt number distributions for the three tested configurations are 

shown. The distributions seem to be quite independent of the heaters arrangement (see the figures 
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relative to the hexagonal and triangular configurations), unless the strongly asymmetric heating  

(one-side) is adopted. In this latter case, it is clear that, since the condition of a maximum temperature 

is imposed, the minimum temperature is lower than in the case of more symmetric configurations  

(see the bottom zone of the right image of Figure 18). As can be seen, this decreases the tangential  

heat transfer and accordingly increases the uncertainty due to the lower difference between wall  

and jet temperatures.  

Figure 19. Nusselt number distribution for Re = 30,000 and z/D = 2. From left to right: 

hexagonal heating configuration; triangular; one-side. From Carlomagno et al. [7]. 

 

In Figure 20, the azimuthal averages of the Nusselt number as a function of the dimensionless radial 

coordinate r (from the jet axis) are reported for the three heating configurations and z/D = 2. The 

obtained averaged profiles are in quite good agreement with each other and with that of the literature 

for the same z/D value and, approximately, the same Reynolds number [28]. 

Figure 20. Azimuthally averaged profiles of the Nusselt number radial distributions of 

Figure 19 for the three heating configurations; Re = 30,000, z/D = 2. Data from 

Carlomagno et al. [7]. 

 

In spite of the reduction of the spatial resolution, connected to the use of a smoothing Gaussian 

filter and the calculation of the numerical derivatives with a relatively large step, the Laplacian sensor 

shows to be able to detect all the local variations of Nu, providing quite reliable results.  
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Anyhow, averages in the region close to the jet stagnation point are affected by a higher uncertainty 

since the number of available samples for the azimuthal average is not sufficient to smooth the noise of 

the computed Nusselt number distribution, there.  

This partially justifies also the not exactly horizontal tangent and the larger differences between the 

Nusselt number profiles, at r/D = 0, in one of the curves reported in Figure 20. Nevertheless, on the 

average, the differences are contained within a few per cent.  

Meola et al. [4], by measuring the adiabatic wall temperature Taw on a plate with impinging jets, 

observe with IRT the instabilities developing at relatively high Mach numbers M. The phenomenology 

is strongly dependent on the impingement distance z; in particular, for z/D < 6, as M increases, the 

vortex ring, which is located in the shear layer at about 1.2D from the jet axis, strengthens up to its 

highest magnitude (M ≈ 0.7). Then for even larger Mach numbers, the vortex ring breaks up (Widnall 

instability, Widnall et al. [36]) with the formation of secondary flow structures.  

At low Mach number the Taw map is practically axisymmetric. But, as M increases, the vortex ring 

reinforces and, for M ≈ 0.7, breaks up when impacting onto the plate, entraining warmer ambient air 

and giving rise to secondary minima, with maxima in between them. This is shown in the adiabatic 

wall temperature map of Figure 21, which refers to D = 5 mm, z/D = 4, M = 0.78, Re = 86,400. For 

higher M, the structures first strengthen up and reach their highest magnitude and, with a further Mach 

number increase, they break up into numerous smaller structures, which tend to coalesce giving rise to 

a transient alternate circumferential movement.  

Figure 21. Adiabatic wall temperature on a plate with a normally impinging jet. D = 5 mm; 

z/D = 4; M = 0.78; Re = 86,400. From Meola et al. [4]. 

 

Since the temperature fluctuations at M > 0.7 for Taw and Tw are of the same order of magnitude, the 

azimuthally averaged radial distribution of the Nusselt number does not show additional peaks. 

Nevertheless, some azimuthal structures are visible in the two-dimensional map of the Nusselt number. 
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In fact, local Nu contours exhibit loss of symmetry about the stagnation point, this effect being due to 

the transient alternate circumferential movement of the instability structures [4].  

It is interesting to point out that, to perform the qualitative studies on the adiabatic wall temperature 

distribution such as the map presented above, the sensor to be used (on which the jet impinges) could 

be simply constituted by a very low thermal conductivity flat surface. 

9.4. Rotating Channels 

As it is well known, to cool gas turbine vanes and blade, air from the high pressure compressor 

stage goes through the hub section into the component interior and, after flowing through serpentine 

passages, is discharged into the main flow to provide film cooling as well. These passages are mostly 

made of several adjacent straight ducts, spanwise aligned along the blade and connected by 180° turns 

(also called U turns). Turns cause flow separation/reattachment and induce secondary flows so the 

convective heat transfer coefficient exhibits high variations with consequent wall thermal stresses. For 

a rotating channel, it is common usage to call leading the wall that goes ahead during rotation and 

trailing the one that follows. 

