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Abstract: A wearable guidance system is designed to provide context-dependent guidance 

messages to blind people while they traverse local pathways. The system is composed of 

three parts: moving scene analysis, walking context estimation and audio message delivery. 

The combination of a downward-pointing laser scanner and a camera is used to solve the 

challenging problem of moving scene analysis. By integrating laser data profiles and image 

edge profiles, a multimodal profile model is constructed to estimate jointly the ground 

plane, object locations and object types, by using a Bayesian network. The outputs of the 

moving scene analysis are further employed to estimate the walking context, which is 

defined as a fuzzy safety level that is inferred through a fuzzy logic model. Depending on 

the estimated walking context, the audio messages that best suit the current context are 

delivered to the user in a flexible manner. The proposed system is tested under various 

local pathway scenes, and the results confirm its efficiency in assisting blind people to 

attain autonomous mobility. 

Keywords: electronic mobility aids; sensor fusion; object detection; Bayesian network; 

context-aware guidance; multimodal information transformation 
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1. Introduction 

According to recent statistics [1], 285 million people worldwide are estimated to be visually 

impaired worldwide, and among these, 39 million are completely blind. The loss of independent 

mobility is a large problem for these blind people, and they have to rely on the white cane as their 

primary mobility tool. However, the white cane has a restricted searching range. Therefore, 

considerable efforts have been made over the last 20 years to complement white canes with various 

types of electronic devices to aid mobility. Compared with white canes, these devices can help monitor 

a wider range of the environment and provide helpful feedback in various modalities. The most critical 

aspects of developing these electronic mobility aid devices are two-fold: how to sense the environment 

and how to inform the blind user [2]. In general, the environment can be sensed with various sensors, 

such as ultrasonic sensors, laser sensors and cameras. Users can be informed via auditory or tactile sense. 

In recent years, the camera has gained attention in studies on environment sensing because of its 

several advantages, such as providing a large sensing area and rich information. A single camera or 

stereo cameras have been widely used in building electronic mobility aid systems. A single camera is 

more compact and easier to maintain than stereo cameras are. However, it is difficult to recover depth 

from a single image. Therefore, to distinguish foreground objects from the background, systems using 

the single camera have to make strong assumptions about scene geometry and features of appearance. 

For example, the ―NAVI (Navigation Assistance for Visually Impaired)‖ system [3] uses gray-scale 

features to discriminate objects from the background. It classifies image pixels into background or 

objects using a fuzzy neural network. In [4], a color histogram is used to discriminate the ground from 

the objects. In [5,6], diagonally distributed road boundaries are extracted to find the path area, and 

then, the objects inside path area are detected by quasi-vertical edges or changes in texture patterns.  

In [7], by mapping the original image to a top-view plane, objects are detected and classified in the 

top-view space using the geometric features of object edges. Despite the efforts made to detect objects 

from a single image without direct depth cues, the appearance and geometry models used in these systems 

are valid only in limited scenarios. 

Compared to a single camera, stereo cameras are more popularly used for building mobility aid 

systems, because depth can be computed directly from pairs of stereo images. The dense depth map 

can be used as a valuable asset in object detection and scene interpretation. Some of the systems 

directly quantize a depth map into a rectangular block representation, and then convert it into tactile 

vibrations or 3D sound that is perceived by blind users. For instance, the ―TVS (Tactile Vision 

System)‖ [8] and ―Tyflos‖ system [9–12] convert quantized depth maps into vibrations on a tactile 

sensor array that is attached to the user’s abdomen. The ―ENVS (Electron-Neural Vision System)‖ [13] 

transforms a vertically divided depth map into electrical pulses that stimulate the user’s fingers.  

In [14,15], a depth map is mapped into a virtual acoustic space. 

