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Abstract: This paper focuses on the detailed design issues of a peculiar quadrature reduction 

method named system stiffness matrix diagonalization, whose key technology is the design 

and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a 

complete design and application case was presented. The compensation principle was 

described first. In the mechanical design, four types of basic structure units were presented 

to obtain the basic compensation function. A novel layout design was proposed to eliminate 

the additional disturbing static forces and torques. Parameter optimization was carried out to 

maximize the available compensation capability in a limited layout area. Two types of 

voltage loading methods were presented. Their influences on the sense mode dynamics were 

analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope 

developed in our laboratory. The theoretical compensation capability of a quadrature 

equivalent angular rate no more than 412 °/s was designed. In experiments, an actual 

quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual 

compensation voltages were a little larger than the theoretical ones. The correctness of the 

design and the theoretical analyses was verified. They can be commonly used in planar linear 

vibratory silicon micro-gyroscopes for quadrature compensation purpose.  

  

OPEN ACCESS



Sensors 2014, 14 20420 

 

 

Keywords: MEMS; silicon micro-gyroscope; quadrature compensation; mechanical design  

 

1. Introduction 

Silicon micro-gyroscopes have achieved rapid development in the past several decades. In contrast 

with their traditional counterparts, silicon micro-gyroscopes have the advantages of small size, reduced 

power consumption and batch fabrication, etc. They are nowadays widely used in commercial and 

military fields, such as consumer electronics, automobile industry, aerospace navigation, weapons and 

military supplies, etc. 
The silicon micro-gyroscope is a kind of Coriolis vibratory gyroscope. It commonly works based on 

the Coriolis-effect-induced energy transmission between two orthogonal vibration modes, namely drive 

mode and sense mode. Generally, a Coriolis mass is actuated into resonant vibration with constant 

amplitude in the drive direction. When an angular rate is applied, a Coriolis-effect-induced Coriolis force 

will appear in the sense direction, which is proportional to the drive-mode velocity as well as the value 

of the input angular rate. Actuated by this Coriolis force, a Coriolis vibration response exists in the sense 

direction. Therefore, through the detection of the sense-mode position, the value of the input angular 

rate can be obtained.  

However, due to non-ideal factors such as fabrication imperfections, other coupling mechanisms also 

exist between these two vibration modes, introducing bias into the gyroscope output. The commonly 

seen coupling mechanisms are elastic coupling, viscous coupling and electrostatic coupling, among 

which elastic coupling is the largest in magnitude most of the time. Elastic coupling is mainly caused by 

the anisoelasticity either existing in the suspension elements themselves or introduced by fabrication 

imperfections, that is, an off-diagonal coupling stiffness often exists in the mechanical stiffness matrix 

of the micro-gyroscope structure. Because of this mechanical coupling stiffness, a quadrature force will 

appear in the sense direction, which is proportional to the drive-mode position. Therefore, quadrature 

vibration response also exists in the sense direction and will mix into the gyroscope output if  

it is not thoroughly distinguished from the Coriolis vibration response. In comparison with the  

amplitude of the Coriolis response, that of the quadrature response is often considerably large. Hence, 

quadrature reduction has become one of the primary issues in the design of high-performance silicon 

micro-gyroscopes.  

So far various quadrature reduction methods have been reported [1,2]. They can be classified into two 

categories: signal nulling and movement correction. In the signal nulling category, there are mainly two 

specific methods:  

(1) Synchronous demodulation. During signal processing, the Coriolis signal is distinguished  

from the quadrature signal through synchronous demodulation according to their 90°  

phase difference.  

(2) Targeted signal injection. A compensation signal with the same amplitude but opposite  

phase is generated and injected into the input of the detection circuits to counteract the 

quadrature signal.  
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In the movement correction category, there are mainly three specific methods:  

(1) Mechanical stiffness matrix diagonalization. The off-diagonal entry of the mechanical stiffness 

matrix is eradicated by post-fabrication trimming, e.g., laser trimming, on each individual 

microstructure. Once the mechanical stiffness matrix becomes diagonal, the quadrature 

vibration response no longer exists.  

(2) System stiffness matrix diagonalization. An electrostatic stiffness matrix is constructed with 

purposefully designed quadrature compensation patterns and properly applied DC voltages. 

The system stiffness matrix is then the sum of the naturally existed mechanical stiffness matrix 

and the artificially introduced electrostatic stiffness matrix. When the off-diagonal entry of the 

electrostatic stiffness matrix has the same value but opposite sign with that of the mechanical 

stiffness matrix, the system stiffness matrix would be diagonalized and the quadrature vibration 

response no longer exists.  

(3) Force feedback balancing. A balancing force that has the same value but opposite phase with 

the quadrature force is generated by the closed-loop force feedback circuits to cancel out the 

quadrature vibration response.  

Obviously, among these quadrature reduction methods, the movement correction category is superior 

to the signal nulling category because it eliminates the quadrature vibration response at the source. 

