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Abstract: A smart-card-based user authentication scheme for wireless sensor networks
(in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users
who are in possession of both a smart card and the corresponding password. While a
significant number of SUA-WSN schemes have been suggested in recent years, their intended
security properties lack formal definitions and proofs in a widely-accepted model. One
consequence is that SUA-WSN schemes insecure against various attacks have proliferated.
In this paper, we devise a security model for the analysis of SUA-WSN schemes by
extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our
model provides formal definitions of authenticated key exchange and user anonymity while
capturing side-channel attacks, as well as other common attacks. We also propose a
new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security
properties in our extended model. To the best of our knowledge, our proposed scheme
is the first SUA-WSN scheme that provably achieves both authenticated key exchange and
user anonymity. Our scheme is also computationally competitive with other ECC-based
(non-provably secure) schemes.
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1. Introduction

As various sensors emerge and the related technologies advance, there has been a dramatic increase
in the interest in wireless sensor networks (WSNs). Today, billions of physical, chemical and biological
sensors are being deployed into various types of WSNs for numerous applications, including military
surveillance, wildlife monitoring, vehicular tracking and healthcare diagnostics [1]. A major benefit
of WSN systems is that they provide unprecedented abilities to explore and understand large-scale,
real-world data and phenomena at a fine-grained level of temporal and spatial resolution. However,
providing an application service in a WSN environment introduces significant security challenges to
be addressed among the involved parties: users, sensors and gateways. One important challenge is to
achieve authenticated key exchange between users and sensors (via the assistance of a gateway), thereby
preventing illegal access to the sensor data and their transmissions. Authenticated key exchange in WSNs
is more challenging to achieve than in traditional networks due to the sensor network characteristics, such
as resource constraints, unreliable communication channel and unattended operation. Another important
challenge is to provide user anonymity, which makes authenticated key exchange even harder. As privacy
concern increases, user anonymity has become a major security property in WSN applications, as well
as in many other applications, like mobile roaming services, anonymous web browsing, location-based
services and e-voting. User authentication schemes for WSNs are designed to address these security
challenges [2,3], and are a subject of active research in network security and cryptography.

Generally speaking, the design of cryptographic schemes (including user authentication schemes
for WSNs) is error-prone, and their security analysis is time-consuming. The difficulty of getting
a high level of assurance in the security of cryptographic schemes is well illustrated with examples
of flaws discovered in many such schemes years after they were published; see, e.g., [4–6].
The many flaws identified in published schemes over the decades have promoted formal security
analyses, which are broadly classified into two approaches [7,8]: the computer security approach and the
computational complexity approach. The computer security approach places its emphasis on automated
machine specification and analysis mostly in the Dolev–Yao adversarial model [9], where the underlying
cryptographic primitives are often used in a black-box manner ignoring some of cryptographic
details. The main problem with this automated approach is intractability and undecidability, as
the adversary may exhibit a large set of possible behaviors, which leads to a state explosion.
Cryptographic schemes proven secure in such a fashion could possibly be flawed, yielding a false
positive result. In contrast, the computational complexity approach places its emphasis on deriving a
polynomial-time reduction from the problem of breaking the scheme into another problem believed to
be hard. A complete computational proof under a well-established cryptographic assumption provides a
strong assurance that the security properties of the scheme are satisfied. Accordingly, it has been standard
practice for the designers of cryptographic schemes to provide a proven reduction for the security of
their schemes in a widely-accepted model [10,11]. Although these human-generated mathematical
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proofs are usually lengthy and complicated, they are certainly an invaluable tool for getting secure
cryptographic schemes.

In 2009, Das [12] proposed a smart-card-based user authentication scheme for wireless sensor
networks; throughout the paper, we call such a scheme a SUA-WSN scheme. Since then, the design
of SUA-WSN schemes has received significant attention from researchers due to their potential to be
widely deployed, and a number of solutions offering various levels of efficiency and security have been
subsequently proposed [2,3,13–27]. Early schemes only aimed to achieve mutual authentication [13–15],
while later schemes attempted to provide additional security properties, such as authenticated key
exchange [2,3,16–27] and user anonymity [2,3,20,22–24,26]. Some schemes [16,21,27] employ elliptic
curve cryptography to provide perfect forward secrecy, while others [2,3,12–14,17–20,22–26] only use
symmetric cryptography and hash functions to focus on improving the efficiency.

One important security requirement for SUA-WSN schemes is to ensure that only a user who is in
possession of both a smart card and the corresponding password can pass the authentication check
of the gateway and gain access to the sensor network and data. A SUA-WSN scheme that meets this
requirement is said to achieve two-factor security. To properly capture the notion of two-factor security,
the adversary against SUA-WSN schemes is assumed to be able to either extract the sensitive information
in the smart card of a user possibly via a side-channel attack [28,29] or learn the password of the user
through shoulder-surfing or by exploiting a malicious card reader, but not both. Clearly, there is no means
to prevent the adversary from impersonating a user if both the password of the user and the information
in the smart card are disclosed.

Despite the research efforts over the recent years, it remains a significant challenge to design
a robust SUA-WSN scheme that carries a formal proof of security in a widely-accepted model.
As summarized in Table 1, most of the published schemes either provide no formal analysis of
security [3,12–14,16,20–22,24–26] or fail to achieve important security properties, such as mutual
authentication, session-key security, user anonymity, two-factor security and resistance against various
attacks [3,13–16,19,21–27,30,31]. Some schemes [2,17–19,23,27] have been proven secure using a
computer security approach, which, as mentioned above, suffers from intractability and undecidability
and could possibly give a false positive result. To the best of our knowledge, Chen and Shih’s
scheme [15] is the only SUA-WSN scheme that was proven secure using a computational complexity
approach. However, Chen and Shih’s scheme does not provide key exchange functionality, but only
focuses on mutual authentication (and thus, inherently, cannot carry a proof of authenticated key
exchange). Moreover, the security model used for this scheme captures neither the user anonymity
property nor the notion of two-factor security.
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Table 1. A summary of security results for existing SUA-WSN (smart-card-based user
authentication scheme for wireless sensor networks) schemes.

