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Abstract: We consider the problem of localising an unknown number of land mines using
concentration information provided by a wireless sensor network. A number of vapour
sensors/detectors, deployed in the region of interest, are able to detect the concentration
of the explosive vapours, emanating from buried land mines. The collected data is
communicated to a fusion centre. Using a model for the transport of the explosive chemicals
in the air, we determine the unknown number of sources using a Principal Component
Analysis (PCA)-based technique. We also formulate the inverse problem of determining
the positions and emission rates of the land mines using concentration measurements
provided by the wireless sensor network. We present a solution for this problem based
on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme,
and we compare it to the least squares optimisation approach. Experiments conducted on
simulated data show the effectiveness of the proposed approach.
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1. Introduction

An anti-personnel mine is a device designed to injure or to kill whomever comes into contact with
it through direct pressure or a trip-wire [1]. Land mine detection, localisation and clearance is of great
importance due to the danger that buried land mines still represent to people all over the world. It
is pointed out in [2] that about 50–100 million anti-personnel mines exist in more than 80 countries
and that more than 20,000 people are killed or injured every year due to the explosion of buried land
mines. Though the Ottawa treaty prohibited in 1997 the use of this weapon, some countries have not
signed the treaty, and nearly two million land mines are laid per year. The dangers are particularly
acute for those responsible for localising and decommissioning land mines. To limit the number of
victims, land mine detection and clearance actions have taken place since the end of the Second World
War [3,4]. Historically, the most common method for land mine detection is metal detection. Although
this method has proved to be effective with primary land mines, it fails with many modern land mines,
which are fabricated from sophisticated non-metallic materials, such as plastic and wood [1], making
them invisible to the metal detector. Therefore, many other methods have been developed. These include
the use of trained dogs and several physical detection techniques based on ground penetrating radar
(GPR), X-ray, infrared (IR) imaging [5,6], neutron activation (TNA) and nuclear quadrupole resonance
(NQR) [2,7]. However, a common problem with all these techniques is that the probability of false
positives is high [8]. Other approaches employ unmanned vehicles for landmine detection [9]. This
technique requires sophisticated and rather expensive equipment and control.

This paper presents a method to address the land mine localisation problem using data collected from
a network of wireless sensors capable of detecting the concentration of the explosive chemicals in the
air. The explosive chemicals, such as trinitrotoluene (TNT) or dinitrotoluene (DNT), leak out from
buried land mines into the surrounding environment and are transported through the air by mechanisms
such as advection and diffusion. Sensors for these types of chemical explosive materials exist [10]. By
expressing the concentration of the explosive as a function of the land mines’ locations and by solving
the inverse problem, we will show that the proposed framework is able to detect, locate and find the
emission rates of several land mines.

All existing methods for land mine detection consider a known number of sources in a specific
region [11,12]. However this information rarely exists for real applications. One original contribution
of this paper is to present a solution for an unknown number of land mines or vapour-emitting sources.
In our method, the objective is to estimate the number of sources and then characterise them. Note that
throughout this paper, the term source characterisation will refer to determining the sources unknown
parameters including their positions and emission rates. Briefly speaking, the set of concentration
measurements which have been made by the detection system are grouped in a matrix and a PCA scheme
is used in order to determine the number of sources. Once this number is known we will be able to locate
explosive sources and to estimate the emission rate of each source. Thus, in difference to most of existing
methods, we solve the problem of characterisation of multiple anti-personnel land mines.

The localisation problem is modelled through a probabilistic Bayesian approach and a Markov chain
Monte Carlo (MCMC) algorithm; namely, that of slice sampling is used in order to sample from the
posterior density of interest. This probabilistic approach is tested and compared to an optimisation
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technique, i.e., the popular least squares approach [13]. The advantages and limitations of both
techniques are discussed in detail. There are two main advantages of using a probabilistic approach.
First, the solution provided takes on the form of a probability distribution, so the uncertainty on the
estimated position can be quantified [14]. Another important advantage of the proposed Bayesian
technique is that it overcomes the convergence problems (to local minima) that the least squares approach
could face.

The rest of the paper is organised as follows. Section 2 reports some related work. In Section 3, we
describe the model used for the transport of the explosive chemical in the air and thus, formulate the
direct or forward problem. A matrix of concentration measurements is obtained, and a PCA scheme
is used to determine the unknown number of sources in Section 4. In Section 5, we define the inverse
problem consisting of locating the land mines and determining their emission rates given concentration
measurements from randomly deployed sensors. We first present a probabilistic Bayesian approach for
solving the problem; then, we explain how the generic least squares approach can be used in order to
solve the sources characterisation problem. Section 6 gives some simulation results and finally Section 7
concludes the paper.

