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Abstract: A new model-based sensor fault diagnosis (FD) scheme, using an equivalent 

model, is developed for a kind of Multiple Inputs Multiple Outputs (MIMO) nonlinear 

system which fulfills the Lipschitz condition. The equivalent model, which is a bank of  

one-dimensional linear state equations with the bounded model uncertainty, can take the 

place of a plant’s exact nonlinear model in the case of sensor FD. This scheme shows a 

new perspective whereby, by using the equivalent model, it doesn’t have to study the 

nonlinear internal structure character or get the exact model. The influence of the model 

uncertainty on the residuals is explained in this paper. A method, called pretreatment, is 

utilized to minimize the model uncertainty. The eigenstructure assignment method with 

assistant state is employed to solve the problem of perfect decoupling against the model 

uncertainty, disturbance, system faults, the relevant actuator faults, or even the case of no 

input from the relevant actuator. The realization of the proposed scheme is given by an 

algorithm according to a single sensor FD, and verified by a simulation example. 

Depending on the above, a sensor fault monitoring system is established by the sensor 

network and diagnosis logic, then the effectiveness is testified by a simulation. 

Keywords: fault diagnosis (FD); fault regeneration; sensor network; nonlinear system; 

Lipschitz; equivalent model; perfect decoupling; fault monitoring system 
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1. Introduction 

To solve one of the critical issues surrounding the design of automatic systems, which is the 

systems’ reliability and dependability, increasing attention should be paid to the importance of using 

the FD technique. It is fully integrated into vehicle control systems, robots, transport systems, power 

systems, process control systems, and so on [1]. In the early 1970s, the first model-based fault 

detection method, the so-called failure detection filter, was proposed by Beard and Jones [2]. Since 

then, the model-based FD theory and technique underwent rapid development. 

In the early years, most model-based FD approaches were utilized in linear systems [3,4]. In the 

nearly two decades, lots of model-based FD methods for non-linear systems have been proposed, 

which can be divided into four main categories: non-linear observer-based approaches [5],  

filter-based approaches [6], differential geometry approaches [7] and adaptive learning approaches [8]. 

Although an increasing number of methods of FD for non-linear systems are addressed, the complexity 

and strictness of additive conditions of the existing algorithms have a strong negative influence on 

their applications. A FD approach which has a simple algorithm and a wide applicability for  

non-linear systems is required. The main reason is that the traditional methods model the whole plant 

and focus on the detailed internal structure, so the following problems occur: 

Problem 1: it is hard to build an exact model; 

Problem 2: even if it can be built, it rather difficult to design a residual generator because of the 

complex nonlinear structure; 

Problem 3: and it is also hard to get a robust residual; 

Problem 4: even if it could be designed, the algorithm might be too complex to realize in practice; 

Problem 5: and it also could not handle model changes when the plant is running. 

Sensor techniques attract more and more attention in automatic systems, because of their important 

role as the main way to get the information from the plant. The sensor FD issue plays a significant role 

in the FD framework and lots of research has concentrated on this field [9,10]. The current methods 

can be divided into two aspects. The first one is theory-based [11,12]: the mature FD theory for linear 

system is used to solve the MIMO nonlinear system’s sensor fault and is verified by experiments. 

Although these methods is useful in some fields, the lack of theoretical proof of why the FD method 

for linear systems is suitable for nonlinear systems, makes it not rigorous, and the residual doesn’t 

have strong robustness features. Another one is estimation-based [13]: the comparison between the 

measurement and its estimation according to the system dynamics is used to generate the residual. The 

method benefits the indication of fault or fault-free, and it depends on the data from lots of experiments, 

but it isn’t good at presenting the fault details which is not convenient for the subsequent tasks, like fault 

identification, fault tolerance and fault compensation. In addition the workload is heavy.  

In this paper, a new view for MIMO nonlinear systems fulfilling the Lipschitz condition in the 

circumstance of sensor fault is proposed. It is well known that the core of the model-based FD method 

is solving the FD problem by comparing the plant with the pre-built model. In linear system FD 

problems, it is clearly claimed in Ding’s paper [14] that the function of the observer in a model-based 

method is only as an output observer. According to this important theory, the new view not only 
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combines the advantages of the above two methods in the sensor FD field, but also solves the above 

five problems in nonlinear system FD issues:  

(1) For problem 1: to solve a single sensor fault, an equivalent model is used to take the place of the 

exact model of the plant. 

The models used in FD are usually set up according to physical or mathematical theories. The 

process needs to know many details about the dynamics and their relationships. This style of model 

would be called dynamics-based model (DBM). The core of DBM is starting the FD from the system’s 

internal structure. It could describe the dynamics of the system properly, but usually it isn’t suitable for 

FD, especially for non-linear systems. In addition it often can’t solve the robustness problem of the 

residual, even to design a residual generator. Currently, some researches focus on dealing with only 

several typical parts in one paper, like the Itô stochastic systems [15], time-delay system [16], T-S 

fuzzy system [17] and so on. For a general nonlinear system, in which we cannot detect the exact sort 

of internal structure, these methods fail. In fact, the real non-linear plant is too hard to model. Hence, 

building a model which is suitable for FD is necessary. It can be called fault-based model (FBM).  

In this paper, aiming at the sensor FD, a FBM is established, which uses the measurements from the 

sensors in the plant as the states and the output is the sensors’ measurements. Depending on one FBM, 

an equivalent model is established only for a single sensor fault. The equivalent model is transformed 

identically from the common style of nonlinear system fulfilling the Lipschitz condition, so, to some 

extent, the equivalent model is an exact model. Here, we don’t have to study the nonlinear internal 

structure character or get the exact model of nonlinear systems. That means, the equivalent model not 

only is a exact model for sensor FD issue, but also will benefit the following FD process a lot. 

(2) For problem 2: because of the clear and simple structure of the equivalent model, the mature FD 

theory for linear system could be used directly.  

For the DBM method, it must give the special feedback facing the typical parts. Like the sliding mode 

approach is used to deal with a class of Itô stochastic systems, the descriptor observer design method is 

used to handle time-delays. Although these methods are useful, the point of focusing on typical parts 

makes it quite difficult to design a widely-used method for general nonlinear systems. 