Scheme Security Justification Major Weaknesses

Das [12] Heuristic arguments No key-exchange functionality

He et al. (2010) [13] Heuristic arguments No key-exchange functionality

Khan and Alghathbar [14] Heuristic arguments No key-exchange functionality

Chen and Shih [15] Computational complexity
approach (only for entity
authentication)

No key-exchange functionality

Yeh et al. [16] Heuristic arguments Failures of mutual authentication and forward
secrecy [30]

Kumar et al. (2011) [2] Computer security approach Vulnerability to a node capture attack [24]

Kumar et al. (2012) [17] Computer security approach Failures of authenticated key exchange, user
anonymity and two-factor security [3,23]

Yoo et al. [18] Computer security approach Vulnerability to a man-in-the-middle attack
[22]

Vaidya et al. [19] Computer security approach Failure of user authentication [25]

Xue et al. [20] Heuristic arguments Vulnerability to a privileged insider attack
[26]

Shi and Gong [21] Heuristic arguments Failures of authenticated key exchange and
two-factor security [27]

Kumar et al. (2013) [22] Heuristic arguments

He et al. (2013) [23] Computer security approach

Chi et al. [24] Heuristic arguments

Kim et al. [25] Heuristic arguments

Khan and Kumari [3] Heuristic arguments

Jiang et al. [26] Heuristic arguments

Choi et al. [27] Computer security approach No provision of user anonymity

The contributions of this paper are two-fold:

(1) We present a security model for the analysis of SUA-WSN schemes. Our security model is
derived by extending the widely-accepted model of Bellare, Pointcheval and Rogaway [10] to
incorporate into it the user anonymity property and the notion of two-factor security. Notice that
the original Bellare–Pointcheval–Rogaway (BPR) model for authenticated key exchange (AKE)
already captures insider attacks, offline dictionary attacks and other common attacks. We refer
readers to [32] to understand how a key exchange scheme that is vulnerable to an offline dictionary
attack can be rendered insecure in the BPR model. Our extension of the BPR model provides
two security definitions, one for the AKE security and one for the user anonymity property, and
both definitions capture the notion of two-factor security. Security properties like authentication,
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session-key security, perfect forward secrecy, known-key security and resistance against insider
attacks and offline dictionary attacks are implied by the AKE security.

(2) We propose the first SUA-WSN scheme whose AKE security, as well as user anonymity are formally
proven in a widely-accepted model. Our scheme employs elliptic curve cryptography (ECC) to
provide perfect forward secrecy, but differs from other ECC-based schemes [16,21,27] in that
it provides user anonymity. We prove the security properties of our scheme in the random oracle
model under the elliptic curve computational Diffie–Hellman (ECCDH) assumption. We also show
that our provably-secure scheme is computationally competitive compared with other ECC-based
(non-provably secure) schemes.

Table 2 shows the basic notation that is used consistently throughout this paper.

Table 2. Basic notation.

Symbol Description

UR User
SR Sensor
GW Gateway
IDUR, IDSR, IDGW Identities of UR, SR and GW

pwUR Password of U
sk Session key
A Probabilistic polynomial-time adversary
L(·), H(·), F (·) Cryptographic hash functions
Enck(·)/Deck(·) Symmetric encryption/decryption under key k

MAC Message authentication code
Mack(·)/Verk(·) MAC generation/verification under key k

⊕ Bitwise exclusive-or (XOR) operation
‖ String concatenation operation
{0, 1}n Bit strings of length n

The remainder of this paper is structured as follows. Section 2 describes our extended security model
for the analysis of SUA-WSN schemes. Section 3 presents the proposed SUA-WSN scheme along with
cryptographic primitives on which the security of the scheme relies and then compares our scheme with
other ECC-based schemes, both in terms of efficiency and security. Section 4 provides proofs of the user
anonymity property and the AKE security for our scheme. Section 5 concludes the paper, summarizing
our result and presenting some interesting future work.

2. Our Extended Security Model for SUA-WSN Schemes

In this section, we present a security model extended from the BPR model [10] to capture the security
properties of SUA-WSN schemes.

Participants and long-lived keys. Let GW be the gateway and SRS and URS be the sets of all sensors
and users, respectively, registered with GW . Let E = {GW} ∪ SRS ∪ URS . We identify each entity
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E ∈ E by a string, and interchangeably use E and IDE to refer to this identifier string. To properly
capture the user anonymity property, we assume that: (1) each user UR ∈ URS has its pseudo identity
PIDUR (as well as its true identity IDUR); and (2) the adversaryA is given only PIDUR, but not IDUR.
A user UR may run multiple sessions of the authentication and key exchange protocol of the scheme
(hereafter simply called the protocol), either serially or concurrently, to anonymously establish a session
key with a sensor SR ∈ SRS via the assistance of the gateway GW . Therefore, at any given time, there
could be multiple instances of the entities UR, SR and GW . We use Πi

E to denote instance i of entity
E ∈ E . Instances of UR and SR are said to accept when they compute a session key in an execution of
the protocol. We denote the session key of Πi

E by skiE . Before the protocol is ever executed,

• GW generates its master secret(s), issues a smart card to each UR ∈ URS and establishes a
shared key with each SR ∈ SRS; and
• each UR ∈ URS chooses its private password pwUR from the set of all possible passwords.

Partnering. Informally, we say that two instances are partners (or partnered) if they participate together
in a protocol session and establish a shared key. Formally, the partner relationship between instances is
defined in terms of the notion of the session identifier. A session identifier (sid) is literally an identifier
of a protocol session and is typically defined as a function of the messages exchanged in the session. Let
sidiE denote the sid of instance Πi

E . We say that two instances, Πi
UR and Πj

SR, are partners if: (1) both
instances have accepted; and (2) sidiUR = sidjSR.