2. Related Work

The advances in sensing technologies [8] increase the use of sensor networks in a vast range of
applications [12,15,16]. Recently, wireless sensor networks (WSNs) have become popular in source
identification applications. In fact, risk management applications in the fields of environment [14,17,18]
and security [15,19] rely on data collected from a WSN in order to characterise a source of dispersion,
e.g., in the case of an accidental or intentional release of a chemical or biological substance in the air.
In [19], an algorithm is derived to detect CO2 leaks at several potential locations at a carbon sequestration
site. The aim in [18] is to study the emissions of a number of contaminant sources, located at well-known
positions, at a large lead-zinc smelter. In [14,15,17], probabilistic Bayesian approaches are used to
determine the unknown position and possibly other model parameters, such as the emission rate and the
diffusion coefficient, of a single dispersion source using data collected from a WSN. In [20], a recursive
algorithm based on a state space representation of the system is developed to estimate a single diffusion
source position and to track its intensity in time using concentration measurements provided by a sensor
network. In [21] theoretical results are derived characterising the accuracy of the location estimate of
a single gas emitting source using a network of binary sensors. The measurements are quantised and
a single bit of information is generated depending on whether the sensed value is lower or higher than
some threshold. In [22] a computation method is proposed to overcome the difficulties associated with
the choice of an adequate dispersion model and the calculation of the likelihood function in a Bayesian
framework in order to solve the problem of localisation of a source of toxic release.

The idea of using a sensor network for land mine localisation is addressed in [11,23], but both consider
the case of a single land mine. In [23], the problem of localisation of a single land mine is considered
using an analytical solution of the inverse problem, not taking into account a model or measurement
noise. In [11], a maximum likelihood estimation algorithm is derived in order to locate a single land
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mine and find its emission rate. The performance of the estimator is evaluated by computing the
Cramer–Rao bound.

The case of parameter estimation for multiple sources is briefly addressed in [24] and [25] in a
Bayesian probabilistic and an optimisation least squares frameworks and for a known number of sources.
A more difficult case when the number of sources is unknown is addressed in [26–28]. In [26,28], the
problem is formulated as a generalised parameter estimation problem, where the number of sources is
included in the vector of unknown parameters. This approach implements a reversible-jump MCMC
algorithm and requires intensive computations since the dimensionality of the unknown parameters’
vector is variable. In [27], Yee formulates the problem of characterising an unknown number of sources
as a model selection problem. While this approach is less complex than the previous one, it is also
computationally demanding.

The application of interest in this paper is the localisation of multiple anti-personnel land mines
using a WSN, where we consider the case of an unknown number of sources. In our method, we
propose to use PCA on a matrix of concentration measurements in order to determine the unknown
number of land mines. The use of this strategy makes the problem of localisation less complex and
more efficient. The localisation problem is addressed after in a probabilistic Bayesian framework,
so that the solution provided takes on the form of a probability distribution. The uncertainty on
the estimated position can thus be quantified [14], rather than approximated, e.g., by computing the
Cramer–Rao bound, as in [11]. The probabilistic approach is also compared to the optimisation least
squares technique.

3. The Forward Problem

The forward model is used to compute an estimated concentration of the explosive chemical at a
certain location given a vector of parameters consisting of land mine locations, emission rates and
environmental conditions, such as the diffusivity of the air and the wind velocity. It describes the
transport of the explosive chemical emitted by the land mines due to the advection and diffusion
processes. Note that numerical solutions for modelling the transport of TNT emanating from land
mines [29] were proposed. In this paper, we model a land mine as a point source placed on an
impermeable planar surface and diffusing an explosive chemical, such as the TNT, at a constant rate [12],
and an analytical model for the transport of the explosive vapours is used.

Let us first consider the case of a single land mine placed at position rs = (xs, ys, zs)
T in the plane

z = 0. The source emits the explosive chemical with a constant rate Q (g/s) starting at time t0. The
wind velocity is modelled as a constant vector directed along the x-axis and of a constant magnitude
V (m/s). The differential equation [12,30] governing the variation of the concentration C(t, r) of the
explosive chemical at time t ≥ t0 and at position r = (x, y, z)T in the semi-infinite medium z ≥ 0 is
given by:

∂C

∂t
−K

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
+ V

∂C

∂x

= 2Q.u(t− t0).δ(x− xs).δ(y − ys).δ(z − zs)
(1)
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where K (m2/s) is the air diffusion coefficient; δ(.) denotes the Dirac delta function and u(t− t0) refers
to the step function vanishing for t < t0 and equal to unity for t ≥ t0. The solution [30] for t ≥ t0 at
position r given the initial condition of zero concentration for all r is given by:

