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Abstract: In this paper, we explore a new resource called multi-target diversity to optimize
the performance of multiple input multiple output (MIMO) radar with widely separated
antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO
radar to probe different targets simultaneously in a flexible manner based on the performance
metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme,
each antenna is allocated to illuminate a proper target over the entire illumination time, so
that the detection performance of each target is guaranteed. The problem is formulated as
a minimum makespan scheduling problem in the combinatorial optimization framework.
Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced
factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna
is allocated to illuminate different targets with different illumination time. Both antenna
allocation and time allocation are optimized based on illumination probabilities. Over
a large range of transmitted power, target fluctuations and target numbers, both of the
proposed antenna allocation schemes outperform the scheme without antenna allocation.
Moreover, the antenna-time allocation scheme achieves a more robust detection performance
than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target
number changes.
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1. Introduction

Multiple input multiple output (MIMO) radar has received considerable attention in recent years.
Unlike a standard phased-array radar, where different antennas transmit the scaled and phase-shifted
version of the same waveform, MIMO radar can transmit different waveforms at different antennas [1].
In general, MIMO radars can be classified into two categories—MIMO radar with colocated antennas [1]
and MIMO radar with widely separated antennas [2]. MIMO radar with colocated antennas improves
parameter estimation and beamforming performance by having more effective spatial degrees of
freedom [3,4], since its transmit antennas and receive antennas are close enough to observe coherent
signals reflected from the target. MIMO radar with widely separated antennas, also referred to as
statistical MIMO radar, improves detection and estimation resolution by exploiting the diversity of the
propagation path [5,6]. In this paper, we are concerned with a MIMO radar with widely separated
antennas, which can be viewed as a type of multistatic radar. Each antenna of the MIMO radar can
steer its beam independently towards any direction as an independent transmitter. However, this system
differs from the multistatic radar by emphasizing the joint processing of signals for transmission and
reception [2].

There are many resource optimization problems we could consider to improve the performance of
MIMO radar. Waveform design is one of the most interesting resource optimization problems [7–17].
Optimal illumination cooperation from MIMO radar waveform design can further enhance the
capabilities of the radar system. With limited total transmit power, power allocation is regarded as
another important radar resource optimization problem [6,18]. In addition, antenna allocation is also
analyzed as a resource optimization problem for parameter estimation [19,20]. In order to select
an appropriate antenna subset for single-target localization, antenna allocation was formulated as a
knapsack problem in [19]. Other formulations of selecting sensors could also be found in [20–22].
However, these researches focus on the optimization of the resource for a single target. In fact, there
is another type of resource that we could use to further optimize the performance of MIMO radar:
multi-target diversity. We consider a multi-static radar, where its transmit and receive antennas are
spaced far away. Furthermore, we assume each transmit antenna is able to steer its beam independently
towards different targets and that the receive antennas are able to receive all of the signals reflected from
different targets. Therefore, the entire set of antennas form a statistical MIMO radar. We expect that,
by steering each antenna to illuminate the “most proper” target, we could improve the overall detection
performance. Current literature on multiple targets is not related to the idea of multi-target diversity in the
statistical MIMO radar. In [23] and [24], energy allocation for detecting multiple targets in mono-static
radar was considered. Additionally, multi-target localization in MIMO radar was investigated in [25,26].
To the best of our knowledge, antenna allocation of a statistical MIMO radar for multi-target detection
has not been addressed so far.

Metrics have been introduced to measure the performance of MIMO radar, and these can be used
as criteria to optimize the resources. Information theoretic criterion, which was first introduced to
radar receiver design in [27], has received considerable attention. Mutual information criterion was
proposed for radar waveform design in [8–14]. By maximizing the mutual information between target
impulse response and target echoes, radar systems could improve estimation and detection performance.
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The minimum mean square error (MMSE) criterion was also introduced in [9], which led to the
same estimation result as the mutual information criterion. Focusing the transmit power in the target
direction was another way to improve estimation accuracy [3,15,16]. Minimizing the probability of miss
detection for a given probability of false alarm and maximizing the signal-to-interference were proposed
in [11] and [17], respectively. In [14] and [28], another information theoretic criterion, i.e., relative
entropy, was used to study the detection performance. It originated from Stein’s lemma [29]. Relative
entropy is capable of approximately characterizing the probability of a miss in target detection, while
mutual information is incapable. Therefore, we will employ relative entropy to analyze radar detection
performance in this paper.

Based on relative entropy, the multi-target detection problem can be formulated as a minimum
makespan scheduling problem in the combinatorial optimization framework [30]. Minimum makespan
scheduling problems are classified as non-deterministic polynomial-time complete (NP-complete) in
the strong sense [31]. Exhaustive search can be used to solve these problems. This algorithm is simple
and always leads to a solution. However, the computational complexity will exponentially grow as the
problem size increases. A solution with a given error to the minimum makespan scheduling problem
was shown in [30]. Other polynomial-time approximation schemes were also proposed with little
penalty compared to an exhaustive search. In [31], the author proposed a polynomial-time approximation
algorithm in identical machines, and in [32], the author considered related machines rather than identical
machines. However, the “machines” in our problem may be totally different. Therefore, new algorithms
will be used in our problem.

The main contributions of this paper are as follows.

(1) Antenna allocation is introduced to exploit the “multi-target diversity” to enhance the detection
performance. To implement antenna allocation, a statistical MIMO radar is employed to
illuminate multiple targets simultaneously. Two comparative schemes—time allocation and
uniform allocation—are also used in the experiments. These two schemes both sequentially
illuminate targets one by one.