One of the first attempts to measure convective heat transfer coefficients in a rotating air  

channel with IR thermography is reported by Cardone et al. [37]. The apparatus concept is a direct 

consequence of the used heated thin foil sensor. Since the foil back surface (to be viewed by the IR 

camera) cannot be thermally insulated, the only way to prevent high thermal losses by forced 

convection over this surface (see Equation (14), Section 4.1) was to have the channel rotating in a 

vacuum chamber. In the pioneering work by Cardone et al., the spatial resolution of the results was 

relatively poor on account of the strong influence of the tangential conduction heat fluxes which were 

due to the relatively small dimension of the channel (22 mm × 22 mm). Therefore, the presented 

results were not the detailed ones that can be obtained with IR thermography but this work is reported 

because it offers a useful option to study flows into moving bodies. 

A different approach, in order to reduce the relative importance of the external convection with 

respect to the internal one is chosen by Gallo et al. [17] to obtain detailed Nusselt number maps near a 

180° sharp turn of a rotating U channel with the heated thin foil sensor. The authors decide to 

significantly increase h at the sensor front surface by using water as a working fluid as well as to use a 

much larger channel in order to reduce its rotational speed and, therefore, qa at the back surface. In this 

way, they are able to obtain a quite good spatial resolution and low tangential conduction in the 

acquired measurements. 

The experimental apparatus, represented in Figure 22, consists of a Plexiglas® two-pass water 

channel with a sharp 180° turn, mounted on a revolving platform whose rotational speed can be 

continuously varied and precisely monitored in the range 0 ÷ 60 rpm. The channel has a square cross 

section with a side d = 60 mm, its length of 1200 mm ahead of the 180° turn ensuring an almost 

dynamically fully developed flow before the turn. The central partition wall dividing two adjacent 

ducts is 12 mm thick. Water from a tank is pumped through an orifice meter, a rotating hydraulic 

coupling and, after flowing in the test channel, is discharged back into the tank. Mass flow rate can be 

varied with a by-pass circuit and the inlet to channel water temperature is kept constant with a heat 

exchanger. A magnetic pick-up allows the synchronization of the IR image acquisition.  
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Figure 22. Experimental apparatus for a rotating channel of Gallo et al. [17]. 

 

The apparatus is capable of simulating both Reynolds number Re and Rotation number Ro = ω d/V 

(where ω is the angular speed of the channel) values typical of turbine blades. The d increase and the V 

decrease (to maintain a given Re) allow a drastic reduction in ω by keeping a constant Ro. Results 

relative to the static channel (no rotation) are in good agreement with the measurements performed 

with air by Astarita and Cardone [10]. 

Heat transfer coefficients are obtained for two heating conditions (from one or both channel sides) 

and presented in terms of the normalised local Nusselt number Nu/Nu* (which can be considered also 

as h/h*). Nu* and h* are respectively the Nusselt number and the convective heat transfer coefficient 

values predicted by the Dittus and Bölter correlation for fully developed channel flows as interpreted 

by Kakac et al. [15]. 

Figure 23. Normalised Nusselt number Nu/Nu* maps for a two-side heated rotating 

channel; Re = 20,000; Ro = 0.3: (a) Leading wall; (b) Trailing wall. Flow enters from 

bottom and exit from top. Adapted from Gallo et al. [17]. 

(a) (b) 

In Figure 23a, the normalised Nusselt number Nu/Nu* (as earlier defined) distribution over the 

leading wall, for Re = 20,000 and Ro equal to 0.3, is represented. In the inlet duct, the flow appears to 
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be fully developed, also from the thermal point of view, since the normalised Nusselt number is 

practically constant. The Nu/Nu* values are lower than those relative to the static case and, following 

Gallo et al. [17], decrease with the increasing of the rotation number Ro. 

In the first half of the first corner, it is possible to notice a high heat transfer zone that is caused by 

the inversion of the Coriolis force in the turn zone. Really in the turn zone, the radial velocity 

component suddenly decreases and changes sign with a consequent decrease and inversion of the 

Coriolis force. This inversion makes the flow separate by the trailing side, and to abruptly reattach 

toward the leading one, with a strong increase of the normalised Nusselt number at the reattachment 

point. Other low and high heat transfer zones are clearly visible in the normalised Nusselt map and 

their cause is explained in detail by flow field measurements made with particle image velocimetry in 

the work of Gallo et al. [38]. 