C(Q, rs,r, t, t0) =
Q

π
3
2Kd

exp

(
V (x− xs)

2K

)
×
∫ ∞

d

2
√

K(t−t0)

exp

(
−u2 − V 2d2

16K2u2

)
du

(2)

where d = d(rs, r) = ||rs − r|| is the Euclidean distance between positions r = (x, y, z)T and
rs = (xs, ys, zs)

T .
Under the assumptions of constant V and Q, and after a sufficiently long time (t → ∞), a stationary

concentration profile [12,30], given by the following concentration, is established:

C∞(Q, rs, r) =
Q

2πKd
exp

(
−
V.
(
d− (x− xs)

)
2K

)
(3)

In the remaining sections, the sources and the sensors are considered to be in the same plane z = 0,
and we omit thus the third coordinate z in all position vectors.

Figures 1 and 2 show respectively an illustrative scenario with one source and three sensors in a
20 m × 20 m planar region, and the variation of the concentration at the three sensors positions as given
in Equation (2) for Q = 5µg/s, K = 25m2/s and V = 5cm/s. The stationary concentrations are also
shown in dotted lines. The graph shows that the concentration change within 5 min reaches 97.50, 95.96
and 91.40 percent of the stationary concentration that would be established at the positions of
Sensors 1, 2 and 3, respectively.

Figure 1. An illustrative scenario with a single source and three sensors.

Let us consider now the case of Nsources, i.e., land mines. The i − th source, denoted as
Si, i = 1, . . . , N , is at position rsi = (xsi , ysi)

T and has a constant emission rate denoted by Qi.
The resultant stationary concentration [18] at position r = (x, y)T is given by:

Cr
(
{Qi, rsi}Ni=1, r

)
=

N∑
i=1

C∞(Qi, rsi , r) (4)
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Figure 2. Concentration profiles are given in solid line at the sensors positions for the
scenario given in Figure 1. Dotted lines show the stationary concentrations.

Consider M sensors which are placed at known positions rj = (xj, yj)
T , j = 1, . . . ,M . Referring

to Equations (3) and (4), the estimated concentration at position rj of sensor j can be expressed as:

Crj
(
{Qi, rsi}Ni=1, rj

)
=

N∑
i=1

Qi × gji(rsi , rj) (5)

where

gji(rsi , rj) =
1

2πKdij
exp

(
−
V.
(
dij − (xj − xsi)

)
2K

)
(6)

and dij = ||rsi − rj||.
Let P denote the vector of parameters of the sources, i.e., source’ positions and emission rates. For N

land mines,
P = [{xsi , ysi , Qi}Ni=1]T

The concentration measurements provided by the sensor network are grouped in an array denoted by
Ym = [Cm

1 , . . . , C
m
M ]T .

Let Yt = [Ct
1, . . . , C

t
M ]T denote the vector of true concentrations at positions rj , and

Em = [em1 , . . . , e
m
M ]T a vector of measurements error, thus:

Cm
j = Ct

j + emj , j = 1, . . . ,M (7)

Furthermore, if Ye = [Ce
1 , . . . , C

e
M ]T refers to the vector of estimated concentrations at rj ,

i.e., the concentrations obtained by resolving the forward problem according to Equation (4), and
Ee = [ee1, . . . , e

e
M ]T a vector of model error, then:

Ce
j = Ct

j + eej , j = 1, . . . ,M (8)

Based on Equations (7) and (8), we can write:

Cm
j = Ce

j + ej, j = 1, . . . ,M (9)
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where ej denotes the quantity characterising the difference between measured and modelled/estimated
concentrations. Equivalently, in vector notation:

Ym = Yt + Em

Ye = Yt + Ee

(10)

and:

Ym = Ye + E (11)

where E refers to an error. Based on (4) and (10), we can define an operator F, such that:

Ym = F(P,A) (12)

where A is a constant vector grouping information about the environment, sensors characteristics and
model applicability, e.g., wind velocity, air diffusion coefficient and noise variances.

Figure 3 shows the stationary concentration profile of the emitted chemical determined using
Equation (4) for a scenario with N = 4 sources and M = 40 sensors, which are randomly
deployed in a 20 × 20 m2 planar region. Emission rates are randomly fixed to Q1 = 8.01 µg/s,

Q2 = 5.38 µg/s, Q3 = 5.87 µg/s and Q4 = 9.39 µg/s.