(2) The antenna allocation problem is formulated as a minimum makespan scheduling problem
in a combinatorial optimization framework. In the antenna allocation problem, the detection
performance is characterized by relative entropy. The contributions of antennas can be effectively
modeled as “processing times” in makespan, and target cells can be effectively modeled as
“machines”, which are not identical. A branch-and-bound algorithm is used to achieve the optimal
antenna allocation result through a simple transformation of the original problem. Moreover, a
new antenna allocation algorithm, called the enhanced factor 2 algorithm, is proposed. This
heuristic algorithm employs a greedy strategy to allocate antennas for multiple targets. Both of
the branch-and-bound algorithm and the enhanced factor 2 algorithm just allocate each antenna to
illuminate a certain fixed target over the entire illumination time. Therefore, the branch-and-bound
algorithm and enhanced factor 2 algorithm can be regarded as an antenna-only allocation scheme.

(3) More importantly, we propose an antenna-time allocation scheme as an alternative to theNP-hard
antenna allocation problem. Using the antenna-time allocation scheme, each transmit antenna is
selected to illuminate different targets with different illumination time. Therefore, each target has
an opportunity to be illuminated by all transmit antennas, so that a new proper antenna allocation
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result can be explored. In fact, the antenna-time allocation scheme can be regarded as an extension
of the antenna-only allocation scheme, since it optimizes both antenna allocation and illumination
time allocation.

The rest of this paper is organized as follows. The signal model of MIMO radar and the multi-target
detection problem are introduced in Section 2. Antenna allocation schemes are proposed in Section 3,
including the antenna-only allocation scheme and the antenna-time allocation scheme. Numerical
experiments and analysis are shown in Section 4. Finally, Section 5 concludes the paper.

2. Problem Formulation

2.1. Signal Model

Assume that the entire search area of the space is divided into K target cells, where each cell contains
either one or zero targets. Whether there is a target in a certain cell is independent of that in other cells.
We consider a MIMO radar consisting of M transmit antennas and N receive antennas. Each transmit
antenna is able to steer its beam independently to illuminate any of the target cells. Denote the entire set
of transmit antennas by a setM = {1, . . . ,M}. SplitM into K non-overlapping subsets of antennas,
and let Mk ⊆ M denote the k-th subset, which illuminates target k. Let Mk denote the cardinality
of the set Mk. We assume that each antenna illuminates one target cell, so that

∑K
k=1Mk = M . In

realistic scenarios, target number K can be very large in the entire surveillance region. Therefore, we
have to detect several times to cover the entire region. For each time of detection, we assume that the
number of targets is less than the number of transmit antennas, i.e., M > K. Denote the waveform of
the m-th transmit antenna by a vector sm. Thus, the transmitted waveform for target cell k is denoted
by a matrix Sk = [sk1 , sk2 , · · · , skMk

], where the subscript k1 ∈ Mk denotes the first transmit antenna
inMk steered towards target k. The transmitted waveform is assumed to be narrowband. Therefore, the
waveform that arrives at the n-th receiver can be modeled as [2,7]:

rk,n = Skhk,n (1)

where hk,n = [h1,k,n, h2,k,n, · · · , hMk,k,n]T is a Mk × 1 vector, which denotes the k-th target scattering
coefficients for receiver n, and each element hm,k,n in hk,n denotes the scattering coefficient from the
m-th transmitter to the n-th receiver for the k-th target. Let Rk denote the matrix that collects rk,n

at different receivers (n = 1, . . . , N ) as its columns: Rk = [rk,1, rk,2, · · · , rk,N ]. Thus, Rk can be
written as:

Rk = SkHk (2)

where Hk = [hk,1,hk,2, · · · ,hk,N ] is the Mk × N target scattering matrix. The total received signal at
all receivers is the superposition of signals from the K target cell, which can be written as follows:

Y =
K∑
k=1

Rk + W =
K∑
k=1

SkHk + W (3)

where W = [w1,w2, · · · ,wN ] is the noise matrix, and wn is the noise vector at the n-th receiver.
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We consider a statistical MIMO radar with homogeneous and sufficiently separated receivers. Thus,
the spatial correlations between the columns of Hk can be ignored [7,8]. Likewise, we assume that the
noise at different receivers are independent. Specifically, we make the following three assumptions:

Assumption 1 (white noise): The columns of W are identically and independently distributed (i.i.d.)
with distribution wn ∼ CN (0,Rw) [7,8]. Furthermore, since the temporally white noise can be achieved
by prefiltering [4,6], Rw can be considered as a diagonal matrix σ2

wI . �

The spatial independence between the columns of W is satisfied since the thermal noise at different
receivers should be independent [7,8]. In the colored noise case, after a whitening filter, a predistortion
will be incorporated for transmitted waveform matrix design, and it can be treated as a matrix
transformation. In [8], waveform design in colored noise is considered to optimize the performance
of detecting a single target.

Assumption 2 (orthogonal waveforms): The signals transmitted by different antennas are
orthogonal [6]:

sHmsm′ =

{
σ2
m if m = m′

0 if m 6= m′
m,m′ = 1, 2, · · · ,M (4)

where σ2
m denotes the transmitted energy for transmit antenna m. �

Waveforms transmitted by different antennas at different frequency bands can approximately satisfy
Assumption 2. In [6], it is also shown that a specific set of frequency spread signals can be orthogonal. In
fact, to separate the signals from different targets at the receivers, we do not need to assume orthogonality
among all signals. We only need to assume that the waveforms from differentMk are orthogonal. By
this, we can apply waveform optimization to each set ofMk for each target k. For the moment, we make
Assumption 2 for simplicity. Extension to waveform optimization for each set ofMk will be addressed
in future work.

Assumption 3 (target scattering matrix): The columns of Hk are i.i.d. with distribution hk,n ∼
CN (0,RHk

). Furthermore, considering sufficiently separated transmitters and receivers, the target
scattering coefficients are different and independent. Thus, RHk

could be considered as a diagonal
matrix RHk

= diag(σ2
Hk,1

, σ2
Hk,2

, · · · σ2
Hk,Mk

) [7]. �

In a statistical MIMO radar, antennas are sufficiently separated. Thus, hm,k,n’s can be assumed as
independent random variables. Mathematically, the target scattering matrix Hk is a full rank random
matrix [2]. The diversity of the propagation paths in a statistical MIMO radar can be characterized
by this target scattering matrix in Assumption 3. A specific Hk can be simulated based on the
statistic characteristics of Hk. For the moment, we ignore the correlations between the target scattering
coefficients for different propagation paths. Extension to a general RHk

case may be addressed in
future work.