Furthermore, among the three specific movement correction methods, system stiffness matrix 

diagonalization is superior to the other two. Compared with mechanical stiffness matrix diagonalization, 

it costs rather less and is much easier to control. Compared with force feedback balancing, it extracts the 

frequency and phase information mechanically from the drive-mode position, hence it avoids the need 

for precise frequency and phase control.  

The core idea of system stiffness matrix diagonalization is the modification of the system stiffness 

distribution, that is, a proper distribution of electrostatic stiffness is introduced to balance the non-ideal 

distribution of mechanical stiffness. This method has already been employed in vibrating ring or cup 

gyroscopes for a long time. In 1996, Clark first introduced its application in surface silicon  

micro-gyroscopes [3]. However, its application in bulk silicon micro-gyroscopes has not been reported 

until the past several years [4−7]. Though several successful application examples have been reported, 

the concrete design issues have not been discussed in detail yet. In this paper, we focus on the detailed 

design issues of this method.  

The rest of this paper is organized as follows: Section 2 describes the compensation principle of 

system stiffness matrix diagonalization based on the introduction of the arising mechanism and the 

characteristics of the quadrature vibration response. Section 3 discusses the mechanical design issues of 

system stiffness matrix diagonalization, including the classification of the basic structural units, the 

layout design of quadrature compensating patterns and the optimization of key structural parameters. 

Section 4 discusses the voltage loading methods of system stiffness matrix diagonalization. Two 

methods were proposed and their influences on the sense-mode dynamics were analyzed. Section 5 

presents an actual application of the design theories on a dual-mass silicon micro-gyroscope developed 

in our laboratory. Section 6 provides the experimental results on a packaged silicon micro-gyroscope 

prototype. The correctness of the design and the theoretical analyses was verified. Section 7 concludes 

the whole paper.   
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2. Compensation Principle 

Quadrature vibration response is mainly caused by the off-diagonal entry of the mechanical stiffness 

matrix [2]. Considering this mechanical coupling stiffness, the dynamic equations of a linear vibratory 

silicon micro-gyroscope can be expressed as:  

00

00
x x xyc d

y yx yc c

c k km Fx x x
c k km Fy y y

           
+ + =           

           

 
 

 
(1) 

where x, y represent the mass position in drive and sense direction; mc represents the Coriolis mass; cx, 

cy represent the damping along X-axis and Y-axis; kx, ky represent the stiffness along X-axis and  

Y-axis; kxy and kyx are the mechanical coupling stiffness between drive and sense directions which bring 

about the quadrature vibration response; Fd is the driving force and Fc is the Coriolis force.  

Considering the common seen condition that the natural frequencies of the drive mode and the sense 

mode are mismatched to ensure a certain open-loop bandwidth, the mass position in sense direction 

would be much smaller than that in drive direction, i.e., y << x. Hence, the influence of kxy and y on the 

solution of x was ignored in the following analysis. We defined the quadrature force as Fq. Then the 

dynamic equation in drive direction and that in sense direction can be expressed as:  

c x x dm x c x k x F+ + ≈  (2) 

c y y c qm y c y k y F F+ + = + 
 (3) 

The Coriolis force Fc and the quadrature force Fq can be expressed as:  

2 ,c c z q yxF m x F k x= − Ω = −
 (4) 

where Ωz is the value of the input angular rate about Z-axis. The Coriolis mass is usually actuated into 

resonant vibration with constant amplitude in drive direction. Therefore, the driving force Fd and the 

corresponding solution of drive-mode position x can be expressed as:  

( ) ( )0 sin , sin 90d d d dF F t x A tω ω= = − °
 (5) 

where F0 is the amplitude of the driving force, ωd is the natural frequency of the drive mode and Ad is 

the amplitude of the drive-mode position. In Equation (4), it is obvious that Coriolis force Fc is 

proportional to the drive-mode velocity and quadrature force Fq is proportional to the drive-mode 

position. With the same frequency they have a 90° phase difference with each other. With Equation (5), 

they can be further expressed as:  

( ) ( )2 sin , sin 90c c z d d d q yx d dF m A t F k A tω ω ω= − Ω = − − °
 (6) 

We defined the sense-mode position caused by the Coriolis force Fc as Coriolis vibration response yc, 

and the sense-mode position caused by the quadrature force Fq as quadrature vibration response yq. With 

Equations (3) and (6), the solutions of them could be obtained as:  

( )
( )

( )
( )

2 2
2 22 2 2 2
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(7) 
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where ωs is the natural frequency of the sense mode, Qs is the quality factor of the sense mode and φ is 

the phase shift, which can be expressed as:  

2 2

/
arctan s d s

s d

Qω ωφ
ω ω

= −
−  

(8) 

From Equations (6) and (7), it can be found that Coriolis vibration response yc and quadrature 

vibration response yq have the same relative relationship as that which exists between Coriolis force Fc 

and quadrature force Fq, that is, yc and yq still have the same frequency and a 90° phase difference with 

each other. It is obvious that though yc and yq are both affected by the quality factor and the natural 

frequencies, the relative relationship between them is independent of the sense-mode dynamics. 

