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Abstract: This paper presents an integrated model aimed at obtaining robust and reliable 

results in decision level multisensor data fusion applications. The proposed model is based 

on the connection of Dempster-Shafer evidence theory and an extreme learning machine.  

It includes three main improvement aspects: a mass constructing algorithm to build 

reasonable basic belief assignments (BBAs); an evidence synthesis method to get a 

comprehensive BBA for an information source from several mass functions or experts; and a 

new way to make high-precision decisions based on an extreme learning machine (ELM). 

Compared to some universal classification methods, the proposed one can be directly 

applied in multisensor data fusion applications, but not only for conventional classifications. 

Experimental results demonstrate that the proposed model is able to yield robust and reliable 

results in multisensor data fusion problems. In addition, this paper also draws some 

meaningful conclusions, which have significant implications for future studies. 
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1. Introduction 

Multisensor data fusion is a technology to enable combining information from several sensors into a 

unified result [1]. In multisensor data fusion, the information to be handled is always random, vague, 

imprecise and heterogeneous. The developed data fusion framework needs to be able to eliminate the 
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redundancy, uncertainty, and fuzziness of the data sources to achieve robust and accurate fusion results. 

Besides, the framework is required to be able to obtain unified results from multisensor sources, even 

when conflicts exist among them. Yet data fusion has proved to be valuable in many applications, like 

pattern recognition and classification [2], image processing [3] and expert systems [4]. Many theories 

have been applied in multisensor data fusion, such as the Bayesian approach [5], evidential theory [6], 

fuzzy set theory [7], and rough set theory [8]. 

The Dempster Shafer evidence theory (DSET), also known as the evidential theory, is a flexible 

method in multisensor data fusion [9–11]. Its framework is able to deal with information uncertainty, 

imprecision, randomness, conflicts and heterogeneity. In addition, Dempster’s combination rule allows 

for combining several information sources into a unified one, which makes it popular in multisensor data 

fusion applications. However, when using DSET in practice, the accuracy of fusion results is always far 

from satisfactory for two reasons. First, it is difficult to get reasonable and accurate basic belief 

assignment (BBA); second, it is a thorny problem to make decision with the unified BBA. 

A good and effective BBA function, also called mass function, is the prerequisite for applying 

evidential theory with an aim to combine pieces of evidences into a unified one. There is no general 

solution for mass function in DSET, and BBAs are usually calculated in heuristic ways. The most typical 

way is to define the membership functions to mapping data into masses. These methods are easy to 

implement, such as the fuzzy C-mean algorithm [12], automatic thresholding method [13]. Another way 

is to develop a transducer mechanism to obtain BBAs by using artificial neural network (ANN) [14–16] 

and it is has been proved in image data fusion applications. In wireless sensor networks (WSNs), the 

calculation capacity of sensor nodes is limited, thus implementing the ANN based BBA constructing 

with high computation complexity is not the most appropriate solution. In DSET, the sources to be 

combined with Dempster’s combinational rule are set to be independent from each other. In reality, it is 

difficult to meet the condition. Many endeavors have been devoted to solving this problem, and the 

Belief Transfer Model (TBM) [17] presented by Semts is widely accepted. In TBM, two levels of the 

beliefs are assumed: the Credal Level (CL) where compound classes are allowed to exist and the 

Pignistic Level (PL) where beliefs are transferred into probability to make decisions [18]. However, the 

final pignistic probability is always updated by carving up the intersection classes to the singleton class 

with a certain proportion. The final decisions are actually determined by the belief of the singleton classes, 

but have nothing to do with the compound classes [19,20], making the compound classes useless in final 

decisions. As a result, how to make decisions according to the unified BBA becomes a thorny problem. 

To solve the mass constructing problem, a BBA function converting distance to mass is developed in 

this paper. Distance is a direct and effective reflection measuring the similarity or difference of different 

classes. It is not affected by data dimension and there are several distance definitions we can choose 

according to the reality. Besides, distance has a wide range of application, but not only for some specific 

situations. The key point of the mass function is that the transducer mechanism between distance and 

BBAs must be reasonable, effective and flexible. A radial basis function can be used to mapping 

distance to BBAs of different subsets, and the obtained BBAs should be able to adjust according to 

different parameters. As a result, the mass function will be able to adaptively generate reasonable BBAs 

according to the given sample sets. 

Another endeavor to solve the mass constructing problem is presenting an algorithm to synthetize 

BBAs from different BBAs obtained by different functions or experts. The reason is that different BBA 
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functions or experts maintain their own positions and we’ve found that the synthetic BBA is always 

more reliable than independent BBAs. However, how to build reasonable BBA synthetizing algorithm 

becomes another problem. The Jousselme distance [21] is a widely accepted way of measuring distance 

between two evidences bodies and it is able to reflect the conflict degree of evidences properly. Hence 

we develop the synthetizing algorithm by utilizing Jousselme distance to get synthetic BBAs, which 

represents a comprehensive knowledge of the information source by combining the views of different 

BBA functions or experts. 