2.2. Multi-Target Detection

Our objective is to employ a MIMO radar to detect multiple targets. To this end, we need to establish
a detection model for all targets. Next, we are going to introduce a performance metric on the detection
performance of each target.
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By Assumption 2, the waveforms transmitted by different antennas are orthogonal to each other.
Therefore, each receive antenna can apply sk1 to the received signal given by Equation (3) to separate
the signal from transmit antenna k1:

sHk1Y = sHk1

K∑
k=1

SkHk + sHk1W

= [sHk1sk1 , 0, · · · , 0︸ ︷︷ ︸
Mk

]Hk + sHk1W (5)

Let SH
k collect sHk1 , s

H
k2
, · · · , sHkMk

, and thus, we have:

SH
k Y = SH

k SkHk + SH
k W (6)

Let Zk = SH
k Y , and the binary hypotheses,H0 target-absent andH1 target-present, are given by: H0 : Zk = SH

k W

H1 : Zk = SH
k SkHk + SH

k W
(7)

It can be verified that Zk is a sufficient statistics for the optimal Neyman–Pearson detection based on
the definition of the sufficient statistics. Here, we omit the proof for brevity.

Next, we investigate the detection performance of all targets. In order to measure the detection
performance, we introduce a performance metric of relative entropy, i.e., Kullback–Leibler divergence.
It originates from Stein’s lemma [29] and approximately characterizes the probability of miss detection.
Its advantages have received detailed study in [28]. The relative entropy between p0(Zk) and p1(Zk) is
defined as:

Dk(p0||p1) =

∫
p0(Zk) log

p0(Zk)

p1(Zk)
dZk (8)

where p0(Zk) and p1(Zk) are the probability density functions of Zk under hypothesis H0 and
H1, respectively.

For a given scenario, some transmitters contribute more to the detection performance than others,
since they have lower path losses, better angular views of the target and more advantageous wave
lengths and polarizations. If each target cell can be illuminated by the proper transmit antennas, which
can maximize the received energy, antenna allocation will achieve much more benefit. Therefore,
our objective is to select an appropriate transmit antenna subset for each target cell, i.e., to find an
optimal allocation scheme to partition the entire transmit antenna set. In order to guarantee the detection
performance of each target cell, our objective function is to maximize the minimum relative entropy of
all targets. Thus, the target with the minimum relative entropy is detectable, and other targets are also
detectable. Here, we assume that the value of low relative entropy is not too much smaller than the
value of high relative entropy. If not, we could waste resources on a very faint target, which remains
undetectable. Due to the waste regarding the faint target, the optimization could leave other targets
as undetectable. Therefore, in realistic scenarios, we can omit the too low relative entropy from the
optimization. Here, we also need to be aware that there are other objective functions that we can use.
In the case that the detection performance of all target cells needs to be guaranteed, maximizing the
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minimum relative entropy is one of the effective choices. Other choices may be studied in future work.
If the transmitted energy per transmit antenna is fixed, the optimization problem can be formulated as:

max
Mk

min
k∈K

Dk(p0||p1)

s.t. Mk ⊆M
Mk ∩Ml = φ,∀l ∈ K, l 6= k

σ2
k,m ≤ Pm,m ∈M, k ∈ K (9)

where K = {1, . . . , K} is the target set and φ is the empty set. σ2
k,m is the power of the m-th transmit

antenna for the k-th target, and Pm is the available power of the m-th transmit antenna.

3. Antenna Allocation Schemes

The analysis in this section is to derive a mechanism for the appropriate allocation of
transmit antennas.

3.1. Reduced Expression of Relative Entropy

Before we proceed to antenna allocation schemes, we first derive the closed form expression for the
relative entropy given in Equation (8) and study its properties. Based on Assumptions 1 and 3, the
probability density functions p0(Zk) and p1(Zk) in Equation (8) are written as Equations (10) and (11),
respectively.

p0(Zk) =
1

πMkN detN(SH
k RwSk)

× exp
{
− tr

[
(SH

k RwSk)−1ZkZ
H
k

]}
(10)

p1(Zk) =
1

πMkN detN(SH
k SkRHk

SH
k Sk + SH

k RwSk)

× exp
{
− tr

[
(SH

k SkRHk
SH

k Sk + SH
k RwSk)−1ZkZ

H
k

]}
(11)

Substituting Equations (10) and (11) into Equation (8) leads to:

Dk(p0||p1) = N log

[
det(IMK

+ SH
k SkRHk

SH
k Sk(SH

k RwSk)−1)

]
+N tr

[
(IMK

+ SH
k SkRHk

SH
k Sk(SH

k RwSk)−1)−1 − IMK

]
(12)

Assuming that the transmit waveform Sk consists of L identical signal pulses, Sk can be expressed
as a Kronecker product. We define:

Sk =


S̄k

S̄k

...