The equivalent model has a clear and simple structure-for-single-sensor which is just a  

one-dimension linear state equation with the model uncertainty. Although the details about the model 

uncertainty are unknown, we can confirm that they are combined in the certain position in model the 

uncertainty and the model uncertainty is bounded. Thus, depending on considering the model 

uncertainties as disturbances [18,19], lots of FD methods for linear system could be used directly and 

easily. That means, it is quite easy to design an output observer for the equivalent model to generate 

residual, so the common method for linear system (this paper uses the linear Luenberger observer) 

could be used widely for general nonlinear systems.  

(3) For problem 3: use the perfect decoupling method and get the strong robust residual 

A model-based FD for actual plants strongly needs a robust residual generator. A robust residual 

generator means that the obtained residual should be sensitive to the faults and insensitive to the 

disturbances, model uncertainty and any other negative influence (shown in Figure 1). The robust 
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control-based theory in handling the model uncertainties plays a significant role in this field, like the 

LMI approach [20], and norm-based method [21], but they could only, to some extent, reduce the 

negative influence, and can’t make the perfect decoupling come true. The famous approaches are 

unknown input observer [22] and eigenstructure assignment [23–25] which will realize it very well. In 

this paper, the eigenstructure assignment method is utilized to solve the problem and the assistant state 

is introduced to give a hand for realization. On the other hand, the proposed method could ignore the 

negative influence caused by the relevant actuator fault or even no input from the relevant actuator. 

Subsequently, the target sensor’s fault could be detected successfully in theory. 

In practice, the electronic control unit can only solve a discrete signal. The eigenstructure 

assignment method realizes the perfect decoupling by making the transfer function from disturbance to 

residual equal to 0. Hence, there is a potential risk that the transfer function is not equal to 0 when the 

transfer occurs between continuous signals and digital signals. The model uncertainty’s influence may 

be unbounded regarding residuals generated with output observer, which is determined by the 

parameters of output observer. A method, called pretreatment, that involves choosing the proper 

parameters of the diagnosis observer to minimize the model uncertainty is raised in this paper. It could 

prevent the negative influence on the robust performance in the residual because of the error caused by 

signal transfers or model uncertainty.  

Figure 1. The negative influence of the residual. 

 

(4) For problem 4: the simple structure of observer 

For the typical parts discussed in the above, the proposed methods, like sliding mode approach, the 

descriptor observer and so on, have complex structures and lots of parameters need to be designed. The 

analysis redundant component in this paper is only a 2-dimensional linear observer for a single sensor 

fault, which has four parameters to be designed. The gain of the observer could be small enough to be 

realized in an electronic control unit. Therefore, comparing the current four main sorts methods 

presented in the above, the method in this paper benefits the practice very much. 

(5) For problem 5: the basis of the equivalent model 

The exact model must be changed when it is running, like the time-delay part’s parameters may 

change, T-S fuzzy system could be more complex and could described as before. This time, the former 

useful methods fail. The reason is this category depends on the exact internal structure of plant. 

The equivalent model is transformed identically from the common style of nonlinear system 

fulfilling the Lipschitz condition. It’s a fuzzy description of the system but has a clear framework. 
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When the exact model has changed, the framework won’t change. The only impact on equivalent 

model is the model uncertainty, which could be handled by pretreatment and perfect decoupling. The 

management concentrates on the feature of the system’s output (in order to design an output observer), 

instead of the internal structure. Thus, this method could handle the change of model when the plant is 

working on-line. 

The above discussion could handle the single sensor fault successfully. With this method and the 

view of multi-sensor fusion, a plant’s sensor fault monitoring system could be set up for all sensors’ 

fault diagnosis and even for fault-tolerance and each sensor’s fault could be isolated easily and natively. 

The paper is organized as follows: in Section 2, the process of building the equivalent model is 

proposed. In Section 3, the sensor FD problem is formulated, and the influence of the model uncertainty 

is explained. A method, called pretreatment, that involves choosing the proper parameters of the 

diagnosis observer to minimize the model uncertainty, is shown. Section 4 provides the perfect 

decoupling against the disturbance, the model uncertainty and the relating actuator with the eigenstructue 

assignment method and the help of the assistant state. Section 5 provides one algorithm for single sensor 

FD and a simulation example. In Section 6, a sensor fault monitoring system is established for all 

sensors’ diagnosed faults and fault tolerance and the effectiveness is showed by a simulation. 

2. Equivalent Model 

2.1. The Establishment of FBM 

The general model-based FD needs the system’s exact model and this is very difficult to get. The 

process of modeling is generally based on physics or mathematics, but the model could hardly describe 

the system accurately. For instance, a vehicle model is built, which depends on the vehicle lateral 

dynamics and Laplace Transformation, to diagnosis the yaw rate sensor fault. The model couldn’t 

express all details of the vehicle, even only the lateral dynamic. Generally speaking, the DBM could be 

written as follow (showing in Figure 1): 

.

( ) ( ) ( )

( ) ( ) ( )

a s

a s

f a f sd

f a f sd

x t Ax t Bu t E d E f E f

y t Cx t Du t F d F f F f

 = + + + +

 = + + + +








 (1) 

where fA A A A= + Δ + Δ , fB B B B= + Δ + Δ , fC C C C= + Δ + Δ , fD D D D= + Δ + Δ . ( ) nx t ∈ℜ denotes 

the state vector, ( ) mu t ∈ℜ  is the input vector, ( ) ny t ∈ℜ is the output vector. A, B, C and D are the 
linear system matrices with proper dimensions. AΔ , BΔ , CΔ  and DΔ  are model uncertainty, fAΔ ,

fBΔ , fCΔ and fDΔ  are system faults, d , af and sf  are disturbance, actuator fault and sensor fault, 
d

E  , 

af
E , 

sf
E , 

d
F , af

F  and 
sf

F  are their distribution matrixes with proper dimensions, respectively.  

The DBM is a proper expression of the system’s dynamic characters and structure features, but 

usually isn’t suitable for FD, especially for the non-linear system. Because of the complex details of 

DBM, it’s rather hard to generate a robust residual or even design a residual generator, so the FBM 

strongly aiming at FD is needed. It’s an exact model of system and could be known as a preparation of 

FD. In this paper, to diagnose the sensor’s fault, a method, setting up a FBM, which is that the 
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dynamics measuring by all sensors, needing to be diagnosed, are used as state and the outputs are the 

measurements of all sensors, could be described as follows: 
.