Figure 3. Illustration of the forward problem.

4. Determining the Unknown Number of Sources

In this section, we use the principal component analysis (PCA) in order to determine the number
of sources based on a set of measurements. PCA [31] is a popular statistical method that has
been widely applied in the analysis of multidimensional data sets, which are usually represented by
tables of observations of many possibly inter-correlated variables. Since the information provided by
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these variables is often redundant, PCA attempts to replace the original set of variables by a smaller
number of new variables, called principal components, without losing too much information. This
technique considers that the new variables are linear combinations of the original ones and that they are
linearly uncorrelated.

Mathematically, PCA transforms the data to a new coordinate system, such that the original set of
observations is expressed in terms of the principal components. A technique for performing PCA is to
compute the covariance matrix calculated from the available measurements and then to determine its
eigenvalues. The corresponding normalised eigenvectors, ordered according to decreasing eigenvalues,
define the new coordinate system. A smaller dimensional coordinate system, which is supposed to
conserve most of the information, can be obtained by only retaining the eigenvectors associated with the
largest eigenvalues.

In our application, M sensors are randomly deployed in a region of interest where the unknown
number of vapour-emitting sources is denoted by N . Each sensor provides measurements of the
concentration of the explosive material emitted by the sources and transported to the sensor’s position
due to advection and diffusion processes. Supposing that concentration measurements are taken on
each sensor at T time instants, the measurements are grouped in an M × T matrix C = (Cjt),
j = 1, . . . ,M, t = 1, . . . , T , where the j − th row groups the concentration measurements recorded
by the j − th sensor at different time instants and the t − th column groups measurements recorded by
all M sensors at time instant t. Since the land mines emissions are likely to change slowly over time,
we model these emissions using piecewise constant functions. Referring to Figure 2 of the previous
section, the stationary concentration profile is established within only a few minutes; thus, the recorded
concentration measurements can be considered as stationary concentrations established for the constant
emission rates between time instants t − 1 and t similarly to what was suggested in [17]. Figure 4
recapitulates the assumptions we make. It illustrates the variation of the emissions of three sources
and indicates, using red boxes, the regions where stationary concentration profiles are established. The
measurements grouped in matrix C are, for instance, taken at time instants t1, t2, etc. Note that these
measurements can be chosen by simply examining the signals provided by the sensors and detecting
stationary points, i.e., the steady-state concentration values.

Figure 4. The emission rates are piecewise constant, and a series of stationary concentration
profiles are established.

In the following, Qit denotes the emission rate of source i, i = 1, . . . , N, considered as constant
between time instants t− 1 and t. We consider an N × T matrix Q = (Qit) grouping the emission rates
of the sources, where each row i is associated with source i and each column t groups the emissions of
the sources at time t. Let G = (gji) be an M ×N matrix grouping the factors gji(rsi , rj) associated with
source i and sensor j, as in Equation (6). If Ct denotes the t − th column of matrix C, i.e., the vector
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of concentration measurements provided by the sensors at time t and Qt denotes the t − th column
of matrix Q, i.e., the vector of sources emission rates at time t, referring to Equation (5), we have in
matrix notation:

Ct = G×Qt, t = 1, . . . , T (13)

Taking into account an additive noise, as in Equation (9), we obtain:

C = G×Q + ε (14)

where ε = (ejt), 1 ≤ j ≤M, 1 ≤ t ≤ T is an additive noise matrix.
Equation (14) shows that the concentrations measured on the sensors are linear combinations of the

sources emission rates. In our application, the only available information is the matrix of concentrations
C. Performing the PCA technique on matrix C and retaining only the eigenvalues, which are larger than
some threshold λth, allows to transform the data to a new coordinate system whose dimension is d ≤M .
An ideal choice of the threshold would recover precisely the number of sources (d = N ). The condition
d ≤M implies that the number of sensors cannot be less than the number of mines.

In our simulations, the number of concentration records is fixed to T = 10, and at each time instant,
the emission rates of the sources are drawn uniformly from the interval [5 10]µg/s. The sources and the
sensors are randomly placed in a 20 m × 20 m region.

In order to develop the relationship when N ≤M , we studied what is the minimal number of sensors
that can detect the number N of the true hidden sources using the PCA technique for the simulation
conditions described above. In our study, we fixed first the number N of sources and initiated M = N .
A hundred source-sensor configurations, obtained by randomly deploying N sources and M sensors in
a 20 m × 20 m region, are generated. The PCA technique is tested on the different configurations, and
the number of sensors is iteratively increased until the true number of sources is obtained for at least
90% of the configurations. The results are given below in Table 1. Using these simulations, an adequate
threshold λth = 10−7 is empirically determined. Note that for T = 10 and for the simulation conditions,
we fixed the maximal detectable number to be N = 8 sources.