S̄k

 = 1L ⊗ S̄k (13)
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where S̄k denotes one pulse of the transmit waveform Sk, and 1L is a L × 1 column vector
[1, 1, · · · , 1]T . Based on Assumptions 2 and 3, the autocorrelation matrix of the waveform
transmitted by the k-th antenna subset and the autocorrelation matrix of the k-th target scattering
coefficients are both diagonal matrices, which can be written as S̄H

k S̄k = diag(σ2
k,1, · · · , σ2

k,Mk
) and

RH,k = diag(σ2
Hk,1

, · · · , σ2
Hk,Mk

), respectively. Substituting these two diagonal matrices into
Equation (12), after some algebra, the relative entropy can be reduced to a scalar expression:

Dk(p0||p1) = N

Mk∑
m=1

(
log(1 +

Lσ2
k,mσ

2
Hk,m

σ2
w

)−
Lσ2

k,mσ
2
Hk,m

σ2
w + Lσ2

k,mσ
2
Hk,m

)
(14)

In fact, Equation (14) is simple, since we make those independence assumptions on noise and target
scattering coefficients. However, the process of simplification is not the major concern in this paper,
and how to simplify a more general model without the assumptions may be addressed in a future study.
Next, we can solve the optimization problem (9) via antenna allocation based on Equation (14). Here,
we need to be aware that the target scattering coefficients are not known, or we do not need to allocate
antennas to improve the detection performance. However, in this problem, the antenna allocation is
a dynamic allocation of a set of available antennas. These antennas are allocated to use at each time
during a measure period in order to optimize the detection performance. Measure time is partitioned
into a sequence of epochs, and one antenna allocation result is employed in one epoch. Our antenna
allocation problem refers to the closed-loop solutions to most sensor management problems, i.e., the
next allocation is determined while the MIMO radar system is in operation and in view of the results
obtained from prior radar measurements in prior epochs [33]. From this point, the antenna allocation
optimizes its decision as to how to allocate antennas for the next measurement. We just focus on antenna
allocation in one epoch. Particularly, the detection process can be that all transmitters probe each target
with some certain number of signal pulses L̂ first. Thus, based on the received signals, we can obtain
a coarse L̂σ2

k,mσ
2
Hk,m

in the first epoch. Next, we can allocate antennas more flexibly in each epoch to
further make a more accurate decision for the detection based on the previous epoch. Thus, we assume
that σ2

k,mσ
2
Hk,m

in Equation (14) is obtained in the previous epoch from now on [25,33].

3.2. Antenna-Only Allocation Scheme

In this scheme, we only allocate antennas to improve the detection performance. Considering that
Dk(p0||p1) is a monotonic nondecreasing function of σ2

k,m, the optimal solution of (9) will be achieved
when σ2

k,m = Pm, for m ∈M and k ∈ K. Substituting σ2
k,m = Pm into Equation (14) leads to:

Dk(p0||p1) = N

Mk∑
m=1

(
log(1 +

LPmσ
2
Hk,m

σ2
w

)−
LPmσ

2
Hk,m

σ2
w + LPmσ2

Hk,m

)
=

Mk∑
m=1

Qk,m (15)

where Qk,m = N
(

log(1 + LPmσ
2
Hk,m

/σ2
w) − LPmσ

2
Hk,m

/(σ2
w + LPmσ

2
Hk,m

)
)

is a constant for given k
and m. If the m-th transmit antenna is selected to illuminate the k-th target cell, it can contribute at most
Qk,m to the relative entropy of the k-th target. If the m-th transmit antenna is not selected to illuminate
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the k-th target, it will contribute zero to the k-th target, since Qk,m = 0 for σ2
k,m = 0. Thereby, we can

introduce a set of binary variables:

Ik,m =

 1 If antenna m illuminates target k

0 otherwise
m = 1, 2, . . . ,M k = 1, 2, . . . , K (16)

to the relative entropy, resulting in the following expression:

Dk(p0||p1) =
M∑

m=1

Ik,mQk,m (17)

Therefore, the problem (9) can be written as:

max
Ik,m

min
k∈K

Dk(p0||p1)

s.t.
K∑
k=1

Ik,m = 1, m ∈M (18)

This type of problem is essentially a minimum makespan scheduling problem in combinatorial
optimization algorithms [30]. In [30], the minimum makespan scheduling problem is shown as: given
processing times for n jobs, p1, p2, · · · , pn and an integer m, find an assignment of the jobs to m

identical machines, so that the completion time, also referred to as the makespan, is minimized. In
the antenna allocation problem, the performance is characterized by the relative entropy. The objective
is to maximize the minimum relative entropy. The contributions of antennas are effectively modeled
as “processing times” in the makespan scheduling problem, and target cells are effectively modeled as
“machines”, which are not identical.

The minimum makespan scheduling problems are classified asNP-complete in the strong sense [31].
We use a branch-and-bound algorithm and an enhanced factor 2 algorithm to solve this problem,
respectively. For a particular scenario, both of these two algorithms only implement antenna allocation
over the entire illumination time. Therefore, we put these two algorithms into the same category, called
the antenna-only allocation scheme.

3.2.1. Branch-and-Bound Algorithm

This is a classical algorithm for finding optimal solutions of various optimization problems, which was
first proposed by Land and Doig in [34]. If computational burden is not considered, a straightforward
approach to solve the antenna allocation problem is to enumerate all possible combinations of antennas.
Thus, relative entropy function values of all combinations are computed and compared. The optimal
solution is the antenna allocation, which leads to the largest function value. However, for problems
involving large numbers of antennas, the number of antenna combinations will grow exponentially,
which will make the computational burden overwhelming.

The branch and bound algorithm also consists of an enumeration of all candidate antenna allocation
solutions. The search process for all antenna combinations is a tree structure, whose nodes are the
antenna subsets of all combinations. The step that splits an antenna set into two or more smaller antenna
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sets is called branching. The step that computes upper and lower bounds for the relative entropy value
within a given antenna set is called bounding. A tree node will be discarded, if its upper bound is less
than some other node’s lower bound. This step is called pruning [34–36]. Using this algorithm, a large
number of fruitless candidate solutions can be discarded, which will ease the computational burden to
some extent.

To apply the branch-and-bound algorithm in our problem, the problem (18) can be written as the
integer programming problem:

min d

s.t.
K∑
k

Ik,m = 1, m = 1, . . . ,M

Ik,m ∈ {0, 1}, k = 1, . . . , K m = 1, . . . ,M

− d−
M∑

m=1

Ik,mQk,m ≤ 0, k = 1, . . . , K (19)

Therefore, a branch-and-bound algorithm can be used for this integer programming problem. We
need to be aware that branch-and-bound algorithm has exponential worst case complexity, but luckily, it
can work with much less effort in some cases. We obtain the optimal antenna allocation result through
the branch-and-bound algorithm as a performance bound and compare it with the performance of the
proposed enhanced factor 2 algorithm in the experiments.