The decision making mechanism is also vital to obtain high accurate fusion results. In the perspective 

of dimensionality reduction, the unified BBA can be regarded as the comprehensive presentation of the 

original multisensor data. It’s much more easily to make decision with the unified BBA rather than the 

original data. Traditionally, the Belief Transfer Model (TBM) is always used to convert the final BBA to 

Pignistic probability. However, the transferred Pignistic probability essentially depends on the singleton 

classes while the compound classes have no decisive influence on the final decision. In some conditions 

when the belief assignments of the compound classes are larger than the singleton classes, the accuracy 

of TBM is suspicious. Thus a decision making mechanism based on Extreme learning machine (ELM) is 

presented to solve the decision making problem. ELM [22] is a fast and easy implementing ANN 

without iterated operation, and to our knowledge, the accuracy of ELM is no worse compared to any 

other ANNs. Thus a decision making mechanism based on ELM is presented to solve the decision 

making problem. 

A systematic multisensor data fusion model is built up in the basis of the above three main 

improvements. The framework will be illustrated in detailed, which includes four steps: BBA 

construction, BBA synthesis, combination of evidences and decision making. Experimental results and 

analysis on the IRIS data set and Diabetes Diagnosis data set will be illustrated to show the performance 

and result accuracy of the proposed algorithm. 

The remainder of this paper is organized as follows: Section 2 introduces the preliminaries of thee 

Dempster Shafer evidence theory. Section 3 illustrates the proposed method in detailed. The 

experiments along with the observations are provided in Section 4. Conclusions and discussions are 

finally presented in Section 5. 

2. Preliminaries of Dempster Shafer Evidence Theory 

Dempster Shafer evidence theory (DSET) is an extension of the classical probability theory. It is a 

flexible evidential reasoning approach for dealing with the uncertainty in multisensor data fusion. Let Ω = (߱ଵ,⋯ ,߱௖) be a finite non-empty set and		Ω is mutually exclusive and exhaustive. Ω		 is called 

the frame of discernment, the corresponding power set is 2ஐ , which is composed by all possible  

subsets of 		Ω. The mass function of 2ஐ is defined as a function m: 2ஐ → [0, 1] and it satisfies the 

following property: 

( ) 1  and   ( ) 0 
A

m A m
⊆Ω

= ∅ =
 

(1)

where Ø denotes the null set, ݉(ܣ) is called the basic belief assignment (BBA) of subset A. The 

numerical value of ݉(ܣ) can be interpreted as the support degree of proportion A belongs to		Ω with all 



Sensors 2014, 14 19672 

 

relevant and available evidences. A focal element is a subset A with non-zero mass assignment and we 

call ((ܣ)݉,ܣ) a piece of evidence.  

For a given element ܣ of Ω, the belief function and plausibility function of ܣ are denoted by (ܣ)݈݁ܤ and		݈ܲ(ܣ)ݏ, respectively. (ܣ)݈݁ܤ is the total mass of elements belonging to ܣ and ݈ܲ(ܣ)ݏ is 

the maximum total mass of elements that may be distributed in ܣ. Therefore, they are defined as the 

following expressions: 

( ) ( )
B A

Bel A m B
⊆

=  (2)

( ) ( )
A B

Pls A m B
∩ ≠∅

=  (3)

where (ܣ)݈݁ܤ and ݈ܲ(ܣ)ݏ are the lower and upper belief of hypothesis ܣ, respectively. (ܣ)݈݁ܤ and 	݈ܲ(ܣ)ݏ satisfy the following relation: 

( ) 1 ( )Pls A Bel A= − (4)

( ) ( )Pls A Bel A≥  (5)

where ̅ܣ is the complementary set of ܣ. When ݈ܲ(ܣ)ݏ =  must be a singleton class. For an ܣ ,(ܣ)݈݁ܤ

arbitrary focal element in 	Ω , its BBA distributes in an explicit measure of a belief interval [݈ܲ(ܣ)ݏ,   .[(ܣ)݈݁ܤ

In DSET, The Dempster combinational rule can be used to fuse all independent evidences into one.  

It is expressed as: 

1

1
1

1
( ) ( )

1 n
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n
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i i i

iA A
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=
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=  ∏
  

(7) 

where ⨁  denotes the combinational operator. ܣ௜	  designates the focal element regarding to data  

source ݅. ܭ indicates the conflict among the sources to be combined. After combining, a Pignistic 

probability can be obtained by using the Transfer Belief Model (TBM) and a typical transfer formula is 

defined as [17]: 

1
Bet ( ) ( ) ( )

| |
l M

i M
A A M

P A m A
A⊆

= 
 

(8)

where Betܲ(ܣ௜) is the transferred Pignistic probability regarding to ܣ௜ . At last, a decision can be  

made by choosing the class with maximum Pignistic probability as the result of the multisensor data 

fusion process. 