( ) ( ) ( )

( ) ( )
af ad

s

x t Fx t Gu t E d E f

y t x t f

 = + + +

 = +




 (2) 

where fF F F F= + Δ + Δ , fG G G G= + Δ + Δ , F and G are the linear system matrices with proper 

dimensions. ΔF and ΔG denote the model uncertainties, ΔFf and ΔGf describe the system faults. The 

essential of this method is the optimal sensor configuration, which is used to realize that selection of a 

minimum number of sensors to obtain the maximum amount of information for reliable state 

estimation in automotive applications in modeling. In this paper, it is used to benefit the sensor FD: 

although (1) and (2) are both exact models of the system, the results of the comparison between (1) and 

(2) could be showed straightforwardly that, in (2), the sensor faults have a conspicuous position which 

make it much easier to design a robust residual generator than in (1). 

2.2. Describe the Target State by a Simple Equation 

The general model-based FD scheme would design a residual generator on (2) straightforwardly. This 

time, the problem of fault isolation is unavoidable and it will also exert a negative influence on fault 

identification, especially for the case that the number of sensors is large. Hence, the FD approach to set 

up a residual generator only for one sensor that is called target sensor at one time, will be effective. The 

FD methods for non-linear system are developing rapidly, but are not convenient to be utilized directly, 

whereas the methods for linear systems are well-established. It will be very convenient and effective 

using the FD method of linear systems to solve the problem of non-linear systems, if the nonlinear 

system could be transformed into the form of a linear system with bounded model uncertainty. The 

model uncertainty could be decoupled from the residual as a disturbance. This is actualized in this paper. 

To facilitate the realization of the above, the preparation is addressed in the section. Neglecting the 

faults and disturbance, (2) could be transformed into: 

( ) ( ) ( )

( ) ( )

x t F x t Gu t

y t x t

 = +


=

  (3) 

where =F F F+ Δ , =G G G+ Δ , and it fulfills the Lipschitz condition. 

The exact model of (3) can be described by:  
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(4) 

where xi(t) is the ith state of x(t), ul(t) is the lth input of u(t), yi(t) is the ith output of y(t), 
[ ] [ ], , 0, , 0,i j h n l m∈ ∈ , fij and ghl are the function of 1 2 nx x x, , ,  and t respectively, namely, 
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( )1 2: , ,... ,ij ij nf f x x x t  and ( )1 2: , ,... ,hl hl ng g x x x t . Since xi(t) is the function of t, it means fij:fij(t) and 

( ):hl hlg g t . Hence, we could describe everyone of fij and hlg  by an expression including t and a 

constant. In another word, (2) could be also described as follows: 
.
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where aij and bhl are suitable constants, [ ], , 0,i j h n∈ , [ ]0,ml ∈ . ( )1 2: , ,... ,ij ij na a x x x tΔ Δ , 

( )1 2: , , ... ,hl hl nb b x x x tΔ Δ . And it also means ( ):ij ija a tΔ Δ  and ( ):hl hlb b tΔ Δ . They fulfill the relationships 

which are Δaij = fij − aij and Δbhl = ghl − bhl, respectively. 

The models (4) and (5) are both the descriptions of the MIMO non-linear system (3). The difference 

between them is the style of description. (4) uses fij and ghl, but (5) uses aij, bhl, Δaij and Δbhl. Δaij and 

Δbhl are model uncertainties. After the model uncertainties are taken out, (5) becomes a linear system 

as follows: 
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(6) 

In (6), to some extent, aij and bhl become the description of linear relationship of (4), so (6) is a 

linear system that couldn’t describe (3) exactly, but (4) could. The Δaij and Δbhl represent the model 

uncertainty between (4) and (6).  

Remark 1: In the condition of choosing the same states, for the same nonlinear plants, the linear 

model couldn’t provide a complete description like the exact nonlinear model. The model  

uncertainty exists. 

Theory 1: By choosing one state from (3) arbitrarily, the corresponding exact model in (3) could be 

written by a one-dimension state equation including model uncertainty (like (7) or (8)), with one or 

some inputs from (3). The model uncertainty is a unknown function of t, which is an implicit 

description that maybe cannot be described by one certain expression: 

.
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where xi denotes any one state of (3), a, b and v are constants and 0a ≠ , [ ]1,v m∈ , vb


 is a  

v -dimensions row vector, vu

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uncertainty and is bounded. 

Proof: Towards xi, any one state of (5), the whole mathematical description is: 
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where Mi denotes the model uncertainty. The model uncertainty Mi is made up with Mi1 which denotes 

the incomplete description by linear part, and Mi2 which denotes the influence from state and input that 

not be modeled. 

Because of the Lipschitz condition, there exists a constant Lipschitz γ, fulfills:  

1 2 1 2( , ) ( , )x u x u x xγΦ − Φ ≤ −  (9) 

where ( , )=x u Ax BuΦ Δ + Δ .  

So, there exists a set  , which ={ | }x x ∈   and x  is continuous differentiability, fulfills (9) and  

1 2
1 2lim ( ( , ) ( , )) 0

x x
x u x u

→
Φ − Φ =  

where 
maxu u≤ , _ maxi iM M≤ . umax and Mi_max are constants. So, Mi is bounded. 

Subsequently, (3) could be transformed into: 
.

( ) ( )

( ) ( )

i ii i v v i

i

x t a x t b u M

y t x t

→ → = + +


=

 (10) 



Sensors 2014, 14 19146 

 

 

when v = 1 (we choose only one input): 
.

( ) ( ) ( )

( ) ( )

i ii i il l i

i

x t a x t b u t M

y t x t

 = + +


=

 (11) 

2.3. Establishment of the Equivalent Model 

Through the above Theory (1), a single sensor FD concerning one state xi of a non-linear system in 

(3), could be regarded as the state xi of a one-dimension linear system in (8). Based on this, the 

equivalent model could be established which is identical transformation of (3) and is also an exact model. 

Set up of a fault model matching (8) is: 

. ~

( ) ( ) ( ) ( )( ( ) )

( ) ( )

i f i f l a i

i s

x t a a x t b b u t f M d

y t x t f

 = + Δ + + Δ + + +


= +
 (12) 

where Δaf and Δbf denote system faults, they are bounded normally. 