3.2.2. Enhanced Factor 2 Algorithm

The enhanced factor 2 algorithm is proposed based on the factor 2 algorithm in [30]. The proposed
algorithm employs a greedy strategy to arrange the next antenna to illuminate the target cell that has been
assigned the least relative entropy so far. The order of arranging antennas is based on the contribution of
antennas, i.e., the antenna that can contribute more to the detection performance must have priority. The
heuristic scheme is summarized as Algorithm 1.

The relative entropy of each target cell is initialized Qk = 0, k ∈ K. For each Qk,m corresponding to
target k and transmit antenna m, calculate rk,m =

Qk,m∑M
m=1 Qk,m

as the significance of antenna m to target k.
Out of k ∈ K and m ∈ M, select a pair (k′,m′) with the maximal rk,m, and Qk′ = Qk′ + Qk′,m′ .
Meanwhile, the antenna is discarded from the remaining antenna set,M =M\m′. Next, we consider
the targets, except k′, and thus, we set rk′,m = −1(∀m ∈ M). Repeat this step till all targets have been
selected once. After that, out of k ∈ K, select the one with the minimal Qk. For this cell k′′, select a
transmit antenna m′′ from the remaining antenna set with the maximal Qk′′,m, and Qk′′ = Qk′′ +Qk′′,m′′ .
Next, transmit antennam′′ is also discarded. Repeat this step till all transmit antennas have been selected,
and max minDk(p0||p1) = minQk.

Though an exhaustive search algorithm can always achieve a solution if it exists, it is implemented
with exponential complexity. The branch-and-bound algorithm has exponential worst case complexity.
However, the proposed heuristic enhanced factor 2 algorithm offers significantly reduced complexity, and
the performance can be seen in the experiments. Here, we need to note that after max minDk(p0||p1)
is achieved, there can be some antenna m̃ illuminating the target k̃ that is not assigned the least relative
entropy. Thus, we could reduce the power of these antennas, i.e., σ2

k̃,m̃
< Pm̃, to save resources. This



Sensors 2014, 14 20175

will not influence the antenna allocation result and max minDk(p0||p1), but it is useful in realistic
applications.

Algorithm 1 Enhanced factor 2 algorithm.

1 Initialize Qk = 0, k ∈ K.
2 Calculate rk,m =

Qk,m∑M
m=1 Qk,m

, k ∈ K, m ∈M.

3 for i = 1 : K

select k′ ∈ K and m′ ∈M s.t. max rk,m;
Qk′ = Qk′ +Qk′,m′;
rk′,m = −1 (∀m ∈M),M =M\m′ ;

end.
4 whileM 6= null

select k′′, s.t. minQk;
select m′′ ∈M, s.t. maxQk′′,m;
Qk′′ = Qk′′ +Qk′′,m′′ ,M =M\m′′ ;

end.
5 max minDk(p0||p1) = minQk.

3.3. Antenna-Time Allocation Scheme

Other valid approximation algorithms with high precision for the minimum makespan scheduling
problem can be exploited, but we do not focus on these in this paper. We consider that if each target has
an opportunity to be illuminated by all transmit antennas, a new appropriate antenna allocation result
can be explored. Therefore, we propose an antenna-time allocation scheme to solve the problem from
another perspective. Using the antenna-time allocation scheme, antennas are allocated to illuminate
different targets with different illumination times.

In order to achieve a proper antenna-time allocation, we propose a method to partition the illumination
time based on the illumination probabilities. In particular, the optimal illumination probabilities are
obtained first; next, the illumination probabilities can be converted to the illumination time.

Assume that the total illumination time is divided into L identical units of time. Denote the
illumination from antenna m to target k at the l-th unit time by:

Ik,m(l) =

 1 If antenna m illuminates target k

0 otherwise
m = 1, 2, . . . ,M k = 1, 2, . . . , K (20)

where l = 1, 2, . . . ,L. Over each unit time, each transmit antenna selects one of all target cells to
illuminate at random with a certain probability. Next, our objective is to obtain the optimal probabilities.
We introduce a variable pk,m(l), which denotes the probability of Ik,m(l) = 1. For any unit time
l, it is obvious that

∑K
k=1 pk,m(l) = 1, and thus, the relative entropy in Equation (17) is treated as

an expectation:

Dk(p0||p1) = E
{ M∑

m=1

Ik,m(l)Qk,m

}
=

M∑
m=1

pk,m(l)Qk,m (21)
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The optimal solution of pk,m(l) can be obtained by solving the following linear optimization problem:

min d

s.t.
K∑
k

pk,m(l) = 1, m = 1, . . . ,M

0 ≤ pk,m(l) ≤ 1, k = 1, . . . , K m = 1, . . . ,M

− d−
M∑

m=1

pk,m(l)Qk,m ≤ 0, k = 1, . . . , K (22)

Through linear programming, we can easily obtain the optimal numerical solution of pk,m(l).
Observing the problem (22), we can find that pk,m(l) remains constant for l = 1, 2, . . . ,L, since Qk,m

is a constant for given k and m. In fact, we assume the target features remain the same over the entire
illumination time. Therefore, pk,m(l) can be written as:

pk,m(l) = pk,m (23)

where l = 1, 2, . . . ,L. So far, transmit antenna m has been arranged to illuminate target k at random
with a probability pk,m per unit time. Next, we consider the entire illumination process from antenna
m to target k, which consists of a sequence of illumination units: Ik,m(1), Ik,m(2), . . . , Ik,m(L). This
illumination process can be regarded as a stochastic process, which is denoted by Ik,m(l). According to
Equations (20) and (23), we can obtain:

E
{
Ik,m(l)

}
= pk,m (24)

where l = 1, 2, . . . ,L. Next, in order to convert the illumination probabilities to the illumination time,
we introduce a lemma.