Instead of mapping the depth map directly to other modalities, some other systems have attempted 

to improve the resolution of scene interpretation using the depth map. For example, in [16], 3D scene 

points recovered from the depth map are classified as either in the ground or the object by estimating 

the ground plane. A polar accumulative grid is then built to represent the scene. In [17], a multi-level 

surface patch model is built for object representation. In [18], object regions are extracted by 

segmenting them on a saliency map, and the corresponding depth is computed by using the depth map. 
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Moreover, some systems also include the SLAM algorithm to maintain a local 3D map for object 

detection, as in [17]. In [19], aerial objects are detected using a local 3D map built from a SLAM 

algorithm. Although many stereo-vision-based systems have attempted to improve the resolution of 

scene interpretation, inherent problems still exist in stereo-vision methods. First, the stereo-matching 

algorithm often fails in texture-less areas, where depth cues are largely unavailable. Second, the 

accuracy of the depth map is sensitive to illumination and artifacts in the scene. Noise contained in the 

depth map complicates the identification of low-level objects, such as road curbs. Moreover, the 

generation of an accurate and dense depth map is still expensive, which reduces the possibility of 

adding other useful functions with respect to limited computation resources on a portable platform. 

Compared with stereo-cameras, laser sensors can produce accurate range data that is not easily 

affected by environmental conditions. However, this usually requires laser sensors to scan the space  

to get a full 3D map, which is inconvenient in a walking-guidance task. One such example is the  

hand-held point-laser device designed by Manduchi, R. [20]. This device requires the user to swing it 

around in the space for range data collection. Because of this constraint, in some other human 

navigation systems, laser sensors are used mostly for indoor localization and 2D map building instead 

of object detection. For example, a combination of a laser scanner and a gyroscope is used in an indoor 

localization tool [21]. The tool is designed to locate blind users inside a building by matching laser 

corner features with the corners recorded in a known building map. In [22], a laser scanner and an 

inertial sensor are fixed on a helmet worn by the user for the purpose of indoor-map building and  

self-localization. A similar application of a laser scanner is in a wearable multi-sensor system 

developed in [23], which enables multi-floor indoor mapping and localization. These systems are 

designed mainly for indoor-map building, and forward-looking laser sensors can only detect high-level 

objects that are higher than the mounting position. 

Moreover, following the recent development of the RGB-D camera, guidance systems using this 

kind of camera have also emerged [24–28]. The RGB-D camera can obtain both an RGB color map 

and a depth map of the whole scene in real time. Therefore, it may be used conveniently in both object 

detection and scene interpretation. However, the RGB-D camera depends on emitted infrared rays to 

generate a depth map, and in an outdoor environment, the infrared rays can be easily affected by  

sunlight. Therefore, guidance systems developed using the RGB-D camera can only be used in indoor 

environments, which limits the range of its use in a mobility aid system. 

In this paper, a context-aware audio guidance system is proposed. The contribution of this paper is 

three-fold. First, a downward-pointing multi-sensor configuration is proposed to cover all types of 

objects, especially low-level objects that are close to the ground. Second, a multimodal profile model 

is proposed to interpret the scene at a high resolution. The third contribution is an audio feedback 

scheme based on the walking context. 

2. System Overview 

The above review of the existing research revealed aspects that need improvement. For environment 

sensing, the improvement of scene interpretation resolution will help improve users’ perceptions of the 

scene. An ideal scene interpretation resolution would include identifying the location of both the 

ground each object, as well as the type of each object. However, most existing systems can only 
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interpret the scene at a level of two categories, either the ground plane or the object. They lack the 

ability to identify one object from the other. For user feedback, with the increase in scene 

interpretation resolution and context information, there will be an increased demand for delivering 

highly semantic information to the user. However, the commonly used tactile and virtual sound 

interfaces have difficulty in meeting this demand. In this paper, we propose a guidance system solution 

that aims at solving these problems. 

The discussion in Section 1 indicates that laser sensors and cameras have properties that may allow 

them to complement each other. For example, the camera can capture an entire scene with rich 

intensity data in one frame shot, but it is hard to obtain stable and accurate depth cues from a single 

image. Although the laser sensor can provide stable and accurate range data, it requires a time-consuming 

scan to collect sufficient data that covers the whole scene. Therefore, these two types of sensors have 

the potential to be integrated in order to provide real-time multimodal data for use in the guidance 

tasks of blind people. 