Adversary capabilities. The adversary A is a probabilistic polynomial-time (PPT) machine, which has
full control of all communications between entities. More specifically, the PPT adversary A is able to:
(1) eavesdrop, modify, intercept, delay and delete the protocol messages; (2) ask entities to open up
access to session keys and long-term keys; and (3) extract the sensitive information on the smart cards
of users. These capabilities ofA are modeled using a pre-defined set of oracles to whichA is allowed to
ask queries. We assume that, when making oracle queries directed at (instances of) UR, the adversary
A uses the pseudo identity PIDUR, since it does not know the true identity IDUR. The oracle queries
are described as follows:

• Execute(Πi
UR, Πj

SR, Πk
GW ): This query models passive eavesdropping on the protocol messages. It

prompts a protocol execution among the instances Πi
UR, Πj

SR and Πk
GW and returns the transcript

of the protocol execution to A.
• Send(Πi

E,m): This query sends a message m to an instance Πi
E , modeling active attacks against

the protocol. Upon receiving m, the instance Πi
E proceeds according to the protocol specification.

Any message generated by Πi
E is output and given to A. A query of the form Send(Πi

UR, start)
prompts Πi

UR to initiate a protocol session.
• Reveal(Πi

E): This query captures known key attacks. Upon receiving this query, the instance Πi
E

returns its session key skiE back to A (if it has accepted).
• CorruptLL(E): This query returns the long-lived secret(s) of entity E, capturing the notion of

forward secrecy, as well as resistance to unknown key share attacks and insider attacks.
• CorruptSC(UR): This query captures side-channel attacks (i.e., the notion of two-factor security)

and returns the information stored in the smart card of UR.
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• TestAKE(Πi
E): This query is used for defining the indistinguishability-based security of session

keys. The output of the query depends on a random bit b chosen by the oracle; in response to the
query, either the real session key skiE if b = 1 or a random key drawn from the session-key space
if b = 0 is returned to A.
• TestID(UR): This query is used for determining whether the protocol provides user anonymity or

not. Depending on a random bit b chosen by the oracle,A is given either the identity actually used
for UR in the protocol sessions (when b = 1) or a random identity drawn from the identity space
(when b = 0).

SR and GW are said to be corrupted when they are asked a CorruptLL query, while UR is considered
as corrupted if it has been asked both CorruptLL and CorruptSC queries.

Authenticated key exchange (AKE). We define the AKE security of the authentication and key exchange
protocol P by using the notion of freshness of instances. Informally, a fresh instance refers to an instance
whose session key should be kept indistinguishable from a random key to the adversaryA, and an unfresh
instance refers to an instance that holds a session key that can be distinguishable from a random key by
trivial means. A formal definition of freshness follows:

Definition 1 (Freshness). An instance Πi
E is fresh unless one of the following occurs:

1. A queries Reveal(Πi
E) or Reveal(Πj

E′), where Πj
E′ is the partner of Πi

E;
2. A queries CorruptLL(SR) or CorruptLL(GW ) before Πi

E accepts.
3. A queries both CorruptLL(UR) and CorruptSC(UR), for some UR ∈ URS , before Πi

E accepts.

The AKE security of the protocol P is defined in the context of the following two-phase experiment:

Experiment ExpAKE0:

Phase 1. A freely asks any oracle queries, except that:

1. A is not allowed to ask queries of the TestID oracle.
2. A is not allowed to ask the TestAKE(Πi

E) query if the instance Πi
E is not fresh.

3. A is not allowed to ask the Reveal(Πi
E) query if it has already asked a TestAKE query of Πi

E

or its partner instance.

Phase 2. When Phase 1 is over,A outputs a bit b′ as a guess of the random bit b selected by the TestAKE
oracle. A succeeds if b = b′.

Let SuccAKE0 be the event that A succeeds in the experiment ExpAKE0. Let AdvAKE
P (A) denote

the advantage of A in breaking the AKE security of protocol P and be defined as AdvAKE
P (A) = 2 ·

PrP,A[SuccAKE0]− 1.

Definition 2 (AKE security). The authentication and key exchange protocol P is AKE-secure if
AdvAKE

P (A) is negligible for any PPT adversary A.

User anonymity. The AKE security does not imply user anonymity. In other words, an authentication
and key exchange protocol that does not provide user anonymity may still be rendered AKE secure.
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Hence, a new, separate definition is necessary to capture the user anonymity property. Our definition of
user anonymity is based on the notion of cleanness.

Definition 3 (Cleanness). A user UR ∈ URS is clean unless one of the following occurs:

1. A queries CorruptLL(GW ).
2. A queries both CorruptLL(UR) and CorruptSC(UR).

Note that this definition of cleanness does not impose any restriction on asking a CorruptLL query to
SR. This reflects our objective to achieve user anonymity even against the sensor SR.

Now, consider the following experiment to formalize the user anonymity property:

Experiment ExpID0:

Phase 1. A freely asks any oracle queries, except that:

1. A is not allowed to ask queries of the TestAKE oracle.
2. A is not allowed to ask the TestID(UR) query if the user UR is not clean.
3. A is not allowed to ask CorruptLL and CorruptSC queries against GW and UR if it has

already asked the TestID(UR) query.

Phase 2. When Phase 1 is over, A outputs a bit b′ as a guess on the random bit b selected by the TestID

oracle. A succeeds if b = b′.

Let SuccID0 be the event that A succeeds in the experiment ExpID0. Then, we define the advantage
of A in attacking the user anonymity of protocol P as AdvID

P (A) = 2 · PrP,A[SuccID0]− 1.

Definition 4 (User anonymity). The authentication and key exchange protocol P provides user
anonymity if AdvID

P (A) is negligible for any PPT adversary A.

3. The Proposed SUA-WSN Scheme

This section presents our ECC-based user authentication scheme for wireless sensor networks. Our
scheme consists of three phases: the registration phase, the authentication, the key exchange phase and
the password update phase. We begin by describing the cryptographic primitives on which the security
of our scheme relies.