Lemma 1. The entire illumination process from antenna m to target k is a stochastic process
with ergodicity:

lim
L→∞

1

L

L∑
l=1

Ik,m(l) = pk,m (25)

Proof. See the Appendix. �

Therefore, when the number of unit time is sufficiently large, the time average of the sequence Ik,m(l)

is the same as the ensemble average. Denote the illumination time from antenna m to target k by tk,m.
According to Lemma 1, tk,m can be obtained:

tk,m =
L∑
l=1

Ik,m(l)× tunit ≈ L× pk,m × tunit = ttotal × pk,m (26)

where tunit and ttotal are the unit of illumination time and the total illumination time, respectively. Here,
we need to be aware that Equation (26) shows a direction to illumination time division, since it partitions
illumination time based on the illumination probabilities with some approximations. In reality, the total
illumination time cannot be sufficiently long. Moreover, Qk,m in Equation (21) is related to the unit
time. Since Qk,m does not increase linearly with the unit time, the unit time should not be too short.
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Though this method is based on approximation analysis, it is not a relaxed solution to the previous
NP-hard allocation problem. In fact, it is an implementable scheme for antenna-time allocation, and
the effectiveness of this method can be demonstrated in the experiments.

Next, in order to show an intuitive explanation of the antenna-time allocation scheme, we compare
the antenna-time allocation scheme with the antenna-only allocation scheme proposed before. Uniform
allocation and time allocation are also used for comparison, both of which employ all antennas to
sequentially detect targets one by one. Time allocation optimizes the division of the entire time, while
uniform allocation divides the entire time into equal parts for all targets without any optimization.

Figure 1. An intuitive explanation of four different illumination schemes: (a) uniform
allocation; (b) time allocation; (c) antenna-only allocation and (d) antenna-time allocation.
The number of antennas is M = 4, and the total number of signal pulses is L = 10.

Figure 1 shows an intuitive explanation of four different illumination schemes in a two-target detection
case. Four transmit antennas are utilized in total, and the illumination time is the length of ten signal
pulses. Figure 1a shows the illumination via uniform allocation. The uniform allocation is a general
method that employs all four antennas to sequentially illuminate targets one by one. It can just be
regarded as the conventional single-target detection scheme. The time for Target 1 equals that for
Target 2. Figure 1b shows the illumination via time allocation. It is similar to the uniform allocation.
However, the illumination time is divided into two proper parts instead of two equal parts. Figure 1c
shows the illumination via antenna-only allocation. We divide all antennas into two proper parts to
illuminate two targets simultaneously. Antennas 1 and 2 illuminate Target 1; meanwhile, Antenna 3

and Antenna 4 illuminate Target 2. Figure 1d shows the illumination via antenna-time allocation. Each
antenna steers its beam independently towards different targets with different times. The illumination
time of Antennas 1–4 for Target 1 occupies 80%, 60%, 20% and 10% of the total time, respectively.
Therefore, over most illumination time, we still employ Antennas 1 and 2 to illuminate Target 1;
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meanwhile, we employ Antennas 3 and 4 to illuminate Target 2. However, it is still possible for both
Target 1 and Target 2 to be illuminated by all antennas. In fact, via the antenna-time allocation, we
optimize both antenna allocation and illumination time allocation in a more flexible manner.

4. Numerical Results and Analysis

In this section, we set scenarios to investigate the detection performance via four different illumination
schemes, including a uniform allocation scheme, a time allocation scheme, an antenna-only allocation
scheme and an antenna-time allocation scheme. Moreover, the antenna-only allocation scheme contains
the branch-and-bound algorithm and the enhanced factor 2 algorithm. Therefore, we use five methods
in total to make a comparative analysis. Before simulations, we need to note that in order to allocate
transmit antennas for each target cell, we need M > K. However, the number of targets can be very
large in the entire surveillance region. Therefore, we have to detect several times to cover the entire
region. For each detection, the number of targets to be illuminated simultaneously should not exceed the
number of transmitters, i.e., M > K.

4.1. Experiment Results

We set M = 4, N = 4 and target number K = 2. Consider a typical scenario in which
RH,1 = diag(5, 0.5, 0.2, 1), RH,2 = diag(0.01, 2, 1, 0.1), which means some antennas are more suitable
to illuminate a certain target than the others. Particularly, Target 1 is more sensitive to the illumination
from Antennas 1 and 4, while Target 2 is more sensitive to the illumination from Antennas 2 and 3.
On the whole, the target scattering intensity of Target 1 is higher than that of Target 2. The different
sensitivities can be caused by different path losses, angular views, wave lengths and polarizations.
Figure 2 shows the minimum relative entropy of all targets versus 0–25 dB transmitted power via
different schemes. It can be observed that the relative entropy of the schemes that we propose
outperforms that of uniform allocation and time allocation. It is obvious that uniform allocation is
the worst, since it does not use any optimization. When the transmitted power grows, the relative
entropy of the antenna-time allocation scheme gradually outperforms that of the antenna-only allocation
scheme, i.e., branch-and-bound algorithm and enhanced factor 2 algorithm. In addition, we can find that
branch-and-bound algorithm and enhanced factor 2 algorithm have the same relative entropy value for
each transmitted power.