Therefore, the quadrature equivalent angular rate Ωq of the quadrature vibration response yq can be 

expressed as:  

/ 2
q yx

q
c z c d

y k
y m ω

Ω = =
Ω

 
(9) 

The key technology of system stiffness matrix diagonalization is the proper construction of an 

electrostatic stiffness matrix. With KM, KE and KS denoting the mechanical, electrostatic and system 

stiffness matrix respectively, the compensation principle of system stiffness matrix diagonalization can 

be described as:  

0

0

SM E
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  KK K

 

(10) 

where kex, key represent the electrostatic stiffness along X-axis and Y-axis respectively; kexy, keyx are the 

electrostatic coupling stiffness between the drive and sense directions contributing to the quadrature 

compensation. When the electrostatic coupling stiffness has the same value but opposite sign as the 

mechanical coupling stiffness, the system stiffness matrix would be diagonalized and quadrature 

vibration response no longer exists.  

The electrostatic stiffness matrix could be electromechanically provided by purposefully designed 

quadrature compensation patterns and properly applied DC voltages. A typical example of quadrature 

compensation patterns used in surface silicon micro-gyroscopes are shown in Figure 1. It consists of n 

sets of parallel plate capacitors. DC voltages with different values, V1 and V2, are applied on Pad-1 and 

Pad-2 respectively. Considering the common seen condition that the mass position in sense direction is 

much smaller than the initial gap of the parallel plate capacitors, i.e., y << d0, the electrostatic stiffness 

matrix provided by this quadrature compensation patterns and the DC voltages can be expressed as:  

( )

( ) ( )

2 20 0
1 22

0

2 2 2 20 0 0 0 0
1 2 1 22 3

0 0

0

2
ex exy

E
eyx ey

n h V V
k k d
k k n h n h lV V V V

d d

ε

ε ε

 −    = =     − − + 
 

K

 

(11) 

where ε0 is the permittivity of vacuum, h0 is the thickness of the structure and l0 is the initial overlap 

length of the parallel plate capacitors.  
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Figure 1. An example of quadrature compensation patterns used in surface silicon  

micro-gyroscopes.  

 

It can be seen from Equation (11) that an electrostatic coupling stiffness is provided, whose value and 

sign can be adjusted by the capacitor parameters and the DC voltages. For an actual silicon  

micro-gyroscope, through measuring the amplitude and phase of the quadrature vibration response, and 

with the help of Equation (9), the value and sign of the mechanical coupling stiffness could be obtained. 

With the quadrature compensation patterns and the regulation of the DC voltages, the electrostatic 

coupling stiffness can be made to have the same value but opposite sign with the mechanical coupling 

stiffness. Once this condition is met, system stiffness matrix diagonalization is realized and quadrature 

vibration response no longer exists.  

3. Design and Analysis of Quadrature Compensation Patterns 

The quadrature compensation patterns illustrated in Figure 1 are more suitable in surface silicon 

micro-gyroscopes. In this type of quadrature compensation patterns, the anchoring area of Pad-2 is 

continuous but that of Pad-1 is discrete, that is, each Pad-1 needs an individual anchoring area. That 

would be rather area consuming in bulk silicon micro-fabrication because each anchoring area should 

be large enough to ensure the bonding reliability. Hence, the number of the capacitor sets and 

consequently the compensation capability would be limited. Therefore, for quadrature compensation 

patterns in bulk silicon micro-gyroscopes, comb capacitors are more commonly used than parallel plate 

capacitors. With the help of an assistant larger gap which we defined as p times larger than the initial 

gap d0, i.e., pd0, the anchoring area of all pads would be continuous. Though the electrostatic coupling 

stiffness provided by a single set of comb capacitors is a little smaller than that of parallel plate 

capacitors, the available number of the comb capacitor sets would be much more than that of the parallel 

plate capacitor sets in a limited layout area. Therefore, in bulk silicon micro-gyroscopes, quadrature 

compensation patterns which consist of comb capacitors can provide a better overall compensation 

capability than those consist of parallel plate capacitors. In the following discussion, we focus on the 

design issues of quadrature compensation patterns which consist of comb capacitors in bulk silicon 

micro-gyroscopes.  
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3.1. Basic Structural Units  

According to the relative position between the Coriolis mass and the stationary pads, there are four 

types of basic structural units in the quadrature compensation patterns. The structural schematics of them 

along with the electrostatic forces they generated in drive and sense directions are shown in Figure 2. 

Vdc is the applied DC voltage. For the convenience of analysis, we defined three structural constants, α, 

β and γ, as follows:  

0 0 0 0 0 0
2 2 3 3

0 0 0

1 1 1
1 , 1 , 1

2 2

h h h
d p d p d p

ε ε εα β γ     
= + = − = +     

       
(12) 

Identified by four different subscripts, A, B, C and D, the electrostatic forces and electrostatic stiffness 

matrixes provided by the four types of basic structural units can be expressed as:  

( )
22
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F K (16) 

where FE denotes the electrostatic force vector, Fex, Fey represent the electrostatic force in drive and in 

sense direction respectively, n is the number of the comb capacitor sets, l0 is the initial overlap length of 

the combs and x is the drive-mode position of the Coriolis mass.  