By setting ( ) ( ( ) )f i f l a i ad a x t b u t f M d bf= Δ + Δ + + + , (12) is written by: 

( ) ( ) ( )

( ) ( )
i i l

i s

x t ax t bu t d

y t x t f

= + +
 = +


 (13) 

Remark 2: d is called the equivalent disturbance. It is a combination including the factors which 

exert negative influences on FD, and it is reasonable to assume that d is bounded normally. 

Remark 3: In the problem of sensor FD of xi, (13) is called the equivalent model of (2), which is 

used to take the place of (2) to work. Hence, facing the problem of sensor FD of a nonlinear system, 

the equivalent model (13) is easily used instead of considering the internal structure’s character  

into (2). 

Remark 4: In the above analysis, a new view could be adopted, that setting up one equivalent model 

instead of the original plant, participates in the process of FD. The equivalent model could be a low 

level linear system with model uncertainty. Although we don’t know whether the model uncertainty 

could be addressed by one explicit expression, the equivalent model is exact enough in the case of FD. 

Hence, we can understand it as that the equivalent model is exact but have an implicit part in it. 

Remark 5: Among the approaches of model-based FD, the most important issue is that it hardly  

gets the exact model of the plant. The way of building an equivalent model, to some extent, solves  

the problem. 

3. Problem Formulation 

3.1. The Observer-Based Approach 

The basic work of model-based FD is the design of residual generator which is a redundancy 

component. For our purpose of residual generation, known as a comparison between system 

measurements and their redundancy, the residual generator is understood as a reconstruction of the 

measured quantities of the system under consideration. The main methods are fault detection filter 

(FDF), diagnostic observer (DO) and parity space. Here, the classical observer-based approach is used 
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to detect the sensor fault. The observer used in FDF is seen as a state observer, but in this paper, it only 

acts as an output observer. The observer for (13) is:  

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )
i i l

i

x t ax t bu t k y t y t

y t x t

 = + + −


=


 (14) 

The residual is: 

ˆ(s) ( ( ) ( )) (s) d ( )
srd rf sr w y s y s G G s f= − = +  (15) 

where ˆ ( )ix t  and ˆ( )y t  are the estimations of xi and y(t), k is the observer gain to be designed, w is the 

weighting gain of the residual, (s)rdG  and ( )
srfG s  are transfer functions of d and fs to r, respectively. 

Theory 2 [2]: Given a linear system (16) as follow: 

.

( ) ( ) ( )

( ) ( ) ( )

d f

d f

x t Ax t Bu t E d E f

y t Cx t Du t F d F f

 = + + +


= + + +

 (16) 

where ( ) nx t ∈ℜ , ( ) ny t ∈ℜ , d is the unknown input, f is the fault, Ed, Ef, Fd and Ff are their distribution 

matrices. Then the perfect unknown input decoupling condition is, if and only if:  

fd d

fd d

EA sI E EA sI
rank rank n m

FC F FC

− −  
< ≤ +  

   
 

Proof: see reference [2]. 

Remark 6: according to Theory (2), in the residual r generated from (15) with (13) and (14), it is 

impossible for the perfect decoupling of the disturbance d, no matter what k and w are. How to get the 

perfect decoupling will be shown in Section 4. 

3.2. About the Model Uncertainty 

The robust FD requires that the residual is sensitive to the fault occurrence and insensitive to the 

disturbance, model uncertainty and any other negative influences. Generally speaking, there are two 

ways to approach this problem proposed in [26]: increasing the robustness of the detection system by 

using advanced robust FDI theory, and making use of additional information (extending the model or 

establishing adaptive thresholds). Considering the model uncertainty shown in (13), we know nothing 

but a function of t normally. It means it fails to use the second method and design a perfect decoupling 

method is necessary. Thus, the first approach is adopted and will be addressed in the Section 4. On the 

other hand, facing with the problem of realization in electronic control unit, we would do some 

pretreatment about choosing the parameters of the observer to reduce (minimize) the influence of 

model uncertainty on residual. It will be explained in the next section. 

3.3. The Approach of Minimizing Model Uncertainty’s Influence 

Through minimizing the influence of model uncertainty on residual, Mi is tried to be small as 

possible in residual.  

Theory 3: By bringing the proper compensations in the parameters a and b of the observer (14), the 

influence of model uncertainty Mi on residual could be minimized. 
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Proof: Put the compensations Δa and Δb in (14): 
.

ˆ ˆ ˆ( ) ( ) ( ) ˆ ˆ ˆ( )    
ˆ ˆ ˆ ˆ

i i l i l

i i

x a a x b b u k y y x ax bu k y y
y x y x

 = + Δ + + Δ + −  = + + − 
=  =

   
(17) 

where Δa and Δb satisfy that a a a= + Δ , b b b= + Δ . 

And make an equivalent transformation from (8) as follows: 

( ) ( ) [ ( )] [ ( )]i i l i i l i i l i i l

i i

x a a x b b u M ax bu x ax bu M ax bu

y x y x

= + Δ + + Δ + − Δ + Δ  = + + − Δ + Δ = = = 

   (18) 

Then, using (17) as an observer to observe (18), the influence of model uncertainty on the  

residual becomes: 
' ( )i i i lM M ax bu= − Δ + Δ  (19) 

So, by choosing the proper compensations Δa and Δb, '
iM  will be minimized when i vax buΔ + Δ  as 

close as possible towards Mi. 
Remark 7: '

iM  denotes the influence from Mi on residual. According to Theory (3), there always 

exists the proper Δa and Δb to minimize the '
iM , whatever a and b are. Hence, we can ignore the 

influence of the internal structure character in (3) at the time of designing the parameters of (14), and 

the only thing is how to find a  and b .  
Remark 8: The model uncertainty iM  is added to the observer (14). By the proper compensations in 

the parameters of the observer (14), the observational ability of observing the internal details in (8) will 

be enhanced, and the negative influence of the model uncertainty will be mitigated. It also occurs that 
the size of '

iM  will be enormous or unbounded by unsuitable a  and b , which is the first main reason 

to do some pretreatment proposed in 3.2.  

Remark 9: The important conclusion, which designing the proper parameters of (17) could ignore 

the internal structure characteristic of (2), will bring a profound convenience when we face the large 

complex plant. 

The work of designing the parameters of (17) should be done before the design of residual generator 

of FD. Here, it is called pretreatment. 
Theory 4: Making ˆy y−  as small as possible, means making '

iM  as small as possible.  