3. The DSET-E Multisensor Data Fusion Model 

3.1. Overview 

The main goal of the framework is to guarantee accurate and robust decision-level fusion results, 

even in situations with high complex and nonlinear data sources. Thus, robustness is the principle of the 
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algorithms in the entire process and it is guaranteed by three aforementioned reliable and robust 

measures: BBA constructing, BBA synthetizing and decision making. The process of the data fusion 

model is divided into four steps, as shown in Figure 1. 

Let Ω = (߱ଵ,⋯ ,߱௖) be the frame of discernment containing c elements, ܨ = ⋯,ଵܨ} ,  ௞} are theܨ

BBA functions or experts, ܁ = ⋯,ଵݏ} ,  ௡} are a set of sensors. In step 1, there are ݇ functions orݏ

experts and ݊ sensors. Every BBA constructing function/expert will generate a BBA regarding to a 

sensor, hence there are ݊ × ݇ BBAs obtained in this step 1. Step 2 is the BBA synthesis process 

involving a developed synthetizing algorithm, based on which the ݊ × ݇ BBAs will be decreased into  ݊  synthetic BBAs. The combination calculation is conducted in step 3. Using the Dempster’s 

combinational rule, the ݊ synthetic BBAs will be combined into one unified BBA. Step 4 is the decision 

making process. With a trained ELM, the unified BBA will be transferred into the final output, which is 

easy for making decisions.  

Figure 1. Process of the proposed evidential multisensor data fusion algorithm. 

 

3.2. BBA Constructing Function Model 

For decision fusion, local classification or decision results are essential before fusing them into a 

unified one. In scenarios when there is a large amount of raw data, directly uploading them to the 

cluster node (or sink node) is very costly. However, uploading local decision results will greatly 

reduce the amount of data transmission, and greatly reduce energy consumption, which is significant 

for distributed sensor networks, especially wireless sensor networks (WSNs). Therefore, developing a 

BBA constructing algorithm is necessary to obtain the local classification results. 

In expert systems, BBAs are constructed based on human decisions. This paper focuses on 

constructing a BBA from data sources. Distance is a widely used metric measure of the similarity of an 

object and a class. However, each kind of distance maintains its own views. Let ܵ be the object to be 

classified. The training set is Γ = {(߶ଵ, ߱ଵ),⋯ , (߶௖, ߱௖)} and ߶௜	(݅ = 1, . . , ܿ) is the training class 

respect to 	߱௜. There are various kinds of distances, such as Euclidean distance, Mahalanobis distance, 

Manhattan distance, to name a few. Here, we set ݇ distance expressed as = {݀݅ݏଵ, … , ݒ)௩ݏ݅݀ ௞}, whereݏ݅݀ = 1,… , ݇) is the	ݒth distance definition of D. 
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Firstly, the distance between an object and each sample class must be calculated. The general distance 

can be expressed by the following expression: 

 dis ( || ||), 1,..., , 1,...,i id s k i cυ υ φ υ= − = =  (9)

where ݀௩௜ is the distance of ܵ and ߶௜ according to the			ݒth distance definition in D. Sample set ߶௜ 
can be the whole given sample set or the nearest ݉ objects around the object in the given sampe set. 

If an object belongs to a class	߱௜, then the mass should be assigned to two subsets of		Ω, and they are {߱௜} and		Ω. Then the assigned BBA ݉௩(∙ |߶௜) can be defined as: 

( | ) ( ),0 1i i im f dυ υ υω φ α α= < <  (10)

( | ) 1 ( )i im f dυ υ υφ αΩ = −  (11)

( | ) 0, 2 \ {{ }, }i im B Bυ φ ωΩ= ∀ ⊂ Ω  (12)

where ݉௩ is the assigned BBA of ܵ according to the ݒth distance definition in D. α ∈ (0,1) is a 

positive constant and ௩݂  is a monotonically radial basic function decreasing form ௩݂(0) = 1  to limௗ→ஶ ௩݂(݀) = 0. It can be postulated as:  

2( ) exp( ( ) )i if d r dυ υ υ= −  (13)

where ߛ௩ is a positive constant value. In [23], a method for optimizing parameters ߙ and ߛ has been 

described by using of KNN method. Here we give a more exact form of ߛ and it is defined as: 

2

1
ln 2

d
υ

υ

γ =  (14)

1

1
with     

c

i
i

d d
c

υ υ
=

= 
 

(15)

where d υ  is the mean value of distance between the object and each class in Ω. ߙ can be changed to 

adjust the discrimination degree of the obtained BBA. After considering each pattern, the BBA 

function		ݒ to be calculated as: 

1( | ) ( | )cm m mυ υ υφ φ= ⋅ ⊕ ⊕ ⋅  (16)

where ݉௩  is the BBA with respect to function ܨ௩ , ݉௩(∙ |߶௖)  is the BBA calculated by  

Equations (10)–(12). With the k different BBA functions, for a hypothesis A, the generated 

corresponding BBAs are {ܣ|݉ଵ(ܣ), … ,݉௞(ܣ)}. Next step involves composing the synthetic BBA from 

the k BBAs generated by different functions. 