Figure 2. (a) Basic structural unit Type-A; (b) Basic structural unit Type-B; (c) Basic 

structural unit Type-C; (d) Basic structural unit Type-D.  

(a) (b) 
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Figure 2. Cont. 

(c) (d) 

From Equations (13)−(16), conclusions can be made as follows: in the drive direction, the electrostatic 

forces are all static forces independent of the overlap length. In the sense direction, each electrostatic 

force can be seen as the combination of a static force and a dynamic force. The static force is proportional 

to the initial overlap length l0 and the dynamic force is proportional to the drive-mode position x. The 

orientations of the static forces are determined by the relative position between the Coriolis mass and 

the stationary pads. They are always attractive and tend to increase the capacitor size. The needed 

electrostatic coupling stiffness is provided by the dynamic forces. In the four types of basic structural 

units, Type-A and Type-D generate dynamic forces with a negative orientation in sense direction, 

providing positive electrostatic coupling stiffness. Type-B and Type-C generate dynamic forces with a 

positive orientation in sense direction, providing negative electrostatic coupling stiffness.  

For an actual silicon micro-gyroscope, the sign of the mechanical coupling stiffness is uncertain due 

to the uncertainty of the fabrication imperfections. Therefore, to ensure the feasibility of quadrature 

compensation, at least two types of basic structural units providing electrostatic coupling stiffness with 

opposite signs are needed in the mechanical design of quadrature compensation patterns.  

3.2. Layout Design  

As discussed previously, among the electrostatic forces generated by the basic structural units, besides 

the dynamic forces which provide the needed electrostatic coupling stiffness, additional static forces also 

exist in the drive and sense directions. Moreover, with a lever arm between different basic structural 

units distributed at different places of the planar micro-gyroscope structure, additional static torques may 

also exist. These additional static forces and torques would cause a disturbance on the movement of the 

Coriolis mass. They can be cancelled out by a proper arrangement of the basic structural units on the 

available layout area of the Coriolis mass, i.e., the layout design of quadrature compensation patterns.  
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Figure 3. A novel layout design of quadrature compensation patterns.  

 

Figure 4. Force and torque distributions of the layout design. 
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A novel layout design we propose to cancel out the additional static forces and torques is shown in 

Figure 3. The force and torque distributions of this layout design are shown in Figure 4. As shown in 

Figure 3, nmd sets of basic structural units, including Type-A, Type-B, Type-C and Type-D, are designed 

in the middle part of the Coriolis mass. All the moveable combs in the four types of basic structural units 

are axisymmetric. Similarly, nsd sets of basic structural units are designed at the two side parts of the 

Coriolis mass with all the moveable combs axisymmetric. The basic structural units Type-A and  

Type-D providing positive electrostatic coupling stiffness are applied with a DC voltage V1. The basic 

structural units Type-B and Type-C providing negative electrostatic coupling stiffness are applied with 

another DC voltage V2.  

As shown in Figure 4, in the drive direction, the electrostatic forces generated by Type-A and  

Type-D cancel each other out, either in the middle part or at the side parts of the Coriolis mass. Likewise, 

the electrostatic forces generated by Type-B and Type-C in drive direction cancel each other out, either 

in the middle part or at the side parts of the Coriolis mass.  

In the sense direction, as discussed previously, each electrostatic force can be seen as the combination 

of a static force and a dynamic force. In our analyses, the forces with the same action line in sense 

direction were added up to get a resultant force. We use the subscripts “sta” and “dyn” to identify the 

static and dynamic forces, subscripts “md” and “sd” to identify the locations of the basic structural units. 

As shown in Figure 4, the four static resultant forces can be expressed as:  

( ) ( )2 2 2 2
_ AB 0 1 2 _ CD 0 1 2,sta md md sta md mdF n l V V F n l V Vβ β= + − = − −

 (17) 

( ) ( )2 2 2 2
_ AB 0 1 2 _ CD 0 1 2,sta sd sd sta sd sdF n l V V F n l V Vβ β= + − = − −

 (18) 

It is obvious that the sum of Fsta_mdAB and Fsta_mdCD are zero and that of Fsta_sdAB and Fsta_sdCD are also 

zero. Hence there is no net static force. However, with a lever arm Lmd exists between Fsta_mdAB and 

Fsta_mdCD, a static torque Mmd turns up. Similarly, with a lever arm Lsd exists between Fsta_sdAB and 

Fsta_sdCD, a static torque Msd turns up. These two static torques can be expressed as:  

( ) ( )2 2 2 2
0 1 2 0 1 2,md md md sd sd sdM n l V V L M n l V V Lβ β   = + − ⋅ = − − ⋅     (19) 