As it is possible to see from Figure 23b, the normalised Nusselt number distribution over the 

trailing wall appears to be completely different from that on the leading wall. In the inlet channel, the 

Nu/Nu* values are again uniform, but much higher than those for the static case and for the leading 

wall; besides, as reported by the authors [17], they tend to increase for increasing rotation number Ro. 

In the turn region, it is possible to note that the iso-Nusselt zone tend to advance into the first corner 

of the turn and to insinuate in the first half of the second corner. On the second outer angle, it is 

possible to note a high heat transfer zone that, near the frontal wall, results as being adjacent to a 

relatively lower heat transfer zone. In the outlet duct, the Nusselt number distribution relative to the 

trailing wall exhibits two high heat transfer coefficient zones located respectively on the center and 

downstream near the partition wall. Again, the reason for such behavior can be found in the paper of 

Gallo et al. [38]. 

It should be noted that the measurements by Gallo et al., are performed at relatively high Biot 

number because of the presence of water in the channel and since the heated tracks of the printed 

circuit are placed at the sensor back surface for electrical insulation reasons. Therefore, data are 

reduced according to the specific procedure described in Section 4.2.  

9.5. Spray Tubes 

As far as aircraft wings are concerned, de Luca and co-workers have studied both the boundary 

layer transition from laminar to turbulent flow on an airfoil for varying angle of attack [39] as well as 

the phenomena of flow separation and reattachment over a delta wings [40], both with the heated thin 

foil sensor.  

With the same sensor, Imbriale et al. [41] went inside the leading edge of an airfoil to analyze wing 

de-icing aspects. This investigation represents a cylindrical geometry heated thin foil sensor realized 

with a metallic foil inserted in an ad-hoc fixture. 

In fact, spray tubes (often called piccolo tubes) are amongst the most widely used anti-icing devices 

for wings and engine nacelles of commercial aircrafts [42]. In such devices, hot air is extracted from 

the compressor and blown on the inside surface of the wing leading edge, through small holes drilled 

in a pipe. The aim is to supply enough energy to keep the wing surface above the freezing point of 

water and to liquefy impinging ice crystals.  



Sensors 2014, 14 21108 

 

 

Sometimes, also to cool leading edges of turbine blades, a spray tube inside and parallel to them, 

with an array of aligned holes, generates a jet row which blows cold air to maintain the blade surface 

temperature below critical values [43]. In these devices, the impingement distance is relatively short, 

this problem being addressed for single jets by Carlomagno and Ianiro [35]. 

A piccolo tube is experimentally analyzed by Imbriale et al. [41]. The test article, using the fixture 

of Meola et al. [44], includes the leading edge of a NACA 0012 wing profile with a 1.50 m chord, with 

a spray tube located inside at 4% of the chord profile. The profile is 0.20 m span-wise long and it is 

stopped at about 1/10 of the chord with an open side to facilitate discharge of injected gas so to avoid 

recirculation effects. To allow measurements with the heated thin foil sensor, the leading edge section 

consists of a thin stainless steel sheet (40 µm thick) lodged inside an ad-hoc fixture that provides bus 

bars exactly shaped to the wing profile. A small indium wire is inserted between bus bars and metal 

sheet to assure a good electrical contact.  

In particular, different spray tubes are used with a different number of holes from 3 to 5, orifice 

diameter D from 2 mm to 4 mm, and orifice pitch-to-diameter ratio p/D between 5 and 15. In addition, 

the jet inclination ϕ is varied from 0° to 50° by rotating the spray tube around its axis. The jets exit 

Mach number M is varied from 0.6 to 1.0. Herein, only results relative to 3 orifices having D = 4 mm, 

ϕ = 30°, p/D = 15 and M = 1 are reported. 

In order to avoid measurement errors due to the surface directional emissivity decay, the camera 

viewing angle is always kept lower than 55°. Raw data is corrected for radiation, tangential conduction 

within the sensor and natural convection at the foil viewed side. 

Due to the curvature of the viewed surface, to obtain the temperature distribution over the entire 

leading edge surface, at least two images must be acquired; temperature maps are reconstructed on the 

object mesh grid according to Cardone et al. [45]. This involves not only a different data reduction,  

but mainly a geometrical calibration of the IR camera. Then, before performing calculation with  

Equation (23), the temperature maps of Tw and Taw have to be reconstructed on a 3D mesh grid from 

the 2D acquired IR images.  