3.3. BBA Synthetic Algorithm 

Correct BBAs are the prerequisite for applying DSET in multi-source information fusion. In reality, 

there is no universal applicable BBA-constructing function. Different kinds of BBA functions are based 

on different theories, and each of them maintains its own views. For one information source, BBAs 

generated by different functions are always different. Dempster’s combinational rule requires mutually 

independent evidences, and it cannot be applied to combining BBAs obtained from the same source. 

Hence, a new method for combining these BBAs into a comprehensive one that achieves a wide range of 
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aspects of uncertainty is significant for obtaining reasonable synthetic BBAs. According to reference [21], 

the distance of evidence can be defined as: 

1 2 1 2 1 2

1
( , ) ( ) ( )

2
T

BBAd m m m m D m m= − −
   

 (17)

where ሬ݉ሬԦଵ and ሬ݉ሬԦଶ	are evidence vectors. ܦ		is a positively defined matrix and its coefficients can be 

obtained as: 

1 2
1 2

1 2

| |
( , )

| |

A A
D A A

A A
= 


 (18)

In order to transform the reliability of a function to metric, we define the credibility of a BBA as: 

1

1

( , )

1
( , )

k

BBA j
j

k k

BBA i j
i j l

d m m

a
d m m

υ

υ
=

= =

= −



 (19)

where ܽ௩ is the credibility of BBA with respect to mass function		݉௩. The expression above means that 

a BBA with further distance will be assigned with a low credibility value and compared with other 

BBAs, and it is not reliable. The sum of credibility is: 

1

1

1

( , )

( ) (1 ) 1
( , )

k

BBA jk
j

k k

BBA i j
i j l

d m m

sum a k
d m m

υ

υ
υ

=

=

= =

= − = −





 (20)

Thus, the normalized തܽ௜ can be calculated by: 

1

1

( , )
1 1

[1 ]
1 1 ( , )

k

BBA j
j

k k

BBA i j
i j l

d m m

a a
k k d m m

υ

υ υ
=

= =

= = −
− −




 (21)

The sum of തܽ௜ is 	∑ തܽ௜௞௜ୀଵ = 1. Then, the synthetic BBA can be calculated by the following weighted 

sum method: 

1

( ) ( ), 1,...,
k

m A a m A kυ υ
υ

υ
=

= =  (22)

where ݉(ܣ) denotes the hybrid BBA with respect to hypothesis A, തܽ௜  is the weight of BBA with 

respect to function		ܨ௜. The value തܽ௜ shows the reliability of the corresponding function. A believable 

function will be assigned a larger credibility compared to other functions. The final obtained BBA will 

be regarded as the local decision and uploaded to the fusion center. 

3.4. Combination of the Synthetic BBAs 

The Dempster’s combinational rule has been widely accepted as a method for combining various 

evidences into a unified one. With the obtained n evidences, the unified evidence can be defined as: 
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1

1 1 1

1
( )( ) ( ) ( )

1
n

n n n
A A A

m m A m A m A
K =

⊕ ⊕ =
− 


   

(23)

1

1with     ( ) ( )
n

n
A A

K m A m A
=∅

= 



 

(24)

where ܭ	 denotes the conflict degree, final unified BBA contains the comprehensive knowledge of all 

information sources. Note that other combinational rules, including the method proposed in Section 3.3., 

can be applied instead of the Dempster’s combinational rule.  

3.5. ELM Based Decision Making Model  

Unlike the traditional TBM transfer mechanism, this paper uses a decision-making algorithm based 

on ELM. Huang and his colleagues [24] proposed extreme Learning Machine (ELM). This single 

feed-forward neural network (SLFN) with a fast learning speed has both universal approximation and 

classification capabilities [25]. In ELM, the input weights of the hidden neurons can be generated 

randomly, and they are independent from applications. Thus, ELM requires no iterative calculation to 

determine the input weights, which is a big advantage of the traditional artificial neural networks. 

As shown in Figure 2, ELM can be directly applied to conduct the decision making  

process. For N arbitrary distinct samples ,ଵܕ)	 ݅)(ଵܜ = 1,… , ܰ) , where input data  ܕ௜ = (݉௜(߱ଵ), … , 	݉௜(߱௖),݉௜(߱ஐ)) ∈ ܴ௖ାଵ and output data ܜ௜ = ,௜ଵݐ) … , (௜௖ݐ ∈ ܴ௖, the output of the 

network with L hidden neural nodes can be expressed as: 

1

( ), 1,...,
L

i j j i j
j

b i Nβ
=

= + =t w mg  (25)

where ܜ௜ is the network output of ܆௜, ܟ௝ = ,௝ଵݓ] … ,  ௝(௖ାଵ)]் is the input weight matrix between theݓ

input neural node and the jth hidden neural nodes, ߚ௝ = ,௝ଵߚ] … , ்[௝௖ߚ  is the output weight matrix 

between the ith hidden nodes and output nodes, ௝ܾ is the bias threshold respect to the ith hidden node. ܟ௝ and ௝ܾ are generated randomly and are independent from any specific applications. 