Aiming to eliminating these static torques, in our layout design, the number of the capacitor sets and 

the lever arms were designed to follow the following rule:  

md sd

sd md

n L
n L

=
 

(20) 

In this condition, Mmd and Msd would cancel out with each other. Hence there is no net static torque 

as well. With Equations (19) and (20), the sum of Mmd and Msd can be explained as follows:  

( ) ( )2 2
0 1 2 0md sd md md sd sdM M l V V n L n Lβ + = + − ⋅ − =   (21) 

In conclusion, with the proposed layout design of quadrature compensation patterns, the additional 

static forces and torques generated by the basic structural units can be cancelled out. Only the useful 

dynamic forces providing electrostatic coupling stiffness exist in the sense direction.  
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The four dynamic resultant forces in sense direction can be expressed as:  

( ) ( )2 2 2 2
_ AB 1 2 _ CD 1 2,dyn md md dyn md mdF n x V V F n x V Vβ β= − − = − −

 (22)

( ) ( )2 2 2 2
_ AB 1 2 _ CD 1 2,dyn sd sd dyn sd sdF n x V V F n x V Vβ β= − − = − −

 (23)

The net dynamic force Fdyn and the electrostatic coupling stiffness keyx it provides can be  

expressed as:  

( ) ( ) ( ) ( )2 2 2 2
1 2 1 22 , 2dyn md sd eyx md sdF n n x V V k n n V Vβ β= − + − = + + −

 (24) 

With Equation (12), the full expression of the electrostatic coupling stiffness keyx can be  

obtained as:  

( ) ( )2 20 0
1 22 2

0

1
1eyx md sd

hk n n V V
d p
ε  

= + + − − 
   

 

(25)

With Equations (9), (10) and (25), it can be found that for a certain quadrature equivalent angular rate 

Ωq, the needed value of the DC voltages for quadrature compensation would be:  

( )
2 2

1 2

0 0
2 2

0

2

1
1

c d q

md sd

m
V V

hn n
d p

ω
ε

⋅Ω
− =

 + − 
   

(26) 

The needed relative size of V1 and V2 is determined by the phase information of the quadrature 

vibration response.  

In addition, it can be found From Equations (13)−(16) that a negative electrostatic stiffness along  

Y-axis is inevitably introduced as long as the comb capacitors have an initial overlap length. The negative 

electrostatic stiffness key introduced by the novel layout design of quadrature compensation patterns 

shown in Figure 3 can be expressed as:  

( ) ( )( )2 2
0 1 22ey md sdk n n l V Vγ= − + +

 (27) 

With Equation (12), the full expression of the negative electrostatic stiffness key can be obtained as:  

( ) ( )2 20 0 0
1 23 3

0

2 1
1ey md sd

h lk n n V V
d p

ε  
= − + + + 

 
(28) 

3.3. Parameter Optimization  

Obviously, the quadrature compensation capability is determined by the value of the electrostatic 

coupling stiffness provided by the quadrature compensation patterns and the applied DC voltages. 

Considering the power consumption of a silicon micro-gyroscope, the available values of the DC 

voltages are generally limited. Therefore, an optimization of the structural parameters is necessary to 

improve the quadrature compensation capability.  

From Equation (25) it can be seen that the main structural parameters affecting the value of the 

electrostatic coupling stiffness are the thickness h0, the initial gap d0, the set numbers nmd, nsd and the 

gap ratio p (p > 1). Among these parameters, h0 and d0 are often chosen according to the bulk silicon 

micro-fabrication process. Increasing the gap ratio p can increase the electrostatic coupling stiffness 



Sensors 2014, 14 20430 

 

 

provided by a single set of basic structure unit. However, it would decrease the set numbers nmd, nsd at 

the same time. Therefore, a proper design of the gap ratio p is crucial in parameter optimization.  

In our layout design shown in Figure 3, the lever arms Lmd, Lsd and the set numbers nmd, nsd follow 

the design rule shown in Equation (20) and always have the following relationship:  

,md sd md sdL L n n< >  (29) 

We defined the available length of the Coriolis mass along Y-axis which can be used for the design 

of quadrature compensation patterns as Lqy, and the comb width in the basic structural units as w. Then 

the available set numbers would be:  

( ) 0

/ 2
,

2 1
qy md

md sd md
sd

L w Ln n n
w p d L

−
= =

+ +  
(30) 

With Equations (25) and (30), the available electrostatic coupling stiffness can be expressed as:  

( ) ( )2 20 0
1 22 2

0 0

/ 2 1
1 1

2 1
qy md

eyx
sd

L w L hk V V
w p d L d p

ε−    
= + + − −   + +     

(31) 

Therefore, when w, h0 and d0 have constant values, keyx and p would have the following relationship:  

( )
2

0

1
1

2 1eyx
pk

w p d
η

−
∝ =

+ +
 (32) 

where η is a defined variable identifying how large a keyx can be obtained with a certain value of p.  