Figure 24. 3D temperature reconstruction for D = 4 mm, ϕ = 30°, M = 1.0 and p/D = 15:  

(a) adiabatic wall temperature Taw (foil not heated); (b) wall temperature Tw (heated foil), 

Adapted from Imbriale et al. [41]. 
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An example of such a map reconstruction is given in Figure 24 for the adiabatic wall temperature 

Taw (Figure 24a, foil not heated) and for the wall temperature Tw (Figure 24b, heated foil), taken for 

three aligned holes, D = 4 mm, inclination angle ϕ = 30°, M = 1.0 and orifice pitch-to-diameter ratio 

p/D = 15. Maps clearly show the jet impingement zones which are not centered with respect to chord 

due to the 30° jet inclination and, again, the influence of the relatively high Mach number on the 

adiabatic wall temperature distribution is recognized. 

A typical Nu map, for the same testing conditions of Figure 24, is shown in Figure 25. The 

impinging jets entail very high Nusselt number values with local peaks in a small region matching with 

the jets centers; so, these peaks clearly locate the area of jet impingement on the front-side surface. 

Even though the holes are perfectly circular, the high Nu region somehow stretches in chord-wise 

direction. This behavior is due to the jets inclination with respect to the foil surface; in fact, only jets 

with inclination ϕ either equal to 0° or 65° are perpendicular to the foil; for other ϕ values, the 

impingement is affected by inclination effects.  

Figure 25. Nusselt number reconstruction for D = 4 mm, ϕ = 30°, M = 1.0 and p/D = 15. 

Adapted from Imbriale et al. [41]. 

 

In addition, variations in the Nu distribution are present on the backside region (z/c > 0.2). In 

particular, it is possible to recognize local Nu increase in the span-wise direction between two 

contiguous jets, at the same locations where the two green streaks are visible in the wall temperature 

maps of Figure 24. This behavior resembles the fountain effect, already described in literature [46]. 

However, some fundamental differences regarding position and appearance of such local maxima 

exist. In fact, the fountain effect, described in literature, is exactly localized between contiguous jets; 

while, in the present case, local heat transfer maxima seem to originate between jets but they extend 

and strengthen on the backside region, far from the impingement.  
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9.6. Chevron Nozzles 

The great implications that vortical features can have on surface heat transfer rate and distribution 

motivated the flourishing of countless investigations devoted to passive and active strategies to 

enhance the heat flux between a jet and an impinged surface. 

Passive strategies are mainly based on the shape of the nozzle. In particular, Gao et al. [47] show 

that, for a nozzle-to-plate distance of 4 diameters, triangular tabs placed around a circular orifice 

(chevron nozzle) lead to an enhancement higher than 25% with respect to the round configuration for 

the same nozzle-to-plate distance.  

Besides in recent years, a special attention is devoted to a particular, but very relevant, technique in 

the field of modern experimental thermo-fluid-dynamics, namely Tomographic Particle Image 

Velocimetry (Tomo-PIV). The outcomes of its visualization and flow inspection capabilities can be 

compared with those of recent advanced computational methods. In particular, while infrared 

thermography gives the outcome of the flow field on the skimmed over surface, Tomo-PIV contributes 

to understand the reasons for such an outcome. 

Tomographic PIV is based on the double-pulsed laser illumination of a fluid volume seeded with 

particles; the particles distribution is reconstructed from multiple camera views and then the 

volumetric flow field is obtained through volume cross-correlation. Tomographic PIV is proved to be 

capable of high resolution volumetric flow measurements which allow for the computation also of 

derivative quantities giving a detailed description of vortex and turbulence dynamics. 

Figure 26. Instantaneous flow patterns (top) and Nusselt number distributions on the 

impinging plate (bottom) for a cylindrical (left) and a chevron (right) nozzle; Re = 5000, 

z/D = 4; RV radial vortices, SR streamwise structures. Adapted from Violato et al. [48]. 
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The chevron arrangement is also exploited in [48] where it is shown that, compared to the circular 

nozzles, heat transfer at impingement is enhanced by using the chevron ones; in the center of the 

impinged area, the chevron jet exhibits heat transfer values up to 44% higher than those provided by 

the circular jet. This is shown by the bottom images of Figure 26 where the maps of the average 

Nusselt number on the impinging plate for Re = 5000 and z/D = 4 (symbols as in Section 9.3) are 

presented. This event is addressed to the development in the free jet region of streamwise vortices 

which, compared with the toroidal vortices of the circular nozzles, are associated with a deeper 

penetration of turbulent induced mixing and to a higher arrival speed (see top images of Figure 26). 

The coupling of the inspection capabilities of the two experimental techniques, such as  

IR thermography and Tomographic PIV, allows for a deeper understanding of the involved  

thermo-fluid-dynamic phenomena in this very complex flow field. 