Proof: Assume that we have already finished the pretreatment, and the model and the observer are 
(18) and (17), the model uncertainty is '

iM .  

It exists: 

'ˆ ˆ( )( )i i i i i

d d
x x a k x x M

dt dt
− = − − +  (20) 

Let ˆ ˆy i ie y y x x= − = − , a k−  is stable, then:  

' ( )i y y

d
M e a k e

dt
= − −  (21) 
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So: 

0

( ) ( )( ) '
0ˆ ( )

ta k t a k t
y y it

e y y e e t e M dτ τ− − −= − = +   (22) 

where, t0 is the initial time. To make '
iM  as small as possible means to make ˆye y y= −  as small as 

possible through choosing the proper Δa and Δb. 

From Theory (4), an algorithm, called table approach, could be used to minimize the influence of 

model uncertainty on the residual. It is an approach that chooses the relating parameters from the  

pre-structured table including all pre-calculated and relating parameters that the system needs. It is 

widely used in the engineering practice. The procedure in detail is done as follows: 

Algorithm 1: 

Step 1: set a table including all the pre-calculated and relating parameters 

Step 2: choose the parameters when ey meets theory 4. 

Step 3: stop 

4. Solution 

4.1. Eigenstructure Assignment Approach 

The robustness issues of the residual have attracted much attention following the study on the 

design of residual generators. Generally, the generator can’t avoid the influence of the disturbance. 

Subsequently, it should be satisfied that the residual is sensitive to the fault and insensitive to the 

disturbance, model uncertainty and any other negative influence. A number of methods have been 

proposed, like the LMI approach and norm-based method. Although the negative influence is reduced, 

in addtion, if the generated residual is independent not only of the inputs and initial conditions but also 

the unknown input, then it can be directly used as a fault indicator and the robustness issues will be 

solved completely. This concept is called perfect decoupling. The famous approaches are 

eigenstructure assignment and unknown input observer. In the paper, the eigenstructure assignment 

method is utilized to actualize the perfect decoupling.  

Consider a linear system including sensor fault and disturbance, which is described by: 

.

s

x Ax Bu Ed

y Cx f

 = + +


= +
 (23) 

where fs is the sensor fault, d is the disturbance and its distribution matrix E is assumed to be known. 

A, B and C are known system matrices with proper dimensions.  

Set up a linear observer in the form of: 

ˆ ˆ ˆ( )

ˆ ˆ

 = + + −


=

x Ax Bu K y y

y Cx  
(24) 

where K is the observer gain, and it should make cA A KC= −  stable. 

So, the residual is: 

ˆ( ) ( )
srd rf sr s W y y G s d G f= − = +（ ）  (25) 
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where W is a weighting matrix, 1(s) ( )rd cG WC sI A E−= − , 1( )
srf cG WC sI A K W−= − − + . The disturbance 

decoupling condition is Grd(s) = 0. 
The problem of robust FD becomes to find W and K such that ( ) 0rdG s =  is satisfied and Ac is 

stable, and the following result exists. 

Lemma 1: If WCE = 0 and all rows of the matrix WC are left eigenvectors of Ac corresponding to p 

eigenvalues of Ac, then Grd(s) = 0. p is the dimension of the residual. 
Proof: see [2]. 

Now, the perfect decoupling method has been introduced in 3.2 and the problem of realization in 

practice occurs. The electronic control unit (ECU) could only deal with discrete signals. Hence, there 

is a potential risk that the transfer function is not equal to 0 when the transform is done between 

continuous signal and digital signals. Although it may be small, it will have negative influence on the 
robust performance when the size of '

iM  is big enough, which is the second main reason to do some 

pretreatment proposed in Section 3.2.  

4.2. The Sensor FD Based on Assistant States  

In order to implement the sensor FD of state ix , ix  is needed to be defined as the assistant state. 

Assume it could be measured by a sensor and i ix x = . Combining i ix x =  and (13), we get:  

1

2

0 1 0 0

0 1

+

i i
l

i
i

i s

i s

x x
u d

xa bx

xy f

xy f

          = + +               
    

=    
     



 



 
(26) 

where sf  denotes the sensor fault of ix . 

Then (26) can be rewritten by: 
.

lx Ax Bu Ed

y Cx f

 = + +


= +

 
(27) 

where 0 1 0 1 0 0
, , , , ,

0 0 1 1
i s

i s

x f
A B C E x f

xa b f

         
= = = = = =          
           


 

Subsequently, the following result exists. 

Theory 5: the perfect decoupling, discussed in Section 3, comes true by the assistant state in (27). 

Proof: According to Lemma 1, the proof is straightforward. 

Depending on the above discussion, the observer (24) can be used to generate the residual, namely:  

ˆ ˆ( )

ˆ ˆ
lx Ax Bu K y y

y Cx

 = + + −


=


 (28) 

So, the residual (25) is obtained, i.e.,: 

( )ˆ rd rfr s W y y G d G f= − = +( )  (29) 
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Theory 6: when [ ] 1

2

1
1 0 ,

0
W K

a

λ
λ

 
= =  + 

, the model uncertainty, actuator fault and disturbance in 

(29) will be decoupled from the residual in (25) perfectly. λ1 and λ2 are two positive real numbers. 

Proof: According to lemma 1, when [ ]1 0W = , 1

2

1

0
K

a

λ
λ

 
=  + 

, it exists 0rdG = . So: 

( )
1 1

1ˆˆ s s

s
r s W y y f f

s sλ λ
= − = −

+ +
（）  (30) 

So, the inverse Laplace transformed residual in (25) is:  

1 1

1

1
(1 )t t

s sr t e f e fλ λ

λ
− −= − −（）  (31) 

Then, the fault is detected successfully described by: 

1

1
lim s
t

r t f
λ→∞

= −（ ）  (32) 

From the steady state value of the residual in (32), the information of the target sensor fault is 

presented intuitively. The size and type of sensor fault could be achieved easily through combining the 

residual in (32) and the typical mathematical feature of sensor fault. 

Remark 10: when the input from the controller couldn’t be achieved, the input of the observer is 0. 

The sensor FD approach provided in this section is still valid. It has no influence on the sensor FD 

whether the input of the controller in observer (24) exists. The only influence is on the model 

uncertainty. The feature will make the approach be widely used in the large complex plant. 