Table 1. The minimal number of sensors required in order to detect the true number of
sources for the simulation conditions considered in Section 4.

N 2 3 4 5 6 7 8
M 5 10 16 26 35 48 71

5. Definition of the Inverse Problem for Source Characterisation

The inverse problem can be defined as the process of inferring causes, conditioned on knowledge of
the effects, as opposed to the forward or direct problem, allowing to determine the effects knowing the
causes. An example of an inverse problem, which will be of main concern in this paper, is the one of
parameter identification [13]. The corresponding forward problem consists of determining the output of
a system knowing the system’s parameters. A practical difficulty in the study of an inverse problem is
that it is often ill-posed [14], meaning that an inverse transformation of the direct model may not exist,
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may not be unique, and might be unstable. Amongst the most general and popular techniques are least
squares approach and regularisation techniques. The key is to reformulate the inverse problem as an
optimisation problem, usually consisting of minimising a functional error between actual measurements
and predicted ones obtained by resolving the direct problem. Probabilistic approaches can also be used to
address the problem of parameter identification. A primary advantage of probabilistic methods is that the
solution takes on the form of a probability distribution rather than a point solution, optimal in terms of a
given criterion [14].

Referring to Equation (12) where A is a constant vector, we can define an operator H, such that:

Ym = H(P) (15)

and introduce the inverse source characterisation problem as finding:

P u H−1(Ym) (16)

The exact solution for Equation (16) is usually not tractable. This is primarily due to the existence of
model and measurement noises. In other words, the forward model is not perfectly known. Furthermore,
due to the commutative property of the addition in Equation (4), the solution is not unique; for instance,
in the case of two land mines, i.e., N = 2, if P1 = [x̃s1 , ỹs1 , Q̃1, x̃s2 , ỹs2 , Q̃2]T is a solution to the
inverse problem, then P2 = [x̃s2 , ỹs2 , Q̃2, x̃s1 , ỹs1 , Q̃1]T is also a solution. In general, any parameter
vector obtained by only permuting the labels of the sources in a solution vector is also a solution. The
estimation problem is thus over a set of land mines.

5.1. Bayesian Inference for Solving the Inverse Problem

In this section, the inverse problem is solved within a probabilistic Bayesian framework. Based on
Equation (12), the problem consists in determining P having the vector of concentration measurements
Ym and some prior knowledge gathered in the constant vector A. In a Bayesian framework, this refers
to finding the posterior distribution p(P|Ym,A). According to Bayes theorem:

p(P|Ym,A) =
p(Ym|P,A)p(P|A)

p(Ym|A)
(17)

where p(Ym|P,A) is the measurement likelihood, p(P|A) is the prior distribution and p(Ym|A) is the
evidence. The evidence measures the suitability of the model (depending on the number of sources) to
the available data [14]. The evidence values are calculated and compared for different models in order
to determine the most probable number of sources. The higher the evidence, the better the model can
predict the data. Since in our method, the number of sources is determined a priori as described in
Section 4, the evidence is considered as a normalisation factor.

Let us consider a bounded domain denoted as Ω for the land mine locations, i.e., the sources lie within
a bounded region [xmin xmax]× [ymin ymax], and the emission rates are also bounded within lower and
upper bounds, Qi ∈ [Qmin Qmax], i = 1, . . . N . Choosing a non informative distribution for the prior,
i.e., a uniform pdf, we can write:

p(P|Ym,A) ∝ 1P∈Ω p(Ym|P,A) (18)
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where 1P∈Ω denotes the indicator function taking on a value 1 if P ∈ Ω and 0 if not. Additionally, if the
measurement and model noises are assumed to be white and Gaussian, i.e.:

emj ∼ N(0, σ2
m,j),

eej ∼ N(0, σ2
e,j), j = 1, . . . ,M

then, it can be shown that:

p(Ym|P,A) ∝ exp

[
−1

2

M∑
j=1

(Cj − Ce
j (P))2

σ2
m,j + σ2

e,j

]
(19)

Sampling directly from this distribution is difficult, and approximate numerical techniques must be
used. A widely used approach for estimating the properties of the posterior distribution given in (18) is to
perform Markov chain Monte Carlo (MCMC) sampling [32]. In MCMC algorithms, samples are drawn
from the target distribution in the form of a Markov chain where each sample depends on the previous
one in the chain. The earliest MCMC algorithm is the random walk Metropolis (RWM) [33]. Its basic
principle is to sample a candidate value from a proposal distribution depending on the current position of
the chain. The candidate is then accepted or rejected according to the Metropolis acceptance probability
as will be defined using the following example. Consider sampling from a pdf π(.). If xi−1 denotes the
current state of the Markov chain, a trial state z is sampled according to z = xi−1 + u, where u ∼
N(0,Σ), for instance, and Σ denotes a covariance matrix. The candidate z is accepted or rejected
according to the Metropolis acceptance probability a given by:

a(xi−1, z) =

{
min

[
π(z)

π(xi−1)
, 1
]
if π(xi−1) > 0

1 if π(xi−1) = 0.