Figure 2. Decision making network of ELM. 

pβ

1 1( , )bw

( , )L Lbw

1 1( )i b+w xg

( )L i Lb+w xg

im it

1it

ipt

ict

1ix

ipx

( 1)i cx +

 

Let ݃(ݔ) be the activation function. The above N equations can be written as: 

β =H T  (26)

with: 
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  

t

T

t

  (27)

where ۶ is hidden neural output matrix. The output matrix ߚ can be calculate by:  

†β = H T  (28)

where †H  is the Moore–Penrose generalized inverse of matrix	۶. To improve the robustness of the 

generalization performance, the above expression can modified as [22]: 

1( )T TH
C

β −= +I
H H T

 
(29)

The ELM algorithm can be designed in 3 steps: (1) Assign the input weight matrix ܅ and bias b 

randomly; (2) Calculate the output matrix	۶ of the hidden neural nodes; (3) Calculate the output  

weight matrix ߚ. After training the ELM, it is able to perform specific functions, like approximation  

and regression. 

Given ௢ܰ new observed unified BBAs with masses ܕ௢ = {݉௢ଵ, … ,݉௢ே௢} and the respective m-th 

one is		ܕ௢௠,݉ = 1,… , ௢ܰ, the output of the ELM is: 

( )oo b β⋅ += mt wg  (30)

where ܜ୭ is the output matrix and ܜ୭ = ,୭ଵܜ] … ,  :୭ଶ]. Then the decision can be made byܜ

max( ), 1, ...,Dg og g cω = =t  (31) 

where ߱ୈ୥ is the final decision with respect to g-th column in		ܜ୭. Note that other ANN algorithms, like 

BP and RBF, also can be applied in this step, the decision making policy is the same as ELM.  

4. Experimental Results 

This section reviews the experiments that are performed to test the performances of the proposed data 

fusion algorithm. In the foregoing experiments, we simulate our model in three steps: First, we use the 

IRIS dataset to illustrate the performance of the proposed mass construction algorithm. Second, we use 

the Diabetes Database dataset to train our model, and then, we collect data from the people whose age 

range from 40 to 60 by human body sensors, and predict their health condition. In addition, the last 

experiment applied the proposed framework in vehicle type classification. Introductions about these 

tests and their corresponding results will be described in the following sections. 

4.1. Experiment on IRIS Data Set 

In this experiment, we use the IRIS data collected by statistician Fisher [26] to simulate the algorithm. 

There are three species of Iris in this data set: Setosa (Se), Versicolor (Ve), and Virginica (Vi), and each 

plant includes four indices: sepal length (SL), sepal width (SW), petal length (PL), and petal width (PW). 

The total number of data is 600 (150 × 4), or 50 patterns for each plant. To classify the plants, each of 

the four features represents an information source. Among the 50 patterns of each plant, 30 patterns are 

randomly selected as the training sets, the remaining 20 patterns of each plant are the testing sets. 
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Four kinds of distances are used in the experiment: Euclidean Distance (Eu), Mahalanobis Distance 

(Mahal), Chebyshev distance (Ch), and Manhattan Distance (Ma). Different functions generate BBAs 

with different accuracies. The test data sets include seven patterns, which are SL, SW, PL, PW,  

(SL, SW), (PL, PW), and (SL, SW, PL, PW). The BBAs are calculated using Eu, as shown in Figure 3. 

Figure 3. Partial BBAs calculate by the Eu-function includes (a): training set SW;  

(b): training set PL; (c) training set (SL, SW); (d) training set (SL, SW, PL, PW). 

 
(a) (b) 

(c) (d) 

After obtaining all BBAs from different dimensional data set and BBA functions, the synthesized 

BBAs of the four distance BBA functions can be obtained. To examine the rationality and validity of the 

proposed functions, the accuracies are calculated in every step of the BBA constructing process. The 

accuracy degree of a BBA is calculated using the following expression: 

1( ( ) max{ ( ),..., ( )})
( ) 100%, 1,...,y i c

i

N m m m
r i c

N

ω ω ω
ω

=
= × =

 
(32)

where ݎ(߱௜) denotes the accuracy rate with respect to class		߱௜, N is the total BBA number of the test 
sets. ௬ܰ is the number of accurate BBAs. If the object to be classified belongs to ߱௜, ݉(߱௜) should be 

larger compared to any other singleton classes. The accuracies of the results are calculated by the 7 

source data set. The accuracies of the BBAs for different sources and BBA functions are shown in  

Table 1. 
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Table 1. Accuracies of the BBAs obtained for the IRIS data (%). 