4.3. The Existence of the Assistant State 

The integral of state ix  is sure to exist, which is the assistant state ix . When it couldn’t be measured 

by a sensor, the analytical relationship and the measurements from other sensors in the plant could be 

used to calculate the value of ix . For instance, for each of the vehicle’s state, yaw rate, lateral 

acceleration and steering wheel angle, there are four equations presented by Ding to compute them, 

respectively [26]. 

Here, sf  denotes the deviation from the actual value, causing by the inexact analytical relationship 

and other sensors’ faults. In order to minimize the negative influence on the residual, a condition was 

proposed that sf  should close to 0 as far as possible. Here, the adaptive threshold method is helpful 

and easy for usage. 

5. The Algorithm of Single Sensor’s FD and a Simulation Example 

5.1. The Algorithm of Single Sensor’s FD 

According to the above results, an algorithm could be proposed for the FD towards one of the 

sensors in a MIMO non-linear system. 
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Algorithm 2: 

Step 1: Determine the target sensor, the proper input and the assistant state 

Step 2: Set up the observer which has a same form as (24), design the parameters according to 

Algorithm 1 when the model uncertainty will disturb the residual easily. 

Step 3: let [ ]1 0W = , 1

2

1

0
K

a

λ
λ

 
=  + 

 and design the parameters 1λ  and 2λ  

Step 4: stop 

5.2. Simulation 

The above method will be testified in a numerical experiment. Consider a nonlinear system  

as follows: 

1 2 4

2 3 1

2
3 4 3 4 3 2

4 2 4

1 1

2 2

3 3

4 4

2

x x x

x x u

x x x x x u

x x x

y x

y x

y x

y x

= − +
 = +
 = − − +


= −


=
 =


=
 =




  

 

where 1x , 2x , 3x  and 4x  are states which are measuring by four sensors(sensor one, sensor two, sensor 

three and sensor four), 1 2 3, ,y y y  and 4y  are outputs, 1u  and 2u  are inputs. Assume that a fault occurs in 

the sensor measuring the state 4x . 

Let a = −1, b = 4, λ1 = λ2 = 1, u1 = 1, u2 = 10. The output from the system and observer are shown in 

Figure 2. Figure 3 shows the disturbance. The target sensor’s fault and the assistant state bias by 

measuring or estimating are shown in Figure 4 and Figure 5, respectively. As a result, the fault is 

detected successfully and the residual is shown in Figure 6. 

So, when the model uncertainty is not big (Figure 2), the disturbance and model uncertainty are 

decoupled from the residual perfectly. The assistant state bias is attenuated to 0 and the target fault is 

detected clearly.  

Figure 2. The outputs when a = −1 and b = 4. 
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Figure 3. The disturbance. 

 

Figure 4. The target fault. 

 

Figure 5. The assistant state bias. 

 

Figure 6. The residual when a = −1 and b = 4. 

 

Figure 7. The outputs when a = 1 and b = 100. 
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Figure 8. The residual when a = 1 and b = 100. 

 

When a = 1 and b = 100, the model uncertainty becomes enormous. This time, the fault could be 

detected successfully as usual. The outputs from system and observer are shown in Figure 7 in which 

an enormous model uncertainty emerges. The residual is shown in Figure 8, which is the same as the 

residual in Figure 6. Hence, when the model uncertainty is very big (Figure 7), the performance of the 

method is the same as the above. It also means there is a huge space to choose the parameters in  

the observer. 

6. The Establishment of the Sensors’ FD System and a Simulation Example 

Multi-sensor fusion technology was proposed in the 1970s and was applied mainly in military 

affairs at the beginning. With the fast development of electronic technology, computer technology and 

sensing technology, multi-sensor fusion technology has been widely used in the fields of robotics, 

industry control, traffic management and aviation, etc. From the engineering aspect, multi-sensor 

fusion is that in order to finish the decision-making and estimation tasks, based on some principles, 

integrate and analyze the information from different sources, different modes and different time to get 

the accurate description of perceived objects [27]. 

The traditional FD method depends on the information coming from the single source and uses 

conventional numeral statistical theory. This method will have a heavy workload facing a numerous 

number of sensors under consideration, and fail to take full advantage of information [28]. Based on 

the view of multi-sensor fusion technology, it is effective in making full use of the measurement in the 

sensor network into the sensor FD problem. The process could be divided into two aspects: the design 

of sensor network and diagnosis logic. According to this view, a sensor fault monitoring system is 

established in this paper. 

6.1. The Establishment of the Sensor Network for FD 

According to the above discussion, an observer could be set up for the FD towards single sensor of 

the MIMO plant. Subsequently, a plant’s sensors’ fault monitoring system could be established for all 

sensors, by the above algorithm given in every sensor. This time, one sensor in the system maybe not 

only be diagnosed with the assistant sensors’ help, but also plays the role of assistant sensor for others. 

Synthesizing these, a sensor network could be established for FD. 

As we know, the assistant state, which could be measured by a sensor or estimated by an analytical 

relationship. It can be described as: 
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~

_1 _ 2 _( , , , ) ( )iO
i ass ass ass q i ix s s s x s⎯⎯→

 

where iO  denotes the diagnosis observer of state ix , is  is the target sensor of ix , and 

_1 _ 2 _, , ,ass ass ass qs s s  are all relating sensors for the assistant state ix , 1, 2,3,q =  . And the order from 

the assistant sensor to target sensor is called positive order which is also the orientation of the arrow. 

According to this form, the typical forms of the sensor network could be described in Figure 9. 

Figure 9. The typical forms of sensor network. 

 

There are only four styles of sensors maybe exist in the sensor network could be defined as: 

Dot-sensor: one sensor has no assistant sensors and target sensors 

Head-sensor: one sensor has no assistant sensors but target sensors 

Foot-sensor: one sensor has assistant sensors but no target sensors 

Link-sensor: one sensor has assistant sensors and target sensors 

And the network has only four styles of structure which are defined as: 

Dots: only have dot-sensors 

Circles: only consist of link-sensors and the shape is a circle.  

Lines: consists of head-sensors, foot-sensors or link-sensors. Along the positive order from one  

head-sensor to one foot-sensor, the shape is a line.  

Branches: is one style of the lines attaching to one link-sensor or head-sensor which is in Circles  

or Lines. 