3.1. Preliminaries

Elliptic curve computational Diffie–Hellman (ECCDH) problem. Let G be an elliptic curve group of
prime order q. Typically, G will be a subgroup of the group of points on an elliptic curve over a finite
field. Let P be a generator of G. Informally stated, the ECCDH problem for G is to compute xyP ∈ G
when given two elements (xP, yP ) ∈ G2, where x and y are chosen at random from Z∗q . We say that
the ECCDH assumption holds in G if it is computationally intractable to solve the ECCDH problem
for G. More formally, we define the advantage of an algorithm A in solving the ECCDH problem for
G as AdvECCDH

G (A) = Pr[A(G, P, xP, yP ) = xyP ]. We say that the ECCDH assumption holds in G
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if AdvECCDH
G (A) is negligible for all PPT algorithms A. We use AdvECCDH

G (t) to denote the maximum
value of AdvECCDH

G (A) over all algorithms A running in time at most t.

Symmetric encryption schemes. A symmetric encryption scheme Γ is a pair of efficient algorithms
(Enc, Dec) where: (1) the encryption algorithm Enc takes as input an `-bit key k and a plain text message
m and outputs a ciphertext c; and (2) the decryption algorithm Dec takes as input a key k and a ciphertext
c and outputs a message m. We require that Deck(Enck(m)) = m holds for all k ∈ {0, 1}` and all
m ∈ M, where M is the plain text space. For an eavesdropping adversary A against Γ and for an
integer n ≥ 1 and a random bit b ∈R {0, 1}, consider the following indistinguishability experiment:

Experiment ExpIND−EAV
Γ (A, n, b)

for i = 1 to n
ki ∈R {0, 1}`
(m0,i,m1,i)← A(Γ)

ci ← Encki(mb,i)

A(ci)

b′ ← A, where b′ ∈ {0, 1}
return b′

Let AdvIND−EAV
Γ (A) be the advantage of an eavesdropper A in violating the indistinguishability of Γ,

and let it be defined as:

AdvIND−EAV
Γ (A) = |Pr[ExpIND−EAV

Γ (A, n, 0) = 1]− Pr[ExpIND−EAV
Γ (A, n, 1) = 1]|.

We say that Γ is secure if AdvIND−EAV
Γ (A) is negligible in ` for any PPT adversary A. We define

AdvIND−EAV
Γ (t) as AdvIND−EAV

Γ (t) = maxA {AdvIND−EAV
Γ (A)}, where the maximum is over all PPT

adversaries A running in time at most t.

Message authentication codes. A message authentication code (MAC) scheme ∆ is a pair of efficient
algorithms (Mac, Ver) where: (1) the MAC generation algorithm Mac takes as input an `-bit key k and a
message m and outputs a MAC δ; and (2) the MAC verification algorithm Ver takes as input a key k, a
message m and a MAC δ and outputs one if δ is valid for m under k or outputs zero if δ is invalid. Let
AdvEU−CMA

∆ (A) be the advantage of an adversary A in violating the strong existential unforgeability of
∆ under an adaptive chosen message attack. More precisely, AdvEU−CMA

∆ (A) is the probability that an
adversary A, who mounts an adaptive chosen message attack against ∆ with oracle access to Mack(·)
and Verk(·), outputs a message/MAC pair (m, δ), such that: (1) Verk(m, δ) = 1; and (2) δ was not
previously output by the oracle Mack(·) as a MAC on the message m. We say that the MAC scheme
∆ is secure if AdvEU−CMA

∆ (A) is negligible for every PPT adversary A. Let AdvEU−CMA
∆ (t) denote the

maximum value of AdvEU−CMA
∆ (A) over all adversaries A running in time at most t.

Cryptographic hash functions. Our scheme uses three cryptographic hash functions
L : {0, 1}∗ → {0, 1}`, H : {0, 1}∗ → {0, 1}κ and F : {0, 1}∗ → {0, 1}ε, where ` is as defined
for ∆ and Γ, κ is the bit-length of session keys and ε is the bit-length of SIDUR (see Section 3.2.1 for
the definition of SIDUR). These hash functions are modeled as random oracles in our security proofs.
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3.2. Description of the Scheme

The public system parameters for our scheme include:

1. an elliptic curve group G with a generator P of prime order q,
2. a symmetric encryption scheme Γ = (Enc,Dec),
3. a MAC scheme ∆ = (Mac,Ver), and
4. three hash functions L, H and F .

We assume that these public system parameters are fixed during an initialization phase and are known
to all parties in the network. As part of the initialization, the gateway GW chooses two master keys
x, y ∈ Z∗q , computes its public key X = xP and establishes a shared secret key kGS = L(IDSR‖y) with
each sensor SR.

3.2.1. Registration Phase

A user UR registers itself with the gateway GW as follows:

1. UR chooses its identity IDUR and password pwUR freely and submits the identity IDUR to GW
via a secure channel.

2. GW computes SIDUR = EncL(x)(IDUR‖IDGW ) and issues UR a smart card loaded with
{SIDUR, X , IDGW , G, P , Γ, ∆, L, H , F}. (We assume that q is implicit in G.)

3. UR replaces SIDUR with TIDUR = SIDUR ⊕ F (IDUR‖pwUR).

This phase of user registration is depicted in Figure 1.

Figure 1. User registration.

UR GW

(x ∈ Z∗
q , X = xP )

chooses IDUR, pwUR

SIDUR = EncL(x)(IDUR‖IDGW )

TIDUR = SIDUR ⊕ F (IDUR‖pwUR)

replaces SIDUR with TIDUR

〈IDUR〉

smart card : {SIDUR, X, IDGW ,G, P,Γ,∆, L,H, F}

3.2.2. Authentication and Key Exchange Phase

UR needs to perform this phase with SR and GW whenever it wishes to gain access to the sensor
network and data. The steps of the phase are depicted in Figure 2 and are described as follows:
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Figure 2. The authentication and key exchange protocol.