 SL SW PL PW SL, SW PL, PW All 

Eu-BBA 73.33 58.33 96.67 96.67 83.33 96.67 98.33 
Mahal-BBA 80.00 58.33 96.67 96.67 86.67 96.67 98.33 

Ch-BBA 73.33 58.33 96.67 96.67 83.33 96.67 95.00 
Ma-BBA 73.33 58.33 96.67 96.67 81.67 95.00 96.67 
Syn-BBA 73.33 58.33 96.67 96.67 86.67 96.67 96.67 

Figure 3 shows partial BBAs calculated using the Euclidean Distance. The horizontal axis denotes the 

number of test objects and vertical axis represents the mass assignments of each object. The sum of each 

mass equals 1. The first 10 objects are Se, next 10 objects are Ve, and the last 10 objects are Vi. In  

Table 1, the syn-BBA denotes the BBAs synthesized from the four BBAs with different distance 

definitions. We make the following observations: 

(1) The proposed mass construction method is able to build BBAs from observed data and 

information accurately and effectively. With a distinguishable data set, the mass of the 

compound classes will be much lower compared to the sum of the singleton classes, and the 

belief assignment with respect to the class to which the object belongs will always be much 

larger compared to other classes. As shown in (b), (c), (d) and Table 1, the accuracies of PL, 

(SL, SW), and (SL, SW, PL, PW) calculated by the Eu are 96.67%, 83.33%, and 98.33%, 

respectively. While given an ambiguous data set, as shown in (a), the masses of each object 

will likely to be confusing, significantly decreasing the accuracy rate and belief assignments 

of Ω  (Se|Ve|Vi), with the accuracy being only 58.33%. 

(2) Higher dimensionality data enhances the accuracy of BBAs. With the same BBA function in 

(a), the BBAs obtained from SW have low accuracy (58.3%), while the accuracy is much 

higher in (c) (83.33), where the BBAs are calculated by (SL, SW). In (d), the BBAs’ accuracy 

is 98.33% and the dimension is 4. In a more dimensional space, the boundaries of the plants 

can be classified more clearly. Generally, higher dimensional data brings more accurate BBAs, 

as the BBAs accuracies of (SL, SW, PL, PW) are higher compared to others, except for the 

Ch-BBA function. 

(3) The synthesized BBA is able to comprehensively illustrate the data source. When assigning 

belief for an information source, different methods hold their own views and their results may 

different, too. Thus, the method of synthesizing different BBAs into a unified comprehensive 

BBA is able to get that the result reflecting the views of the majority. 

4.2. Experiment on Diabetes Data Set 

The Pima Indians Diabetes Database (available at [27]) was developed at the Applied Physics 

Laboratory, Johns Hopkins University. The eight indices in the data represent the diagnostic signs of 

diabetes according to World Health Organization criteria. The database comprises the data from  

768 women over the age of 21 residing in Phoenix (Arizona, USA). All examples belongs to either 

positive (denotes by 1) or negative (denotes by 0) class. All input values are within [0, 1]. To test the 
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proposed method, 75% (576) and 25% (192) samples are chosen randomly for training and testing at 

each trial, respectively. 

4.2.1. Experimental Results with Changing α 

To get a better understanding of the proposed algorithm, additional experiments are conducted.  

In another trial, we set different value of ߙ to find out its influences on BBA constructing and final 

result accuracy. The object is selected randomly from the test data set. Three classes of the power set 

are 		{diagnosis, Not	Diagnosis, All}, where ‘All’ denotes the compound set. Parameter ߙ  is set 

monotonically, increasing from 0 to 1. The values are used to calculate the corresponding BBAs. The 

BBA obtained with different α is shown in Figure 4. The accuracies of final unified BBA and final 

decision are shown in Figure 5. 

Figure 4. BBAs obtained with different ߙ. 

 

Figure 5. Accuracies with different ߙ. 

 

In Figure 4, the BBA is obtained from the same object belonging to the diabetes diagnosis class.  

In Figure 5, the accuracy rate of BBA and decisions are both determined based on the training data set 

and testing data. From Figures 4 and 5, we can make the following conclusions: 
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(1) Parameter ߙ will change the belief assignments of each subset in 2ஐ. When ߙ is closer to 0, ݉(Ω) ≈ 1 and the belief assignments of singleton class are close to 0. With an increasing		ߙ, ݉(Ω) decreases to a very low level while the belief assignments of singleton class increases 

to high levels. The gap between them will gradually diminish. However, it is strongly advised 

to set 	ߙ > 0.7 to get a high differentiation degree for the BBA. 

(2) Parameter ߙ has no influence on the average accuracy of the BBA and decisions. In Figure 4, 

the BBA is larger for ‘Diagnosis’ compared to ‘Not Diagnosis’’, regardless of the value of ߙ.  