Here, two definitions are given: 

Upstream-sensor: depending on the positive, one sensor’s former sensor is called is upstream-sensor. 

Downstream-sensor: depending on the positive, one sensor’s later sensor is called is downstream-sensor. 

6.2. The Diagnosis Logic for Sensor Network 

Although the residual has strong robust performance, the bias of the assistant state will also exert a 

negative influence on the residual like disturbance. It means, if 
~

0sf ≠  and 0sf = , the residual is not 

zero immediately. Subsequently, if one of its upstream-sensors has fault, the sensor’s residual is not 0 
immediately, although its stable state value is 0. As a result, the residual fails to indicate the target 

sensor’s fault in a short time, and the residual in (29) when 
~

0sf =  is: 
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1

1

1
( ) (1 )t

sr t e fλ

λ
−= − −  (33)

In order to realize the fault isolation, which means to get a residual which is only influenced by the 

target sensor’s fault, the following basic laws are addressed: 

Law 0: if all one sensor’s (except the head-sensors) assistant sensors’ residuals are 0, its residual is 

only influenced by its fault. With Law 0 and the assumption that only one sensor fault occurs at the 

same time, the diagnosis logic is presented in the following. 

Law 1: In Dots—the sensor can’t be diagnosed unless it could be brought into the Lines or the Circles 

by an analytical relationship. The estimation-based method is helpful except for fault tolerance, or 

even hardwire redundancy.  

Law 2: In Lines—the residual is not 0 that could be regarded as the indication of the target sensor 

fault, if all of its upstream-sensors’ residual is 0. Head-sensors can’t be diagnosed by the observer, but 

one could use the estimation-based method or hardwire redundancy. 

Law 3: In Circles—the fault in any one sensor will make all sensors’ residuals in the circle not be 0. 

By choosing one sensor as the head-sensor, called quasi-head-sensor, the Circles will transform into 

Lines and the above Law 2 is effective. 

Law 4: In branches—depending on that the Link-sensor or Hear-sensor is diagnosed in Circles or 

Lines, the branch could be treated as a line. 

Remark 11: The estimation-based method could indicate the fault effectively and rapidly. The 

method had used successfully in Electronic Stability Program (ESP) by Ding [18]. Although, the 

problem of costing, space and workload motive us to develop the analysis redundancy to take the place 

of the hardwire redundancy, the effectiveness and stability can’t meet the practical requirements by 

only analysis redundancy. It is significant that only use a little hardwires redundancy and lots of 

analysis redundancy to solve the problem which is dealt with all hardwire redundancy before. 

6.3. The Establishment of Sensors Fault Monitoring System 

The fault monitoring system in this paper could make the fault detection, isolation, identification 

and tolerance to come true. It means, the fault monitoring system could diagnose the fault and handle 

the fault successfully (Figure 10). According to the above sensor network and the relevant diagnosis 

logic, the fault monitoring system could be established as follow: 

The observers block: consists of observers for all Link-sensors and Foot-sensors’ FD, sends the 

residuals to the decision block. 

The estimations block: consists of estimations for all Dot-sensor, Head-sensors or  

quasi-head-sensors’ FD, and generates residuals by comparing with the measurements. Then send the 

residuals to the decision block. 

The decision block: according to the residuals, decides every sensor is fault or fault-free, by pre-set 

thresholds. The core of the judgment rule is the diagnosis logic (law 1 to law 4). And send the results 

to the alarm block and fault reconfiguration block. 

The alarm block: gives the alarm signal to driver, if one fault occurs. 
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Figure 10. The fault monitoring system.  
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The fault regeneration block: utilizes (33) and residual from the observers block, the fault of all 

Link-sensors and Foot-sensors could be regenerated. A program which gives a pre-process for the 

residual, like Gaussian noise elimination, could be embedded in this block. 

The sensor signal regeneration block: utilizes the regenerated sensor signal to take the place of 

the sensor’s wrong signals. And the signals will be sent to the control unit in ECU. 

(1) For all Link-sensors and Foot-sensors, the reconfigured signal is:  

fault free fault sS S f− = −  

(2) For all Head-sensors and Dot-sensors, the reconfigured signal is estimated by other sensors’ 

signals and their analytical relationships.  

The fault details block: collects the information from the faulty sensors, the fault regeneration 

block and the fault management block. The information could be used by fault tolerance. 

6.4. Simulation 

In order to demonstrate the effectiveness of the fault monitoring system, the same simulation as 

shown in Section 5.2 is repeated here. The above single sensor FD method wants to prove the 

effectiveness that the equivalent model instead of the nonlinear system is proper in the view of sensor 

fault and the problem of perfect decoupling. This section realizes that the whole sensors FD and fault 

tolerance by building the sensor fault monitoring system. 

Considering the nonlinear system in Section 5.2, the following analytical relationship is easy to get: 
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By establishing the sensor network according to Section 6.1, the Lines structure (Figure 11) could 

be found and the Law 2 is appropriate.  

Figure 11. The sensor network structure according to (34). 

 

The sensor fault monitoring system could be established. Assuming the sensor one is diagnosed as 

the Head-sensor fulfilling the Law 2, and a fault occurs in the sensor two. The residual from the 

observers block shows in Figure 12, and the decision block could give conclusion clearly that a fault 

has occurred in sensor two. The alarm block will give this information to the driver. Then, the fault 

regeneration block and the sensor signal regeneration block will start to work rapidly and the 

regenerated sensor signal will be used to take the place of the faulty sensor’s signal. The sensor fault 

tolerance will be realized and the relating information will be stored in the fault details block. 

Figure 12. The residuals of sensor four, two and three. 

 

Figure 13. For the fault tolerance.  
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Figure 13 shows the comparison between fault and fault regeneration and the bias between the 

sensor signal and the sensor signal regeneration. 

7. Conclusions 

A new model-based sensors FD scheme, using an equivalent model, is developed for a kind of 

Multiple Inputs Multiple Outputs (MIMO) nonlinear systems which fulfills the Lipschitz condition.  

A fault monitoring system is established for all sensors’ FD and fault tolerance. This method needn’t 

study the nonlinear internal structure character or get the exact model. It gives a new perspective for 

these problems avoiding complex algorithms and strict additive conditions. It could be widely and 

easily used in large complex plants with a great deal of sensors, and has profound importance for 

relating actuators’ tolerant control effectively and strongly. 