If the candidate is accepted, the chain moves to xi = z; otherwise, the chain remains at xi = xi−1.
The procedure only requires the choice of a proposal function f(.).

While the early RWM algorithm requires the proposal distribution f to be symmetric, i.e.,
f(xi−1, z) = f(z, xi−1), the Metropolis–Hastings (MH) algorithm [33] generalises the approach to
non-symmetric proposals. Obviously, the choice of the proposal distribution is crucial to the algorithm
convergence. Thus, several procedures were proposed in order to improve the algorithm’s convergence.
These include, for instance, the adaptive Metropolis algorithm [34], the differential evolution Markov
chain Monte Carlo (DE-MC) [35] and the differential evolution adaptive Metropolis (DREAM)
algorithm [36]. Another class of MCMC sampling techniques is the slice sampling technique [37] and
will be used in this paper in order to draw samples from the posterior distribution given in Equation (18).

The slice sampling algorithm relies on the observation that sampling from a probability distribution,
e.g., π(.) in the case of a univariate distribution, can be done by drawing samples uniformly from the
region under the plot of π(.) [37]. It has an advantage over other MCMC methods, such as the Gibbs
sampler and the RWM, in that the magnitude of the changes made to move from one element to the next
in the chain is chosen adaptively.
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Figure 5. Slice sampling. Adapted from [37].

Figure 5 illustrates the operations of the slice sampling algorithm in the case of a univariate target
distribution π(.). The procedure requires only the knowledge of a function f(.) that is proportional to
π(.). It operates iteratively in three steps:

(a) Starting from the current position of the chain, denoted as x0, and such that f(x0) > 0, draw a value
y uniformly from the interval [0, f(x0)]. The horizontal slice defined by y consists of the values of
x for which f(x) > y (see Figure 5a).

(b) Find an interval around x0 comprising the majority, or the totality, of the slice defined in (a). Several
methods can be used at this step. The approach adopted here (and illustrated in Figure 5b) is called
“stepping-out”. It requires fixing, a priori, an interval widthW and operates as follows: first, set an
interval of width W randomly around x0. Then iteratively expand this interval in steps of size W
and stop when both interval ends become outside the slice {x, f(x) > y}.

(c) Draw a value x1 from the part of the slice that is within the interval determined in (b). The technique
used here is referred to as “shrinkage” (see Figure 5c) because it picks points uniformly from the
determined interval, shrinks this last using points that are outside the slice, and stops whenever
finding a point inside it.

Slice sampling can also be used to sample from multivariate distributions. This can be done by
updating each variable in turn. It is useful though to note that slice sampling methods, which update all
variables of a multivariate distribution simultaneously, do exist [37].

5.2. The Least Squares Technique for Source Characterisation

In this section, we formulate the source characterisation problem as an optimisation problem and
propose to solve it using the least squares (LS) approach. LS is a popular method for solving the inverse
problems [13]; it seeks an optimal point solution usually by minimising a quadratic error or cost function
between actual measurements and synthetic ones estimated using the forward model.
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Referring to Equation (11), we propose to solve the inverse source characterisation problem by
minimising over P, the vector of unknown parameters, the functional:

J = (Ym − Ye(P))T (Ym − Ye(P)) (20)

The solution is thus given by:
Popt = argmin

P
J (21)

Despite the wide applicability, the ease of use and ease of understanding associated with the least
squares technique, this method presents a well-known problem: it is sensitive to the convexity of the cost
function [30] and can converge to local optima, thus diverging from the true solution.

Figure 6. Functional to be minimised in the logarithmic scale.

Figure 6 illustrates the variation of the criterion J in terms of Source 3 coordinates for the scenario
shown in Figure 3. The values of J are calculated as a function of (xs3 , ys3) after fixing the remaining
unknown parameters, i.e., [xs1 , ys1 , xs2 , ys2 , xs4 , ys4 , Q1, Q2, Q3, Q4]T , to their true values. Note that the
functional J is not convex and presents local maxima at the sensors’ positions. This will cause the
convergence of the least squares search algorithm to a local minimum, as we show in the next section,
where we test the least squares technique on a simulated scenario and compare its performance to the
probabilistic Bayesian approach introduced above.