In Figure 5, the accuracies of unified BBAs in training data set and testing data set are 68.7 

and 66.7, respectively. The accuracies of final decision results in training data set and testing 

data set are about 79% and 78%, respectively. Note that the decision accuracy fluctuation is 

caused by the instability of ELM. The stable accuracy rates illustrate that ߙ has no influence 

on the accuracy of the BBA and decision accuracy. 

4.2.2. Experimental Results of Accuracies 

Many algorithms and methods, such as BP neural network [28], Support Vector Machine  

(SVM) [29], ELM [22–24], and others, can use the database to get the classification results. To obtain a 

clear picture of the performance, we compare different algorithms, including BPNN, SVM, ELM, 

evidential data fusion with Pignistic transfer method (DSET-P) and the proposed DSET-E. 

In this test, the parameter C of SVM algorithm is set at 10, and its accuracy results are obtained with 

317 support vectors in average. All hidden nodes of the BPNN and ELM are 20. The DSET-P and  

DSET-ELM use the same process of calculating the unified BBA, thus their final BBAs are the same.  ߙ is set at 1 and the BBA function uses only the Mahalanobis distance because we have found that it has 

a high accuracy in constructing masses. In DSET -P, the unified BBA is converted to probability using 

the Pignistic transferring method in [19]. While in DSET-E, unified BBA is the input of a trained ELM, 

which is used to transfer the BBA to results and make decisions. 

As shown in Table 2, all accuracies are calculated by the average accuracy results of repeating  

100 times. From Table 2, we have the following observations: 

(1) The proposed DSET-E algorithm performed well in classifying problems. Compared with 

other algorithms, the proposed DSET-E algorithm obtains a testing rate of 78.14%, 

outperforming other methods, though the improvement is not sufficiently distinctive. 

Compared with the DSET-P method, the accuracy increases from 66.67% to 78.14%, which is 

sufficient to prove that the whole algorithm is reasonable and effective. 

(2) The traditional Pignistic transferring method is not a desirable algorithm in evidential data 

fusion, especially in situations with high complex and nonlinear data sources. The accuracy of 

DSET-P is 66.7%, which is much lower compared to the accuracies of other methods. 

Actually, in this problem, the highly complex source data are difficult to distinguish, and the 

final unified BBA has a low accuracy when calculated by Equation (30). The final decision 

made by Pignistic probability transferring model has the same accuracy as the unified BBA, 

which is 66.67%. With the same final unified BBA, the DSET-E decision accuracy rate of the 

test objects increases by 11.74%. 
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(3) The belief assignments of the compound classes are also important in decision-making.  

In traditional Pignistic probability transferring model, the belief assignments of a compound 

class are carved up by proportion, which makes no difference in decision-making. Apparently, 

it is not suitable for all conditions. The belief assignments of a compound class show 

uncertainty, making it difficult to decide to which class it should belong. It should be 

allocated to other singleton classes according to the reality situations. 

Table 2. Accuracy comparison for DIABETES data set (average, %). 

Algorithms Training Accuracies  Testing Accuracies 

DSET-E 
DSET-P 

ELM 
SVM 

BPNN 

79.39 
- 

78.68 
78.76 
86.63 

78.14 
66.67 
77.57 
77.31 
74.73 

4.3. Experiment on Vehicle Type Classification Data Set 

In this experiment, a data set for vehicle type classification (the data set can be downloaded at [30]) is 

used to test the proposed algorithm. In the test, 23 wireless distributed sensor nodes are used to classify 

the types of the vehicles. When a vehicle is passing by, the nearby sensor nodes are able to record the 

signals in three modalities: acoustic, seismic and infrared. We use the recorded acoustic and seismic 

signals to classify two possible vehicles: Assault Amphibian Vehicle (AAV) and DragonWagon (DW). 

Before classification, feature vectors must be extracted from the raw signals. A detailed introduction of the 

feature extraction method can be found in [31].  

The experiment includes two parts: part one is the classification based on the whole data set. In this 

scenario, universal classification algorithms can be directly used and their classification results will be 

presented; part two is the classification conducted in a distributed multisensor data fusion way. Experimental 

results of local classification and data fusion will also be presented in the following sections. 

In the first test, five classification methods are used, including k-NN, ELM, SVM, DSET-P and 

DSET-E. The sample set is consisted by 535 feature vectors, which are randomly selected from the 

provided whole feature data set. Among the sample set, 277 feature vectors belong to vehicle AAV, the 

rest are DW. The valid data set has 236 feature vectors, which are also randomly selected from the whole 

feature data set. The classification results are given in the following Table 3. 

Table 3. Classification results of different methods. 