Acknowledgments 

The work is supported by the National Nature Science Foundation of China (No. 61034001). 

Author Contributions 

Dejun Wang and Shiyao Song performed the algorithm design and manuscript. Shiyao Song 

performed the simulation. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Hwang, I.; Kim, S.; Kim, Y.; Seah, C.E. A survey of fault detection, isolation, and reconfiguration 

methods. IEEE Trans. Control Syst. Technol. 2010, 18, 636–653. 

2. Beard, R.V. Failure Accommodation in Linear Systems through Self-Reorganization. Ph.D. Thesis, 

Department of Aeronautics and Astronautics, MIT, Cambridge, MA, USA, 1971. 

3. Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based 

redundancy—A survey and some new results. Automatica 1990, 26, 459–474. 

4. Yin, S.; Ding, S.; Xie, X.; Luo, H. A review on basic data-driven approaches for industrial 

process monitoring. IEEE Trans. Ind. Electron. 2014, 61, 6418–6428. 

5. Martínez-Sibaja, A.; Astorga-Zaragoza, C.M.; Alvarado-Lassman, A.; Posada-Gómez, R.;  

Aguila-Rodríguez, G.; José, P. Simplified interval observer scheme: A new approach for fault 

diagnosis in instruments. Sensors 2011, 11, 612–622. 

6. Zhang, P.; Huang, J.Q. Aero engine performance monitoring and fault diagnosis based on 

transient measurements. In Proceedings of the 2nd International Symposium on Systems and 

Control in Aerospace and Astronautics, Piscataway, NJ, USA, 1 August 2008; pp. 1–4. 

7. Dong, M.; Liu, C.; Li, G.Y. Robust fault diagnosis based on nonlinear model of hydraulic gauge 

control system on rolling mill. IEEE Trans. Control Syst. Technol. 2010, 18, 510–515. 



Sensors 2014, 14 19160 

 

 

8. Shen, Q.; Jiang, B.; Shi, P.; Zhao, J. Cooperative Adaptive Fuzzy Tracking Control for 

Networked Unknown Nonlinear Multiagent Systems with Time-Varying Actuator Faults.  

IEEE Trans. Fuzzy Syst. 2014, 22, 494–504. 

9. Lu, F.; Huang, J.; Xing, Y. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a 

Simplified On-Board Model. Sensors 2012, 12, 11061–11076. 

10. Lei, Y.G.; Lin, J.; He, Z.J.; Kong, D.T. A method based on multi-sensor data fusion for 

faultdetection of planetary gearboxes. Sensors 2012, 12, 2005–2017. 

11. Arndt, M.; Ding, E.L.; Massel, T. Observer based diagnosis of roll rate sensor. In Proceedings of 

the 2004 IEEE, American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 2, 

pp. 1540–1545. 

12. Ng, H.K.; Chen, R.H.; Speyer, J.L. A vehicle health monitoring system evaluated experimentally 

on a passenger vehicle. IEEE Trans. Control Syst. Technol. 2006, 14, 854–870. 

13. Zarringhalam, R.; Rezaeian, A.; Fallah, S.; Khajepour, A.; Melek, W.; Chen, S.; Litkouhi, S. 

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States. SAE Int. J. 

Passeng. Cars Electron. Electr. Syst. 2013, 6, 83–92. 

14. Ding, S.X. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools; 

Springer: Berlin, Germany, 2008; pp. 20–139. 

15. Liu, M.; Shi, P. Sensor fault estimation and tolerant control for Itô stochastic systems with a 

descrip-tor sliding mode approach. Automatica 2013, 49, 1242–1250. 

16. Du, D.; Jiang, B.; Shi, P. Sensor fault estimation and compensation for time-delay switched 

systems. Int. J. Syst. Sci. 2012, 43, 629–640. 

17. Shen, Q.; Jiang, B.; Shi, P. Adaptive Fault Diagnosis for T–S Fuzzy Systems with Sensor Faults 

and System Performance Analysis. IEEE Trans. Fuzzy Syst. 2014, 22, 274–285. 

18. Yin, S.; Wang, G.; Karimi, H.R. Data-driven design of robust fault detection system for wind 

turbines. Mechatronics 2014, 24, 298–306. 

19. Douglas, R.K.; Chen, R.H.; Speyer, J.L. Model input reduction. In Proceedings of the American 

Control Conference, Albuquerque, NM, USA, 6 June 1997; pp. 3882–3886. 

20. Zhang, D.; Wang, H.; Lu, B.; Wang, Z.Q. LMI-based fault detection fuzzy observer design with 

multiple performance constraints for a class of non-linear systems: comparative study. Int. J. 

Innov. Comput. Inf. Control 2012, 8, 633–645.  

21. Zhang, Y.; Fang, H.; Luo, Z. H∞-based fault detection for nonlinear networked systems with 

random packet dropout and probabilistic interval delay. Syst. Eng. Electron. J. 2011, 22,  

825–831. 

22. Chen, R.H.; Mingori, D.L.; Speyer, J.L. Optimal stochastic fault detection filter. Automatica 

2003, 39, 377–390. 

23. Patton, R.J.; Chen, J. Robust fault detection of jet engine sensor systems using eigenstructure 

assignment. J. Guid. Control Dyn. 1992, 15, 1491–1497. 

24. Patton, R.; Frank, P.; Clark, R. Fault Diagnosis in Dynamic Systems: Theory and Applications; 

Prentice-Hall Int.: London, UK, 1989. 

25. Patton, R.J.; Chen, J. On eigenstructure assignment for robust fault diagnosis. Int. J. Robust 

Nonlinear Control 2000, 10, 1193–1208. 



Sensors 2014, 14 19161 

 

 

26. Ding, E.L.; Fennel, H.; Ding, S.X. Model-based diagnosis of sensor faults for ESP systems. 

Control Eng. Pract. 2004, 12, 847–856. 

27. Zhao, X.; Luo, Q.; Han, B. Survey on robot multi-sensor information fusion technology. In 

Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, 

China, 25–27 June 2008.  

28. Lei, Y.; Lin, J.; He, Z.; Kong, D. A Method Based on Multi-Sensor Data Fusion for Fault 

Detection of Planetary Gearboxes. Sensors 2012, 12, 2005–2017. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