Considering the bulk silicon micro-fabrication process adopted in our laboratory, the initial gap d0 is 

most commonly chosen as 4 μm. Then with several different values of the comb width w, the influences 

of the gap ratio p on the value of the variable η are shown in Figure 5. In is obvious that with a proper 

design of gap ratio p, the variable η and then the electrostatic coupling stiffness keyx can be maximized 

within a limited available length Lqy. When the comb width w was chosen as 4, 6 and 8 μm respectively, the 

optimal values of p would be 2.36, 2.49 and 2.61.  

Figure 5. (a) Change tendency of η with the variation of p; (b) Change tendency of dη/dp 

with the variation of p.  
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4. Design and Analysis of Voltage Loading Methods 

In the process of quadrature compensation, the regulation of the DC voltages relies on the change 

tendency of the quadrature vibration response yq with the variation of V1 and V2. The main influence of 

quadrature compensation on the dynamic equation in sense direction is the introduction of an 

electrostatic coupling stiffness keyx and a negative electrostatic stiffness key. With no input angular rate, 

the dynamic equation in sense direction during quadrature compensation can be expressed as:  

( ) ( )c y y ey yx eyxm y c y k k y k k x+ + + = − + 
 (33) 

With Equations (5) and (33), the steady-state solution of the quadrature vibration response yq in the 

process of quadrature compensation can be expressed as:  

( ) ( )
2 2

2
2

/
sin 90 , arctan

y ey d

yx eyx d c c s
q d

y ey
y ey y ey d d

d c
c c s

k k
k k A m m Q

y t k kk k k k
mm m Q

ω

ω φ φ
ω ωω

 +
 − +  = − ° + = −  ++ +    − − +            

(34) 

For the convenience of analysis, we named the upper half of the quadrature compensation patterns 

shown in Figure 3 as Group-1. It consists of basic structural units Type-A, Type-D and provides positive 

electrostatic coupling stiffness. Likewise, we named the lower half of the quadrature compensation 

patterns shown in Figure 3 as Group-2. It consists of basic structural units Type-B, Type-C and provides 

negative electrostatic coupling stiffness. Group-1 is applied with DC voltage V1 and Group-2 is applied 

with DC voltage V2. Generally, there are two voltage loading methods:  

(1) Single group loading. The sign of the mechanical coupling stiffness was firstly obtained through 

measuring the phase of the quadrature vibration response. Then according to the needed sign 

of the electrostatic coupling stiffness, positive or negative, only one group of the patterns, 

Group-1 or Group-2, was applied with a DC voltage. Through the regulation of this DC voltage, 

V1 or V2, the amplitude of the quadrature vibration response was reduced to zero. The voltage 

loading group was chosen manually. Hence this method is suitable for off-line compensation.  

(2) Double group loading. Both groups of the patterns, Group-1 and Group-2, were applied with 

DC voltages, V1 and V2. The sign of the electrostatic coupling stiffness, positive or negative, 

was decided by the relative size of V1 and V2. Through the regulation of |V1
2 − V2

2|, the 

amplitude of the quadrature vibration response was reduced to zero. Commonly, these two DC 

voltages were chosen as follows:  

2 2
1 2 1 2, , 4D q D q D qV V V V V V V V V V= + = − − =

 (35) 

where VD is the preset bias voltage and Vq is the regulation voltage. With a constant VD, the regulation 

of Vq can change both the sign and the value of the electrostatic coupling stiffness. Hence this method 

is suitable for on-line compensation.  

When single group loading was employed, assuming that the mechanical coupling stiffness was 

negative, with Equations (24), (27) and (34), the relationship between the amplitude of the quadrature 

vibration response |yq| and the applied DC voltage V1 can be expressed as:  
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(36) 

When double group loading was employed, a constant bias voltage VD was preset. With  

Equations (24), (27), (34) and (35), the relationship between the amplitude of the quadrature vibration 

response |yq| and the regulation voltage Vq can be expressed as:  
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( ) ( ) ( ) ( )2 22 2 2 2
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2 4 /

2 2 2 2
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y md sd D q y md sd D q d
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− + + ⋅
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 − + ⋅ + − + ⋅ +  
 − +        

(37) 

From Equation (36), it can be found that when single group loading was employed, |yq| has a  

non-linear relationship with V1. The natural frequency of the sense mode was directly affected by V1. It 

would change a lot in the process of quadrature compensation. From Equation (37), it can be found that 

when double group loading was employed, if the condition of VD >> Vq was met, the influence of Vq on 

the natural frequency of the sense mode can be alleviated greatly and |yq| would have an approximately 

linear relationship with Vq. Therefore, when a smaller change of the natural frequency or a linear 

relationship between the output and input signals was preferred in the process of quadrature 

compensation, double group loading would be superior to single group loading.  

No matter which voltage loading method was employed, the need quadrature compensation voltage 

is the one that makes the amplitude of the quadrature vibration response |yq| to be zero. When a voltage 

smaller than that one was applied, |yq| would be nonzero and the quadrature vibration response would be 

in the state of undercompensation. When a voltage larger than that one was applied, |yq| would also be 

nonzero and the quadrature vibration response would be in the state of overcompensation.  