UR SR GW

inputs IDUR and pwUR

retrieves the timestamp T1

a ∈R Z∗
q , A = aP

KUG = aX

= axP

kUG = L(T1‖A‖KUG)

SIDUR = TIDUR ⊕ F (IDUR‖pwUR)

= EncL(x)(IDUR‖IDGW )

CUR = EnckUG(SIDUR‖IDUR‖IDSR)

checks the freshness of T1

retrieves the timestamp T2

b ∈ Z∗
q , B = bP

δSR = MackGS (IDSR‖T2‖B‖M1)

checks the freshness of T1 & T2

VerkGS (IDSR‖T2‖B‖M1, δSR)
?
= 1

KUG = xA, kUG = L(T1‖A‖KUG)

Does DeckUG(CUR) yield IDSR ?

Does DecL(x)(SIDUR) yield IDUR ?

δUR
GW = MackUG(IDGW ‖IDSR‖A‖B)

δSR
GW = MackGS (IDGW ‖IDSR‖B‖A)

VerkGS (IDGW ‖IDSR‖B‖A, δSR
GW )

?
= 1

KSU = bA

sk = H(A‖B‖KSU)

VerkUG(IDGW ‖IDSR‖A‖B, δUR
GW )

?
= 1

KSU = aB

sk = H(A‖B‖KSU )

M1 = 〈IDGW , T1, A, CUR〉

M1, M2 = 〈IDSR, T2, B, δSR〉

M3 = 〈IDGW , IDSR, B, δUR
GW 〉

M4 = 〈IDGW , IDSR, A, δ
SR
GW 〉

M3 = 〈IDGW , IDSR, B, δUR
GW 〉
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Step 1. UR inserts its smart card into a card reader and inputs its identity IDUR and password pwUR.
Given IDUR and pwUR, the smart card retrieves the current timestamp T1, selects a random a ∈ Z∗q
and computes:

A = aP,

KUG = aX

= axP,

kUG = L(T1‖A‖KUG),

SIDUR = TIDUR ⊕ F (IDUR‖pwUR)

= EncL(x)(IDUR‖IDGW ),

CUR = EnckUG
(SIDUR‖IDUR‖IDSR).

After the computations, the smart card sends the message M1 = 〈IDGW , T1, A, CUR〉 to the
sensor SR.

Step 2. Upon receiving M1, SR first checks the freshness of T1. If T1 is not fresh, SR aborts the
protocol. Otherwise, SR retrieves the current timestamp T2, chooses a random b ∈ Z∗q and
computes B and δSR as follows:

B = bP,

δSR = MackGS
(IDSR‖T2‖B‖M1).

Then, SR sends the message M2 = 〈IDSR, T2, B, δSR〉 along with M1 to GW .

Step 3. After having received M1 and M2, GW verifies that: (1) T1 and T2 are fresh; and (2)
VerkGS

(IDSR‖T2‖B‖M1, δSR) = 1. If any of the verifications fails, GW aborts the protocol.
Otherwise, GW computes KUG = xA and kUG = L(T1‖A‖KUG), decrypts CUR with key kUG
and checks if the decryption produces the same IDSR as contained in M2. GW aborts if the check
fails. Otherwise,GW decrypts SIDUR with keyL(x) and checks if this decryption yields the same
IDUR as produced through the decryption of CUR. If only the two IDs match, GW computes:

δURGW = MackUG
(IDGW‖IDSR‖A‖B),

δSRGW = MackGS
(IDGW‖IDSR‖B‖A),

and sends two messages M3 = 〈IDGW , IDSR, B, δ
UR
GW 〉 and M4 = 〈IDGW , IDSR, A, δ

SR
GW 〉

to SR.

Step 4. When receiving M3 and M4, SR verifies that VerkGS
(IDGW‖IDSR‖B‖A, δSRGW ) = 1. If the

verification fails, SR aborts the protocol. Otherwise, SR forwards the message M3 to UR and
computes the shared secret KSU = bA and the session key sk = H(A‖B‖KSU).

Step 5. Upon receiving M3, UR checks if VerkUG
(IDGW‖IDSR‖A‖B, δURGW ) = 1. UR aborts the

protocol if the check fails. Otherwise, UR computes KSU = aB and sk = H(A‖B‖KSU).

Since KSU = bA = aB = abP , UR and SR will compute the same session key sk = H(A‖B‖abP )

in the presence of a passive adversary.
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3.2.3. Password Update Phase

One of the general guidelines to get better password security is to ensure that passwords are changed
at regular intervals. Our scheme allows users to update their passwords at will.

1. UR inserts his smart card into a card reader and enters the identity IDUR, the current password
pwUR and the new password pw′UR.

2. The smart card computes TID′UR = TIDUR ⊕ F (IDUR‖pwUR)⊕ F (IDUR‖pw′UR) and replaces
TIDUR with TID′UR.

3.3. Performance and Security Comparison

Table 3 compares our scheme with other ECC-based SUA-WSN schemes in terms of the computational
requirements, the AKE security and user anonymity. For fairness of comparison, SUA-WSN schemes that
use only lightweight symmetric cryptographic primitives are not considered in the table since they cannot
achieve forward secrecy, but have a clear efficiency advantage over the ECC-based schemes.

The scalar-point multiplication and map-to-point operation are much more expensive than
the other operations considered in the table, such as symmetric encryption/decryption, MAC
generation/verification and hash function evaluation. The total number of modular exponentiations and
map-to-point operations required in Yeh et al.’s scheme [16] is 10, while the number is reduced to six in
the other schemes. Therefore, the overall performance of Yeh et al.’s scheme is not as good as those of
the other schemes.

Table 3. A comparison of elliptic curve cryptography (ECC)-based SUA-WSN schemes.
AKE, authenticated key exchange.