In fact, the branch-and-bound algorithm and enhanced factor 2 algorithm lead to the same antenna
allocation result for each point on the curves in Figure 2. Figure 3 shows the antenna allocation results
via the branch-and-bound algorithm. When the transmitted power ranges from 0 dB to 12 dB, the antenna
allocation remains constant, which is shown in Figure 3a. It can be seen that only Antenna 1 is employed
to illuminate Target 1. When the transmitted power ranges from 13 dB to 25 dB, the antenna allocation
is shown in Figure 3b. It can be seen that both of Antenna 1 and Antenna 4 are employed to illuminate
Target 1. The antenna allocation result via the enhanced factor 2 algorithm is exactly the same as that
via the branch-and-bound algorithm. Therefore, we can just use Figure 3 to show the antenna allocation
results via branch-and-bound algorithm and the enhanced factor 2 algorithm.
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Figure 2. Minimum relative entropy of targets versus transmitted power via
branch-and-bound algorithm, enhanced factor 2 algorithm, the time allocation scheme, the
antenna-time allocation scheme and the uniform allocation scheme. M = 4, N = 4 and
K = 2. RH,1 = diag(5, 0.5, 0.2, 1), RH,2 = diag(0.01, 2, 1, 0.1) and σ2

w = 5.
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Figure 3. The antenna allocation results via branch-and-bound algorithm in the scenario of
Figure 2: (a) the antenna allocation with the transmitted power ranging from 0 dB to 12 dB;
(b) the antenna allocation with the transmitted power ranging from 13 dB to 25 dB. The
antenna allocation result via the enhanced factor 2 algorithm is exactly the same as that via
the branch-and-bound algorithm.

Figure 4 shows the number of nodes searched via the branch-and-bound algorithm. It can be observed
that the number of nodes is relative large at the transmitted power of 13 dB. Additionally, it has already
been shown in Figure 3 that the antenna allocation also changes at this transmitted power. For the
computational complexity, this case is worse than the others. Moreover, we can see that in most cases,
the branch-and-bound algorithm needs to search relative small number of nodes.

Figure 5 shows the antenna allocation result in the scenario of Figure 2 via the antenna-time allocation
scheme. Figure 5a–d shows the antenna allocation results at the transmitted power of 5 dB, 10 dB, 15 dB
and 20 dB, respectively. It can be seen that as the transmitted power grows, the illumination time of
Antenna 1 for Target 1 increases unceasingly till it occupies the total time. Antenna 4 does not illuminate
Target 1 in the low transmitted power region. As the transmitted power grows, Antenna 4 illuminates
Target 1 with ever-increasing time.
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Figure 4. The number of nodes searched via the branch-and-bound algorithm versus
transmitted power in the scenario of Figure 2.
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Figure 5. The antenna allocation results via the antenna-time allocation scheme in the
scenario of Figure 2: (a), (b), (c) and (d) show the antenna allocation results at the
transmitted power of 5 dB, 10 dB, 15 dB and 20 dB, respectively.

Figure 6 shows the minimum detection probabilities of targets versus transmitted power via different
schemes. The parameters used for simulation in Figure 6 are the same as those in Figure 2. The
probability of false alarm is kept constant as Pf = 0.0001. The transmitted power per antenna ranges
from 0 dB to 25 dB. In order to observe the detection performance, 104 Monte Carlo trials are executed
to achieve the detection probability of each point on the curves. We can find that the branch-and-bound
algorithm, the enhanced factor 2 algorithm and the antenna-time allocation scheme almost have the same
detection probability for each transmitted power point. All of them can improve detection performance
significantly compared with time allocation and uniform allocation.

In order to investigate the influence of different targets on the proposed schemes, we use all
illumination schemes to detect different targets in different scenarios. Figure 7 shows the minimum
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detection probabilities of targets versus −12–12 dB radar cross-section (RCS) fluctuations of targets.
The statistics of RCS fluctuations can be given by the log-normal distribution model. The variance
is from −12 dB to 12 dB. In Figure 7, 106 Monte Carlo trials are executed to achieve the detection
probability for each RCS fluctuation variance. It can be observed that two antenna-only allocation
algorithms, i.e., the branch-and-bound algorithm and the enhanced factor 2 algorithm, outperform the
time allocation scheme.

Figure 6. Minimum detection probabilities of targets versus transmitted power via
branch-and-bound algorithm, enhanced factor 2 algorithm, time allocation scheme,
antenna-time allocation scheme and uniform allocation scheme. M = 4, N = 4 and K = 2.
RH,1 = diag(5, 0.5, 0.2, 1), RH,2 = diag(0.01, 2, 1, 0.1) and σ2

w = 5. Pf = 0.0001.
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Figure 7. Minimum detection probabilities of targets versus target radar cross-section (RCS)
fluctuations via five allocation methods. M = 4, N = 4, K = 2, transmitted power P = 5

dB and σ2
w = 5. Pf = 0.0001.
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Over a large range of RCS fluctuations, the antenna-time allocation scheme is the best, while the
uniform allocation is the worst.

Next, we investigate the influence of the target number on the proposed schemes. We set more
antennas: M = 9, N = 9. The target number varies from two to nine. Figure 8 shows the minimum
detection probabilities of targets versus target number via different schemes. It can be observed that
the proposed antenna-only allocation scheme and antenna-time allocation scheme still have advantages
over time allocation and uniform allocation with different target numbers. Moreover, the antenna-time
allocation scheme achieves the most robust detection performance when the number of targets is larger.

Figure 8. Minimum detection probabilities of targets versus target number via five allocation
methods. M = 9, N = 9, σ2

w = 5 and 0 dB target RCS fluctuation. Pf = 0.0001. 106 Monte
Carlo trials are executed to achieve the detection probability of each point on the curves.
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4.2. Analysis

In the experiments above, we have found that the idea of antenna allocation has advantages over
the idea without antenna allocation for multi-target detection. In this part, we will show some
theoretical analysis.