5. Application Example 

The proposed design of quadrature compensation patterns shown in Figure 3 was applied on a  

dual-mass silicon micro-gyroscope developed in our laboratory. The structural schematic of this  

dual-mass silicon micro-gyroscope along with three local SEM photos of the basic structural units are 

shown in Figure 6. The structure of the dual-mass silicon micro-gyroscope is centrosymmetric. Either 

the left part or the right part of it can be seen as a full-decoupled single-mass silicon micro-gyroscope. 

The mechanical coupling of these two parts in the drive direction was realized by two folded beams 

designed between the left and right drive mechanisms. In operation, the left and right parts of this  

dual-mass silicon micro-gyroscope would vibrate in anti-phase mode and the sense-mode position signal 

would be obtained differentially. The mechanical structure of this micro-gyroscope was fabricated on 

(100) silicon wafer and a bulk silicon micro-fabrication process named Deep Dry Silicon on Glass 

(DDSOG) was adopted. The procedure of this fabrication process is shown in Figure 7.  
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Figure 6. Structural schematic of the dual-mass silicon micro-gyroscope with quadrature 

compensation patterns.  
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Figure 7. Fabrication process of DDSOG (Deep Dry Silicon on Glass).  

 

The main design parameters are shown in Table 1. With Equation (26) it can be found that when the 

natural frequency of the drive mode is about 4 kHz and the DC voltage applied on a single pattern group 

is no more than 12 V, the compensation of a quadrature equivalent angular rate Ωq no more than 412 °/s 

can be realized theoretically by the proposed design.  
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Table 1. Design parameters of the dual-mass silicon micro-gyroscope with quadrature 

compensation patterns.  

Symbols  Descriptions  Design Values  
mc  Coriolis mass  0.5 × 10−6 Kg  
Lmd  Lever arm of the basic structural units in the middle part  150 μm  
Lsd  Lever arm of the basic structural units at the side parts  1200 μm  
nmd  Number of the basic structural units in the middle part  40  
nsd  Number of the basic structural units at the side parts  5  
h0  Thickness of the structure layer  60 μm  
d0  Initial gap of the comb capacitors  4 μm  
p  Gap ratio of the comb capacitors  2.5  

6. Experimental Results 

The dual-mass silicon micro-gyroscopes were vacuum sealed with ceramic packages after  

micro-fabrication. Off-line quadrature compensation was carried out on a silicon micro-gyroscope 

prototype to verify the correctness of the previous design and analyses.  

In the process of off-line quadrature compensation, the drive circuit worked normally. That is, in the 

drive direction, the two Coriolis mass were actuated into resonant vibration in anti-phase mode with the 

same constant amplitude. With no input angular rate, the drive-mode velocity signal and the  

sense-mode position signal were both extracted. In this condition, the sense-mode position signal was 

dominated by the quadrature vibration response yq. Hence, after measuring the amplitude of the  

sense-mode position, with Equation (9) and the scale factor of the silicon micro-gyroscope, the value of 

the quadrature equivalent angular rate Ωq was estimated. Then with Equation (26), the needed DC 

voltages were calculated theoretically. Meanwhile, through the comparison of the phase information 

between the drive-mode velocity signal and the sense-mode position signal, the sign of the mechanical 

coupling stiffness was obtained. According to the needed sign of the electrostatic coupling stiffness, 

proper pattern groups were chosen to apply the theoretical compensation voltages. After a fine regulation 

of the applied DC voltages, off-line quadrature compensation was realized.  

The experimental results of a silicon micro-gyroscope prototype showing quite large quadrature 

vibration response are presented here. The natural frequency of its drive mode is about 3.8 kHz. The 

value of its quadrature equivalent angular rate Ωq was estimated to be 357 °/s. The sign of its mechanical 

coupling stiffness was found to be negative. Therefore, with Equation (26), the theoretical compensation 

voltages were calculated to be |V1
2 − V2

2| ≈ 118.6 V2. When the voltage loading method of single group 

loading was employed, Group-1 was needed to be applied with a DC voltage of V1 ≈ 10.89 V 

theoretically. When the voltage loading method of double group loading was employed, with a preset 

bias voltage of VD = 10 V applied on both Group-1 and Group-2, the needed regulation voltage would 

be Vq ≈ + 2.97 V theoretically. The two voltage loading methods were both carried out and the 

experimental data of the relationships between the output amplitude of the sense-mode position signal 

and the applied DC voltages were obtained. At the same time, the theoretical curves of the relationships 

between the amplitude of the quadrature vibration response and the applied DC voltages were calculated 

from Equations (36) and (37).  

When the voltage loading method of single group loading was employed, the comparison of the 

experimental data and the theoretical curve was shown in Figure 8. It can be found that the change 
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tendency of the experimental data matched well with that of the theoretical curve. In the process of 

quadrature compensation, the quadrature signal has a non-linear relationship with the compensation 

voltage V1. The actually needed DC voltage for quadrature compensation was V1 ≈ 12 V, which is a 

little larger than the theoretical value.  