Scheme
Computation Security

SR UR + SR + GW AKE Anonymity

Our scheme 2M + 2A+ 1H 6M + 3E + 6A+ 6H Proven Proven

Choi et al. [27] 2M + 5H 6M + 18H Proven using a computer
security approach

No

Shi and Gong [21] 2M + 4H 6M + 15H Broken [27] No

Yeh et al. [16] 2M + 1P + 2H 8M + 2P + 9H Broken [30] No

M : scalar-point multiplication; P : map-to-point operation; E: symmetric encryption/decryption;
A: MAC generation/verification; H: hash function evaluation.

From the viewpoint of the computational burden on the sensor SR, our scheme is competitive with
Choi et al.’s scheme [27] and Shi and Gong’s scheme [21], since a MAC generation/verification is almost
as fast as a hash function evaluation. According to Crypto++ benchmarks, HMACwith SHA-1 takes 11.9

cycles per byte, while SHA-1 takes 11.4 cycles per byte (see Table 4).
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Table 4. A result of Crypto++ benchmarks for HMAC, SHA-1 and AES.

Algorithm HMAC (SHA-1) SHA-1 AES/CTR AES/CBC AES/OFB AES/ECB

Cycles Per Byte 11.9 11.4 12.6 16.0 16.9 16.0

Another point we wish to make is that a hash function evaluation with a long input string may not
be faster than a symmetric encryption with a relatively short plain text input, though the opposite is
generally true for the same length of inputs. For example, the computation of the ciphertext CUR in our
scheme is unlikely to be more expensive than the computations of the hash values β, γ and δ, which are
defined in both Choi et al.’s scheme and Shi and Gong’s scheme. In this sense, it is fair to say that our
scheme is competitive also in terms of the overall computational cost.

As is obvious from the table, our scheme is the only one that provides user anonymity (regardless
of whether it is proven or not). This explains how the other schemes could have been designed without
using any form of encryption algorithm. Choi et al. [27] prove that their scheme achieves the AKE
security, but only using a computer security approach. In contrast, we use a computational complexity
approach in proving both the AKE security and the user anonymity property.

4. Security Results

Let P denote the authentication and key exchange protocol of our scheme depicted in Figure 2.
This section proves that the protocol P is AKE-secure and provides user anonymity (against any party
other than the gateway GW ); see Section 2 for the formal definitions of the AKE security and the user
anonymity property.

4.1. Proof of AKE Security

Theorem 1. Our authentication and key exchange protocol P is AKE-secure in the random oracle model
under the ECCDH assumption in G and the security of the MAC scheme ∆.

Proof. Assume a PPT adversary A against the AKE security of the protocol P . We prove the theorem
by making a series of modifications to the original experiment ExpAKE0, bounding the effect of each
change in the experiment on the advantage of A and ending up with an experiment where A has no
advantage (i.e., A has a success probability of 1/2). Let SuccAKEi denote the event that A correctly
guesses the random bit b selected by the TestAKE oracle in experiment ExpAKEi. Let ti be the
maximum time required to perform the experiment ExpAKEi involving the adversary A.

Experiment ExpAKE1. In this first modified experiment, the simulator answers the queries to the L
oracle as follows:

Simulation of the L oracle

For each query of L on a string m, the simulator first checks if an entry of the form (m, l) is in
a list called LList, which is maintained to store input-output pairs of L. If it is, the simulator
outputs l as the answer to the hash query. Otherwise, the simulator chooses a random `-bit
string str, answers the query with str and adds the entry (m, str) to LList.
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This is the only difference between ExpAKE1 and ExpAKE0; the simulator answers all other
oracle queries of A as in the original experiment ExpAKE0. Then, since ExpAKE1 is perfectly
indistinguishable from ExpAKE0, it follows that:

Claim 1. PrP,A[SuccAKE1] = PrP,A[SuccAKE0].

Experiment ExpAKE2. In this experiment, we modify the computations of X and A as follows:

The ExpAKE2 modification

• The simulator chooses two random elements Y, Y ′ ∈ G and sets X = Y ′.
• For every fresh instance, the simulator chooses a random r ∈ Z∗q and sets A = rY . For

other instances, the simulator computes A as in experiment ExpAKE1.

Due to the modification, the simulator does not know the master secret x. The simulator aborts the
experiment if A makes the CorruptLL(GW ) query. However, in this case, A cannot gain any advantage,
as no instance is considered fresh. In this experiment, the simulator simply sets each kUG to a random
`-bit string, since it does not know the ephemeral secret a and, thus, cannot compute the secret KUG.
This means that the success probability of A may be different between ExpAKE1 and ExpAKE2 if it
asks an L(T1‖A‖KUG) query. However, this difference is bounded by Claim 2.

Claim 2.
∣∣PrP,A[SuccAKE2] − PrP,A[SuccAKE1]

∣∣ ≤ 1/qL · AdvECCDH
G (t2), where qL is the number of

queries made of the L oracle.

Proof. We prove the claim via a reduction from the ECCDH problem, which is believed to be hard,
to the problem of distinguishing two experiments ExpAKE1 and ExpAKE2. Assume that the success
probability of A is non-negligibly different between ExpAKE1 and ExpAKE2. Then, we construct an
algorithmAECCDH that solves the ECCDH problem in G with a non-negligible advantage. The objective
ofAECCDH is to compute and output the value W = uvP ∈ G when given an ECCDH-problem instance
(U = uP, V = vP ) ∈ G. AECCDH runs A as a subroutine while simulating all of the oracles on its own.
AECCDH handles all of the oracle queries ofA as specified in experiment ExpAKE2, but using U and

V in place of X and Y . WhenA outputs its guess b′,AECCDH chooses an entry of the form (T1‖A‖K, l)
at random from LList and terminates outputting K/r. >From the simulation, it is not hard to see that
AECCDH outputs the desired result W = uvP with probability at least 1/qL ifAmakes a L(T1‖A‖KUG)

query for some fresh user instance. This completes Claim 2.

Before proceeding further, we define the event Forge as follows:

Forge: The event that the adversaryA asks a Send query of the form Send(Πi
E ,E ′‖msg) for uncorrupted

E and E ′, such that msg contains a MAC forgery.