10. Conclusions 

This paper has the aim of reviewing and assessing the most common heat flux sensors, which can 

be used with infrared thermography to measure convective heat transfer coefficient distributions 

between a body and a fluid flowing over it. After recalling the basic principles that make IR 

thermography work, the various heat flux sensors to be used with it are presented and discussed, 

namely: heated thin foil, gradient sensor, Laplacian sensor, thin film and thin skin. For each sensor, the 

basic model, its limits, the data analysis and the experimental procedure are delineated. 

Applications to complex thermo-fluid-dynamic flows that range from natural convection to 

hypersonic flows are finally outlined by describing some of the heat flux sensors exploitations 

performed by the authors’ research group at the University of Naples Federico II. 

For all the presented applications, the infrared adopted technique proves its capability to accurately 

measure the convective heat transfer coefficient distributions generated by the fluid flows in the 

examined complex geometries and to be a very effective investigation tool for thermo-fluid-dynamic 

experimental research. 

When compared to standard techniques, the use of an infrared camera as a temperature transducer in 

convective heat transfer measurements appears advantageous from several points of view. In fact, 

since the IR camera is two-dimensional, with current systems having up to about 1 M pixels per frame, 

besides producing a whole temperature map, IRT allows an easier evaluation of errors due to radiation 

and tangential conduction. The camera does not disturb the phenomena being measured and does not 

alter conduction through test article embedded sensors and wiring, it has high sensitivity (down to  

10 mK) and low response time (down to 20 ms). As such, IR thermography can be effectively 

exploited to measure convective heat fluxes (with either steady, or transient, techniques) even in 

circumstances where they undergo drastic variations. 
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List of Symbols 

Roman letters 
A Temperature amplitude, Equation (39) 

Aq  Heat flux amplitude, Equation (38) 

c Sensor specific heat, Airfoil chord 

cp Fluid specific heat at constant pressure 

C1 First radiation constant 

C2 Second radiation constant 

d Channel diameter 

D  Nozzle diameter 

Eb Emissive power of black body 

f Attenuation factor, Equation (39) 

F Temperature modulation transfer function 

g Gravity acceleration 

G Heat generation per unit volume 

I Spectral emissive power 

h Convective heat transfer coefficient 

k Thermal conductivity coefficient 

p Pitch, Dimensionless quantity, Equation (29) 

q Heat flux 

r Radial coordinate 

R Dimensionless wavelength 

s Sensor thickness, Thickness 

t Time 

tm Maximum measurement time (thin film) 

T Temperature 

V Fluid velocity 

w Width 

x Coordinate 

y Coordinate 

z Coordinate, Nozzle-to-plate-distance 

Greek letters 
α Sensor thermal diffusivity coefficient, Angle of attack 
αf Fluid thermal diffusivity coefficient 

αr Absorptivity coefficient 
β ( )/ s sh t c kβ ρ=  

ε Emissivity coefficient 
λ Wavelength of electromagnetic wave 

ν Fluid kinematic viscosity coefficient 
ξ 2x tξ α=   

Ξ Dimensionless quantity, Equation (31) 
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Π Dimensionless ratio, Equation (45) 

θ Dimensionless temperature, Equation (26) 

Θ Dimensionless quantity, Equation (44) 

ρ Mass density 

ρr Reflectivity coefficient 

σ Stefan-Boltzmann constant 

τr Transmissivity coefficient 

φ Temperature difference, ϕ (t) = Tw(t) − Twi 

ϕ Jet inclination to airfoil chord 
ω Angular speed 

Subscripts 
a Ambient  

aw Adiabatic wall 

b Black body 

c Convective, Copper 

f Fluid, Fiberglass 

j Joule  

m Mean 

r Radiative, Reference 

s Sensor 

t Tangential, Total 

x Local 

w Wall 

ϖx Wave number 

Apices 
m At maximum emissive power,  

* As per Dittus and Bölter correlation 

Dimensionless groups 
Bi Biot number, hs/ks 

Bix Local Biot number, hx/ks 

Fo Fourier number, αt/s2 

Fox  Local Fourier number, αt/x2 
Foϖ Modified Fourier number, 2

xϖ αt 

M Mach number 

Nu Nusselt number, hd/kf 

Pr Prandtl number, cpµ/kf 

Ra Rayleigh number, gβqx4/( ν αfkf) 

Re Reynolds number, Vd/ ν 

Ro Rotational number, ν d/V 

St Stanton number, h/(ρfcpV) 
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