Figure 8. Relationships between the quadrature signal and the compensation voltage when 

the method of single group loading was employed.  

 

Figure 9. Relationships between the quadrature signal and the compensation voltage when 

the method of double group loading was employed.  

 

When the voltage loading method of double group loading was employed, the comparison of the 

experimental data and the theoretical curve was shown in Figure 9. It can be found that the change 

tendency of the experimental data also matched well with that of the theoretical curve. In the process of 

quadrature compensation, the quadrature signal has an approximately linear relationship with the 
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compensation voltage Vq. The actually needed DC voltage for quadrature compensation was Vq ≈ 3 V, 

which is also a little larger than the theoretical value.  

The drive-mode velocity and sense-mode position signals before off-line quadrature compensation 

are shown in Figure 10a, in which the upper wave is the drive-mode velocity and the lower one is the 

sense-mode position. The Lissajous figure before off-line quadrature compensation is shown in  

Figure 10b, in which the X-channel input is the drive-mode velocity and the Y-channel input is the  

sense-mode position. The two corresponding figures after off-line quadrature compensation are shown 

in Figure 11a and b.  

Figure 10. (a) The drive-mode velocity signal and the sense-mode position signal before 

quadrature compensation; (b) The Lissajous figure before quadrature compensation.  

(a) (b) 

Figure 11. (a) The drive-mode velocity signal and the sense-mode position signal after 

quadrature compensation; (b) The Lissajous figure after quadrature compensation.  

(a) (b) 

It is obvious that the sense-mode position signal has the same frequency as the drive-mode velocity 

signal. Before off-line quadrature compensation, it was dominated by the quadrature vibration response 

and had an approximately 90° phase lag with the drive-mode velocity signal. After off-line quadrature 

compensation, the quadrature vibration response was cancelled out. However, it could be seen that a 

residual sense-mode position signal still existed. Its amplitude was about 100 mV in the tested silicon 

micro-gyroscope prototype. This residual signal had the same phase with the drive-mode velocity signal 

and is commonly named as in-phase error. It is mainly caused by other mechanisms, e.g. the viscous 

coupling between drive mode and sense mode.  
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7. Conclusions 

Quadrature reduction is one of the primary issues in the design of high-performance silicon  

micro-gyroscopes. Among the various quadrature reduction methods, system stiffness matrix 

diagonalization has its peculiar advantages. In this method, with purposefully designed quadrature 

compensation patterns and properly applied DC voltages, an electrostatic coupling stiffness is 

electromechanically constructed to cancel out the mechanical coupling stiffness which is the main cause 

of the quadrature vibration response. This paper focus on the detailed design issues of this method and 

presents a complete design and application case.  

For bulk silicon micro-gyroscopes, the quadrature compensation patterns which consist of comb 

capacitors are more suitable than those consisting of parallel plate capacitors because they provide a 

better overall compensation capability. There are four types of basic structural units in the mechanical 

design of quadrature compensation patterns. With an applied DC voltage, they can generate negative or 

positive dynamic electrostatic forces in sense direction. These dynamic forces are proportional to the 

drive-mode position, hence the needed positive or negative electrostatic coupling stiffness can be 

provided. Besides the useful dynamic forces, the basic structure units also generate additional static 

forces and torques which may cause a disturbance. A novel layout design was proposed to solve this 

problem. The basic structural units distributed at different places can provide same-directional dynamic 

forces, opposite-directional static forces and opposite-directional static torques. The opposite-directional 

static forces were designed to have the same absolute value. Hence no net static force exists. The 

opposite-directional static torques were also made to have the same absolute value. Hence no net static 

torque exists. When the available values of the applied DC voltages are limited, an optimization of the 

structural parameters, especially the gap ratio, can help improving the quadrature compensation capability.  

In the process of quadrature compensation, there are two voltage loading methods: single group 

loading and double group loading. Single group loading is more suitable for off-line quadrature 

compensation. When it is employed, the quadrature signal has a non-linear relationship with the 

compensation voltage in the compensation process. The natural frequency of the sense mode is directly 

affected during the regulation of the compensation voltage. Double group loading is more suitable for 

on-line quadrature compensation. When it is employed, the quadrature signal has an approximately linear 

relationship with the compensation voltage in the compensation process. The influence of the 

compensation voltage regulation on the natural frequency of the sense mode can be alleviated.  

The proposed design of quadrature compensation patterns was applied on an actual dual-mass silicon 

micro-gyroscope developed in our laboratory. With the DC voltage applied on a single pattern group no 

more than 12 V, the theoretical compensation capability of a quadrature equivalent angular rate no more 

than 412 °/s was designed. In the experiments carried out on a packaged micro-gyroscope prototype, an 

actual quadrature equivalent angular rate of 357 °/s was compensated. The values of the actual 

compensation voltages were a little larger than the theoretical ones. The correctness of the design and 

the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon 

micro-gyroscopes for quadrature compensation purpose.  
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