Algorithm AAV DW Average 

k-NN 70.11 70.57 70.32 
ELM 73.90 78.28 76.06 
SVM 62.51 81.55 71.64 

DSET-P 73.54 76.22 74.93 
DSET-E 76.01 76.79 76.62 
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As shown in Table 1, five classification algorithms are used for local classification. The parameter k 

in k-NN method, hidden nodes number of ELM and parameter C of SVM are set as 15, 100 and 1, 

respectively. The mass construction used in DSET-P and DSET-E is the method proposed in Section 3.2 

and parameter		ߙ is set as 0.85. From Table 3, we can conclude that the proposed DSET-E has a more 

reliable result than other methods, which is consistent with the results of Table 2. 
Then we conducted the task in a multisensor data fusion scenario, in which each sensor node has its 

own sample data set collected by itself. Since the energy and bandwidth of wireless sensors are strictly 

limited, uploading the raw data to the sink node is unpractical. Therefore, a local classification in the 

sensor node needs to be conducted and then these local results are uploaded to the fusion center for 

final decision by data fusion algorithms. Except for DSET-P and DSET-E, the algorithms used in  

Table 3 cannot be used for classification. The local classification accuracies the final data fusion 

accuracies are shown in Tables 2 and 3, respectively. 

As shown in Tables 4 and 5, there are 11 sensor nodes used for the collaborative data fusion task. 

Both test set have 1177 vector samples, in which 615 vectors belong to AAV, the other 562 vectors are 

DW. From Tables 3 to Table 5, it can be concluded that the proposed method has good performance of in 

multisensor data fusion applications, because it is able to get reliable and robust results. In Tables 2 and 3, 

the accuracies of DSET-E are always higher than the accuracies of other classification methods. In Table 4, 

the average classification accuracies of AAV and DW are 68.13% and 59.83%, respectively. However, 

the fusion results are greatly improved by both the DSET-P and DSET-E methods. The final average 

accuracy of DSET-E is 75.32%, which increased by 2.52% compared to DSET-P. And also, the average 

accuracy of DSET-E is close to the results of DSET-E in Table 3, which equals to 76.62%. These results 

also show that the proposed BBA constructing function is reasonable and effective for the DSET based 

data fusion framework.  

Table 4. Local classification accuracy of each sensor node (%). 

Node 1 2 3 4 5 6 7 8 9 10 11 Average 

AAV 56.42 53.04 85.35 65.31 75.29 85.43 62.52 63.52 70.24 66.57 65.73 68.13 

DW 72.12 43.37 45.67 62.81 48.70 48.57 75.80 64.54 63.38 62.55 70.64 59.83 

Table 5. Final data fusion accuracies (average, %). 

 AAV DW Average 

DSET-P 79.84 65.50 72.80 
DSET-E 82.41 67.57 75.32 

To conclude the experimental section, the three tests prove that the proposed mass constructing and 

decision making method is reasonable and practical. The classification results with other universal 

classification methods (i.e., k-NN, BPNN, ELM and SVM) prove that the proposed method is able to 

obtain robust and reliable results. The experiment on vehicle type classification demonstrates that the 

proposed method has high performance in multisensor data fusion applications, but not only in practice 

for conventional problems. Therefore, the proposed model is robust and reliable in mutisensor  

data fusion. 
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5. Discussion and Conclusions 

In conclusion, this paper proposed a systematic multisensor data fusion model to obtain robust and 

high-precision fusion results. DSET is used to provide a flexible way to combine multiple information 

sources into a unified one, and ELM is applied to make decisions. The combination of the two theories 

achieves a greater capacity in multisensor data fusion. Compared with the existing methods, the 

proposed framework gives more flexibility and rationality in constructing reasonable BBAs from data 

sources. Additionally, the framework is able to make decisions according to the actual situation. 

Moreover, it is stable and easy to implement. With adequate training samples, the algorithm is able to 

reason and learn and make decisions in a coherent process. The drawback is that it needs to be trained 

and the computation complexity is greater than that of traditional DSET-P, though ELM is ‘extremely’ 

fast in ANNs. However, it should be clear that the proposed method is not intended to achieve great 

improvement over other classification algorithms, but rather it is aimed at building a robust and reliable 

data fusion model practical for multisensor applications. Thus, the accuracy improvement is not the key 

point of the proposed model. Though the improvement of training accuracy and testing accuracy is not 

significant, the results still prove that the proposed is robust and reliable. 

It is necessary to emphasize that in Section 3.3, ‘minority is subordinate to the majority’ underlies the 

synthetizing algorithm, which is useful when the performance of the adopted BBA functions or experts 

are unknown to us. It can be modified as ‘outstanding is preferred’, which means the weights of the BBA 

functions or experts are assigned according to their own accuracies. In Section 3.5, the activation 

function is the ‘radbas’ function. Other function types are also feasible. In Section 4.2, the experimental 

results indicate that a decision-making method exists after the combinational step, although it is not the 

Pignistic transferring method. If we could improve the conventional Pignistic transfer method, DSET 

could be greatly promoted in real applications. Future work may involve the following: (1) discovering a 

new decision-making method to get rid of the low accuracy limitation of the existing Pignistic methods; 

(2) developing a DSET-embedded ELM that is able to deal with pattern recognition or classification 

problems; and (3) exploring more inherent laws in the transducer mechanism and probability. 
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