In the relative entropy Equation (14), we notice that Lσ2
k,mσ

2
Hk,m

/σ2
w is the ratio of the received signal

energy and the noise level at receiver, i.e., SNR. Let ρk,m = σ2
k,mσ

2
Hk,m

/σ2
w denote SNR for one signal

pulse; we obtain:

Dk(p0||p1) = N

Mk∑
m=1

(
log(1 + Lkρk,m)− Lkρk,m

1 + Lkρk,m

)
(27)

where Lk is the pulse number for the k-th target. To obtain an intuitive explanation of the relative
Equation (27), we assume all ρk,m’s for different k and m are equal, which means all targets are the same
isotropic scatterers, and all antennas are the same transmitters with the same path losses, angular views,
wave lengths, polarizations, etc. Therefore, we drop the subscript of ρk,m and obtain:

Dk(p0||p1) = NMk

(
log(1 + Lkρ)− Lkρ

1 + Lkρ

)
(28)
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Observing Equation (28), we notice that Dk(p0||p1) increases linearly with the number of receive
antennas N . Therefore, when the other parameters are fixed, the number of receivers should be as large
as possible to increase Dk(p0||p1).

Next, we fix N to study the influence of Mk and Lk. Applying the Taylor expansion of log(·) in the
small ρ region, Equation (28) can be approximately written as:

Dk(p0||p1) ≈
1

2
NMkL

2
kρ

2 (29)

For the large ρ region, Equation (28) can be approximately written as:

Dk(p0||p1) ≈ NMk logLkρ (30)

For multi-target detection, K denotes the target number. In the scheme without antenna allocation,
i.e., time allocation or uniform allocation, we employ all antennas to illuminate targets sequentially.
Thus, Mk = M and Lk = L/K, where M and L are the total number of transmit antennas and the total
number of signal pulses, respectively. Therefore, we have:

Mk × Lk =
ML

K
(31)

In antenna allocation scheme, we partition all antennas to illuminate K targets simultaneously. Thus,
the average value of Mk is M/K, and Lk = L. We still obtain Equation (31). Therefore, we can see
that for each target, the product of the antenna number and the pulse number remains constant, no matter
which illumination scheme we use. Thus, Equation (31) can be written as:

Mk × Lk = C (32)

where C is a constant for a given K. Substituting Equation (32) into Equation (29) leads to:

Dk(p0||p1) ≈
NCρ2

2
Lk (33)

With higher order terms being negligible, we can find that the capacity is in proportion to Lk in the
small ρ region. Figure 9 shows Dk(p0||p1) in Equation (33) with the solid line. Therefore, in order to
obtain a better detection performance in the small ρ region, we should select a scheme with larger pulse
number Lk, i.e., longer illumination time for a given pulse repetition frequency. Considering Mk × Lk

is a constant, we should increase Lk and decrease Mk. Thus, for multi-target detection, we will adopt
antenna allocation to illuminate multiple targets simultaneously to lengthen illumination time in low
SNR region.

Substituting Equation (32) into Equation (30) leads to:

Dk(p0||p1) ≈
NC

Lk

logLkρ (34)

Figure 9 shows Dk(p0||p1) in Equation (34) with the dotted line. Considering Mk × Lk is a constant,
we can conclude that we should decrease Lk and increase Mk when ρ is relatively large. In Figures 2
and 6, the curves of the antenna allocation schemes and the schemes without antenna allocation gradually
come close when the transmitted power grows. When the transmitted power is sufficiently strong,
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the relative entropy of time allocation scheme can be larger than that of antenna allocation schemes.
However, using that strong transmitted power, the detection probability has already reached one, no
matter which scheme is used. Therefore, it is worthless to increase transmitted power. The experiments
also demonstrate that in most cases, antenna allocation schemes outperform the schemes without antenna
allocation, as shown in Figures 7 and 8.

Figure 9. Relative entropy Dk versus pulse number Lk: the dotted line is the case in the
large ρ region, and the solid line is the case in the small ρ region.
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5. Conclusions

In this paper, a multi-target detection problem for MIMO radar with widely separated antennas
is investigated based on relative entropy. In order to explore multi-target diversity, we propose the
antenna-only allocation scheme and the antenna-time allocation scheme to implement multi-target
detection simultaneously. In the antenna-only allocation scheme, we use a branch-and-bound algorithm
and an enhanced factor 2 algorithm, respectively. In contrast to sequential illumination without antenna
allocation, simultaneous illumination via antenna allocation can increase illumination time at the expense
of decreasing the number of illumination antennas for each target. It is shown that proper antenna
allocation outperforms time allocation and uniform allocation over a large range of transmitted power,
RCS fluctuations and target numbers. Moreover, the antenna-time allocation scheme can achieve a more
robust performance than branch-and-bound algorithm and enhanced factor 2 algorithm for more targets.
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Appendix

In this Appendix, we show the proof of Lemma 1.
The mean and the variance of limL→∞

1
L
∑L

l=1 Ik,m(l) can be obtained by Equations (A1) and (A2),
respectively:

E

{
lim
L→∞

1

L

L∑
l=1

Ik,m(l)

}
= lim
L→∞

1

L

L∑
l=1

E
{
Ik,m(l)

}
= pk,m (A1)

E

{∣∣∣∣ lim
L→∞

1

L

L∑
l=1

Ik,m(l)− pk,m
∣∣∣∣2
}

= E

{∣∣∣∣ lim
L→∞

1

L

L∑
l=1

Ik,m(l)

∣∣∣∣2
}
−
∣∣pk,m∣∣2

= lim
L→∞

E

{
1

L2

L∑
l1=1

Ik,m(l1)
L∑

l2=1

Ik,m(l2)

}
−
∣∣pk,m∣∣2

= lim
L→∞

1

L2

L∑
l1=1

L∑
l2=1

E
{
Ik,m(l1)Ik,m(l2)

}
−
∣∣pk,m∣∣2

= lim
L→∞

1

L2

L∑
l1=1

L∑
l2=1

(
R(l1, l2)−

∣∣pk,m∣∣2)
= lim

L→∞

1

L2

L∑
l1=1

(
pk,m −

∣∣pk,m∣∣2)
= lim

L→∞

1

L

(
pk,m −

∣∣pk,m∣∣2) = 0 (A2)

Based on Equations (A1) and (A2), limL→∞
1
L
∑L

l=1 Ik,m(l) equals pk,m with probability one.
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