6. Simulation Results

In this section, we consider the problem of the localisation of N = 4 land mines by randomly
deploying M = 40 sensors in a 20 × 20 m2 planar region according to the scenario shown in Figure 3.
Model and measurement noises are considered to be white Gaussian with an identical standard deviation
equal to 0.001 µg/m3. We fixed the wind velocity to V = 5 cm/s and the air diffusion coefficient to
K = 25 m2/s, as in [11].
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First, a matrix of concentration measurements is obtained as described in Section 4 and a principal
component analysis is conducted. The largest eigenvalues are λ1 = 0.1116× 10−3, λ2 = 0.0751× 10−3,
λ3 = 0.0345× 10−3, λ4 = 0.0159× 10−3; their number is equal to four, which is also the number of the
sources. The sum of the remaining eigenvalues is 4.1672× 10−8. Thus, we were able in the first step to
successfully determine the number of sources in the considered region. The next step is to localise the
sources given concentration measurements.

Table 2 shows the true values of the unknown parameters to be determined; these are the sources
positions and emission rates.

Table 2. True parameters.

i (xsi , ysi) Qi [µg/s]

1 (6.99, 2.18) 8.01

2 (1.73, 12.27) 5.38

3 (16.52, 6.45) 5.87

4 (14.11, 13.01) 9.39

6.1. Probabilistic Bayesian Approach

The probabilistic Bayesian approach as described in Section 5.1 is tested first. The slice sampling
scheme was used in order to draw Np = 4, 000 particles/samples from the posterior distribution defined
in Section 5.

Figures 7 and 8 show, respectively, the variation of the log-likelihood of the samples and the evolution
of the Markov chain through the iterations. The dimension of the parameter vector is 12.

Figure 7. Variation of the log-likelihood in the Markov chain.
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Figure 8. Evolution of the Markov chain.
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Figure 9. Sample empirical distributions.
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Note on the graphs that there is a transition phase (where the samples likelihood is low) before the
chain converges to the posterior distribution of interest. This phase is referred to as the burn-in. In theory,
the effect of the initial values tends to zero if the Markov chain is run for an infinite amount of time. In
practice, however, an infinite number of samples cannot be drawn, so it is generally assumed that only
after a certain number of iterations, the chain reaches the target distribution. Thus, in order to minimise
the effect of initial values on the posterior inference, an initial portion, Nburn, of a Markov chain samples
is discarded and the remaining samples are used to estimate the properties of the posterior distribution.
The number Nburn of the iterations that will be discarded is called the burn-in number.

Figure 9 shows the normalised histograms of the samples corresponding to the different parameters.
The empirical distributions of the parameters are also estimated (using kernel density estimation KDE)
and shown in red on the same graphs. Note that the empirical pdfs are centred near the true values of
the parameters.

Figure 10 illustrates the true and the estimated positions, which were determined using MCMC slice
sampling algorithm in order to solve the Bayesian inference problem. The positions are estimated by
computing the mean value. The simulations were carried out using MATLAB on an Intel Core i7-3520M
processor (2.90 GHz, 4-MB Cache, Dual-core). The computational time for this approach is 20.35 s.
Table 3 shows the estimated parameters using the slice sampling technique.

Figure 10. Estimated positions using Bayesian inference and MCMC sampling.

Table 3. Estimated parameters using the slice sampling.

i (xsi, ysi) Qi [µg/s]

1 (7.06, 2.15) 8.02

2 (1.68, 12.03) 5.44

3 (16.27, 6.27) 5.11

4 (14.10, 13.04) 9.95
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6.2. Convergence Diagnostic

Two common critical issues when using an MCMC sampler in order to estimate the properties of a
pdf are, first, how to decide when to stop sampling and use the available samples in order to estimate
the characteristics of the posterior distribution of interest, and second, how to determine the number of
iterations that correspond to the burn-in and should be discarded [38].

While it is difficult to predict the number of iterations Niter after which it is safe to stop sampling and
the number Nburn of initial samples to be discarded, diagnostic tools can be applied to the output of the
MCMC samplers in order to address the convergence problem.