Experiment ExpAKE3. This experiment is different from ExpAKE2 in that it is aborted and the
adversary A does not succeed if the event Forge occurs. Then, we have:

Claim 3.
∣∣PrP,A[SuccAKE3] − PrP,A[SuccAKE2]

∣∣ ≤ qsend · AdvEU−CMA
∆ (t3), where qsend is the number

of queries made for the oracle Send.
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Proof. Assume that the event Forge occurs with a non-negligible probability. Then, we construct an
algorithm Aforge who generates, with a non-negligible probability, a forgery against the MAC scheme
∆. The algorithm Aforge is given access to the Mack(·) and Verk(·) oracles. The objective of Aforge is to
produce a message/MAC pair (m, δ), such that: (1) Verk(m, δ) = 1; and (2) δ has not been output by the
oracle Mack(·) on input m.

Let nk be the total number of MAC keys used in the sessions initiated via a Send query. Clearly,
nk ≤ qsend. Aforge begins by selecting a random i ∈ {1, . . . , nk}. Let ki denote the i− th key among all
of the nk MAC keys and Sendi be any Send query that is expected to be answered and/or verified using
ki. Aforge runsA as a subroutine and answers the oracle queries ofA as in experiment ExpAKE2, except
that: it answers all Sendi queries by accessing its Mack(·) and Verk(·) oracles. As a result, the i − th

MAC key ki is not used during the simulation. If Forge occurs against an instance who holds ki, Aforge

halts and outputs the message/MAC pair generated byA as its forgery. Otherwise,Aforge terminates with
a failure indication.

If the guess i is correct, then the simulation is perfect and Aforge achieves its goal. Namely,
AdvEU−CMA

∆ (Aforge) = Pr[Forge]/nk. Since nk ≤ qsend, we get Pr[Forge] ≤ qsend · AdvEU−CMA
∆ (Aforge).

SinceAforge runs in time at most t3, it follows, by definition, that AdvEU−CMA
∆ (Aforge) ≤ AdvEU−CMA

∆ (t3).
This completes the proof of Claim 3.

Experiment ExpAKE4. We next modify the way of answering queries of the H oracle as follows:

Simulation of the H oracle

For each H query on a string m, the simulator first checks if an entry of the form (m,h) is in a
list called HList, which is maintained to store input-output pairs of H . If it is, h is the answer
to the hash query. Otherwise, the simulator chooses a random κ-bit string str, answers the
query with str and adds the entry (m, str) to HList.

Other oracle queries of A are handled as in experiment ExpAKE3. Since ExpAKE4 is perfectly
indistinguishable from ExpAKE3, it is clear that:

Claim 4. PrP,A[SuccAKE4] = PrP,A[SuccAKE3].

Experiment ExpAKE5. We finally modify the experiment so that, for each fresh instance of SR, the
computation of B is done as follows:

The ExpAKE5 modification

The simulator selects a random r′ ∈ Z∗q and computes B = r′X .

The simulator sets the session key sk to a random κ-bit string for each pair of fresh instances, as it
cannot compute KSU . Accordingly, the success probability of A may be different between ExpAKE4

and ExpAKE5 if it asks an H(A‖B‖KSU) query. Claim 5 below bounds the difference:

Claim 5.
∣∣PrP,A[SuccAKE5] − PrP,A[SuccAKE4]

∣∣ ≤ 1/qH · AdvECCDH
G (t5), where qH is the number of

queries made of the H oracle.
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Proof. Suppose that the difference in the advantage of A between SuccAKE4 and SuccAKE5 is
non-negligible. Then, from A, we construct an algorithm AECCDH that solves the ECCDH problem
in G with a non-negligible advantage. The objective of AECCDH is to compute and output the value
W = uvP ∈ G when given an ECCDH-problem instance (U = uP, V = vP ) ∈ G.
AECCDH runs A as a subroutine while answering all of the oracles queries by itself. AECCDH handles

the queries of A as specified in the ExpAKE5 experiment, but using U and V in place of X and Y .
WhenA terminates and outputs its guess b′,AECCDH selects an entry of the form (A‖B‖K,h) at random
from HList and outputs K/rr′. If A makes a H(A‖B‖KSU) query, AECCDH outputs the desired result
W = uvP with probability at least 1/qH . This completes Claim 5.

In experiment ExpAKE5, the adversaryA obtains no information on the random bit b selected by the
TestAKE oracle, since the session keys of all fresh instances are selected uniformly at random from G.
Therefore, it follows that PrP,A[SuccAKE5] = 1/2. This result combined with Claims 1–5 completes the
proof of Theorem 1.

4.2. Proof of User Anonymity

Theorem 2. The authentication and key exchange protocol P provides user anonymity in the random
oracle model under the ECCDH assumption in G and the security of the symmetric encryption
scheme Γ.

Proof. Assume a PPT adversary A against the user anonymity property of the protocol P . As in the
proof of Theorem 1, we make a series of modifications to the original experiment ExpID0, bounding the
difference in the success probability ofA between two consecutive experiments and then ending up with
an experiment where A has a success probability of 1/2 (i.e., A has no advantage). We use SuccIDi to
denote the event that A correctly guesses the random bit b selected by the TestID oracle in experiment
ExpIDi. Let ti be the maximum time required to perform the experiment ExpIDi involving the
adversary A.

Experiment ExpID1. This experiment is different from ExpID0 in that the random oracle L is simulated
as follows:

Simulation of the L oracle

For each query to L on a string m, the simulator first checks if an entry of the form (m, l) is in
a list called LList, which is maintained to store input-output pairs of L. If it is, the simulator
outputs l as the answer to the hash query. Otherwise, the simulator chooses a random `-bit
string str, answers the query with str and adds the entry (m, str) to LList.

Other oracle queries of A are answered as in the original experiment ExpID0. Then, since L is a
random oracle, ExpID1 is perfectly indistinguishable from ExpID0, and Claim 6 immediately follows.

Claim 6. PrP,A[SuccID1] = PrP,A[SuccID0].