In order to decide if the resulting samples accurately estimate the posterior distribution of interest, we
apply in this section a convergence diagnostic to the chain outputted by our sampler. We use the StatLib
implementation of the Raftery and Lewis diagnostic (1992) [38]. This test requires as inputs a posterior
quantile of interest q, an acceptable tolerance r for q and a probability s of being within this tolerance. It
outputs, amongst other parameters, the number of iterationsNiter and burn-insNburn necessary to satisfy
the specified conditions. The diagnostic was run on the resultant Markov chain for q = 0.5, r = 0.01 and
s = 0.95, which means we want to measure the 0.5 quantile with an accuracy of 0.01. The output was a
total number of iterations Niter = 2, 655 to be run, of which the first Nburn = 10 samples correspond to
the burn-in and should be discarded. Thus, we are 95% sure that the true quantile is within ±0.01 from
the corresponding estimated value.

6.3. Least Squares Technique

Next, the probabilistic Bayesian approach is compared to the generic least squares optimisation
approach.

Looking back at Figure 6, the cost function to be minimised is not convex and has multiple local
minima. Recall that this figure illustrates the variation of the functional J given by Equation (20) as
a function of Source 3 coordinates after fixing the remaining parameters to their exact values. A least
squares search algorithm might fall into some local minimum and, thus, diverge from the true global
minimum located near Source 3’s true position. Figure 11 shows the solution provided by the least
squares technique when the vector of parameters is randomly initialised. The algorithm stopped at a
local minimum, so the solution provided diverges from the true parameters.

The choice of the initial point for the search algorithm is crucial. If this start point is situated in
the restrained convex region around the global minimum (see Figure 6), the least squares approach is
likely to converge to the true solution. In order to overcome this problem, we choose the start position
parameters to be the positions of the three sensors indicating the greatest concentration measurements.
These sensors are likely to be the closest to the sources.

Figure 12 illustrates the optimal land mine positions, resulting in minimising the functional J given
in Equation (20). The start position parameters for the search algorithm are chosen to be the positions
of the four sensors, indicating the maximal concentration measurements. The least squares technique
provides in this case an accurate estimation of the unknown parameters.
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Figure 11. Solution provided by the least squares approach for randomly chosen start parameters.

Figure 12. Optimal solution provided by the least squares approach.

Table 4 groups the optimal results obtained using the least squares technique. The computational time
is 6.34 s.

Table 4. Estimated parameters using the Least Squares search algorithm.

i (xsi, ysi) Qi [µg/s]

1 (6.99, 2.22) 8.53

2 (1.78, 12.49) 5.06

3 (16.54, 6.54) 5.77

4 (14.26, 13.01) 8.98

Table 5 groups the mean squared errors on sources positions and emission rates for both approaches.
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Table 5. Mean squared errors on positions and emission rates.

Approach
Error on

Position Emission Rate

Slice sampling 0.040 0.223

Least Squares 0.021 0.137

Both the least squares technique and the Bayesian probabilistic approach offer a similar performance
provided an adequate choice of the start point for the optimisation search algorithm. The least squares
approach also requires less computational time. However, it is important to note that, as the sensors
are randomly deployed, even the ones with the greatest concentration measurements might not always
be close enough to the sources, so as to find the global minimum. This optimisation technique is very
sensitive to the choice of the initial point. On the other side, the probabilistic Bayesian approach together
with an efficient sampling algorithm turns out to be more robust and less sensitive to the choice of the
initial sample of the Markov chain.

7. Conclusions

While previous work on land mine localisation using sensor networks solves the problem of
locating a single source, this paper considers the problem of locating several land mines. It also
deals with the more difficult scenario of an unknown number of sources to be characterised. First,
the PCA technique is used in order to determine the number of land mines. Second, the inverse
problem consisting of locating and estimating the emission rates of the land mines is solved in a
probabilistic Bayesian framework. In our simulations, we compare the results obtained using this
approach with those provided by the least squares optimisation technique. Both methods localise
successfully the sources and provide an accurate estimate of the emission rates of multiple land mines.
The main advantage of the probabilistic technique is that, using an efficient sampling scheme, it
turned out to be less sensitive to the choice of the initial point of the chain, in contrast with the
optimisation technique for which the choice of the start point of the search algorithm is crucial.
The probabilistic method also makes it possible to quantify uncertainty on the estimated positions,
since a pdf of the unknown parameters is obtained, rather than a single optimal point solution.
For future work, a model considering a three-dimensional position for the sources and sensors can
be employed. Furthermore, a recent article [39] presents a hierarchical model to find the ground-truth
source bases using Nonnegative Matrix Factorisation (NMF) [40]. Since in our approach, PCA was only
used to determine the number of sources, the use of source separation techniques (amongst which are
PCA and NMF) for source localisation forms an interesting subject of research.
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