Experiment ExpID2. Here, we modify the experiment so that A is computed as follows:
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The ExpID2 modification

• The simulator chooses a random exponent y ∈ Z∗q and computes Y = yP .
• For each instance of users, the simulator chooses a random r ∈ Z∗q and sets A = rY .

As a result of the modification, each KUG is set to xyrP for some random r ∈ Z∗q . Since the view of
A is identical between ExpID2 and ExpID1, it follows that:

Claim 7. PrP,A[SuccID2] = PrP,A[SuccID1].

Experiment ExpID3. In this experiment, we modify the computations of X and A as follows:

The ExpID3 modification

• The simulator chooses two random elements Y, Y ′ ∈ G and sets X = Y ′.
• For instances of every clean user, the simulator chooses a random r ∈ Z∗q and sets
A = rY . For other instances, the simulator computes A as in experiment ExpID2.

As a result, the simulator does not know the master secret x. The simulator aborts the experiment if
A makes the CorruptLL(GW ) query. However, in this case, A cannot gain any advantage, as no user is
considered clean (see Definition 3). In this experiment, the simulator simply sets each kUG to a random
`-bit string, since it does not know the ephemeral secret a and, thus, cannot compute the secret KUG.
This means that the success probability ofA may be different between ExpID2 and ExpID3 if it asks an
L(T1‖A‖KUG) query. However, this difference is bounded by Claim 8.

Claim 8.
∣∣PrP,A[SuccID3]−PrP,A[SuccID2]

∣∣ ≤ 1/qL ·AdvECCDH
G (t3), where qL is the number of queries

made to the L oracle.

Proof. We prove the claim via a reduction from the ECCDH problem, which is believed to be hard, to the
problem of distinguishing two experiments ExpID2 and ExpID3. Assume that the success probability of
A is non-negligibly different between ExpID2 and ExpID3. Then, we construct an algorithm AECCDH

that solves the ECCDH problem in G with a non-negligible advantage. The objective of AECCDH is to
compute and output the value W = uvP ∈ G when given an ECCDH-problem instance (U = uP, V =

vP ) ∈ G. AECCDH runs A as a subroutine while simulating all of the oracles on its own.
AECCDH handles all of the oracle queries ofA as specified in experiment ExpID3, but using U and V

in place of X and Y . When A outputs its guess b′, AECCDH chooses an entry of the form (T1‖A‖K, l)
at random from LList and terminates outputting K/r. >From the simulation, it is clear that AECCDH

outputs the desired result W = uvP with a probability of at least 1/qL if A makes a L(T1‖A‖KUG)

query for some clean UR ∈ URS . This completes Claim 8.

Experiment ExpID4. We finally modify the experiment so that, for each clean user UR ∈ URS, a
random identity ID′UR drawn from the identity space is used in place of the true identity IDUR in
generating CUR.

Claim 9.
∣∣PrP,A[SuccID4]− PrP,A[SuccID3]

∣∣ ≤ AdvIND−EAV
Γ (t4).
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Proof. We prove the claim by constructing an eavesdropperAeav who attacks the indistinguishability of
Γ with advantage equal to

∣∣PrP,A[SuccID4]− PrP,A[SuccID3]
∣∣.

Aeav begins by choosing a random bit b ∈ {0, 1}. Then, Aeav invokes the adversary A and answers
all of the oracle queries of A as in experiment ExpID3, except that, for each clean user UR ∈ URS , it
generates CUR by accessing its own encryption oracle as follows:

Aeav outputs (SIDUR‖IDUR‖IDSR, SIDUR‖ID′UR‖IDSR) as its plain text pair in the
indistinguishability experiment ExpIND−EAV

Γ . Let c be the ciphertext received in return for
the plain text pair. Aeav sets CUR equal to the ciphertext c.

That is, Aeav sets CUR to the encryption of either SIDUR‖IDUR‖IDSR or SIDUR‖ID′UR‖IDSR.
Now, when A terminates and outputs its guess b′, Aeav outputs one if b = b′, and zero otherwise. Then,
it is clear that:

• The probability that Aeav outputs one when the first plain texts are encrypted in the experiment
ExpIND−EAV

Γ is equal to the probability that A succeeds in the experiment ExpID3.
• The probability that Aeav outputs one when the second plain texts are encrypted in the experiment
ExpIND−EAV

Γ is equal to the probability that A succeeds in the experiment ExpID4.

That is, AdvIND−EAV
Γ (Aeav) =

∣∣PrP,A[SuccID4] − PrP,A[SuccID3]
∣∣. Note that in the simulation, Aeav

eavesdrops at most qsend encryptions, which is polynomial in the security parameter `. This completes
the proof of Claim 9.

In the experiment ExpID4, the adversary A cannot gain any information on the random bit b selected
by the TestID oracle, because the identities of all clean users are chosen uniformly at random from the
identity space. It, therefore, follows that PrP,A[SuccID4] = 1/2. This result combined with Claims 6–9
yields the statement of Theorem 2.

5. Concluding Remarks

We have extended the widely-accepted security model of Bellare, Pointcheval and Rogaway [10]
to formally capture the security requirements for SUA-WSN schemes—smart-card-based user
authentication schemes for wireless sensor networks. Our extended model provides formal definitions
of the AKE security and the user anonymity property, while capturing the notion of two-factor security.
We have also proposed a new SUA-WSN scheme and proved that it achieves user anonymity, as well as
the AKE security in the extended model. To the best of our knowledge, our scheme is the first SUA-WSN

scheme that is proven secure in a widely-accepted model.
We believe that our result lays a solid foundation for designing provably-secure two-factor

authentication schemes for mobile roaming services, where user anonymity, as well as authenticated
key exchange are also of critical security importance; see, e.g., the recent work of He et al. [33,34]. A
concrete design of such a provably-secure roaming authentication scheme would be interesting future
work. We also leave it as future work to present a formal treatment of security properties for three-factor
authentication schemes [35].
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