Figure 1 shows an illustration of the system prototype. A camera and a laser range finder are fixed 

with a downward-pointing angle on the waist of a blind user. In this viewing angle, both low and high 

objects can be captured by the combined sensors. As the user traverses a local environment, two 

sensors collect environment data in their respective modalities, and the incoming sensor data is further 

processed on a portable computer, where high-level information regarding scene geometry, objects and 

walking context is inferred. Finally, the inferred results are forwarded to the user in a flexible manner 

via audio messages. 

Figure 1. Overview of the system prototype. 

 

The system functions are divided into three parts: moving scene analysis, walking context 

estimation and audio message generation. The task of moving scene analysis is to detect the ground 

and objects, while estimating a safe path. Based on the output of moving scene analysis, the  

walking context estimation evaluates the current walking status as safe, normal or dangerous. Finally, 

according to the estimated walking context, the audio message generation selects critical information 

from the moving scene analysis and delivers it to the user at the right moment. 
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3. Moving Scene Analysis 

3.1. Multimodal Profile Model 

In real scene analysis, because of various ground conditions, sensor data noise and unstable sensor 

motion, large uncertainties exist when separating low-level objects from the ground in the sensor data. 

Similarly, because of large variances in the shape, size and appearance of objects, many uncertainties 

also occur when identifying individual objects. To minimize the uncertainties and to obtain the optimal 

inference of the scene content, a multimodal profile model based on a Bayesian network is proposed. 

The optimal scene model parameters are inferred by maximizing their joint probability distributions. 

As illustrated in Figure 2a, the proposed multimodal profile model is composed of two parts: the 

ground model and the object model. In this model framework, the data from two sensor modalities 

play different roles. As shown in Figure 2b, the laser profile data are used as the main cues for building 

the ground model. However, the features of these depth profiles are too limited to identify object types. 

As shown in Figure 2c, edge profiles are extracted from the image and combined with associated laser 

profiles to form a multimodal representation of the object, which is used in building the object model. 

The ground model and the object model are unified in a Bayesian network, so that the optimal model 

parameters can be inferred to minimize uncertainties in this process. Figure 3 illustrates the multimodal 

profile model in the form of a Bayesian network. Using this model, the moving scene analysis 

becomes a problem of maximizing the joint probability distribution of all of the random variables 

involved. This joint probability distribution can be derived as shown in Equations (1)–(4). 
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Figure 2. Overview of multimodal profile model. (a) General diagram; (b) laser range 

data; (c) fusion of the image and laser data. 

   

(a) (b) (c) 
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Figure 3. Multimodal profile model. 

  

In Equation (1), P( , , )t t t

eG G Q  is the joint probability of ground location and laser points labeling, 

and P( | , , )t t t t

eG G Q  denotes the joint probability of all objects tΨ  given ground location and laser 

data labeling. In Equation (2), P( )P( | ) P( | )t t t t t

e eG G G G G  is the posterior probability of ground tG by 

observing ground evidence t

eG , and P( | , )t t t

eQ G G  gives the probability of assigning laser data to the 

object given estimated ground tG . Because tQ and t

eG  are conditional independent given tG , 

P( | , )t t t

eQ G G  is equivalent to P( | )t tQ G . In Equation (3), the joint probability of all objects is 

approximated as the total probability of each object instance. Here, we assume that the probability of 

each individual object is independent. 

In Equation (4), P( | )t t

mO Q  is the probability of the m-th object instance given object laser point 

labeling tQ , 1P( | )t t

m iO O  is the temporal correlation of the m-th object instance, P( | )t t

m mE O  indicates 

the fusion of the m-th object’s laser profile and the edge profile in frame t, 1P( | )t t

m iE E   is the temporal 

correlation of the m-th object’s edge distribution and P( | , )t t t

m m mC E O indicates the object’s type 

assignment probability given the m-th object’s multimodal profile. In the following sections, each 

probability distribution in the model will be defined, and the methods used to find their maximum 

probability values will be discussed. 

3.2. Ground Estimation 

As shown in Figure 4a, because the laser scanner points downward at a fixed angle, some of the 

laser points are reflected from the ground, and the others are reflected from the objects. Figure 4b 

shows laser data observed in a 2D scanning frame. Assuming that the ground plane has a low curvature, 

a linear model is used to approximate the ground plane geometry. As shown in Figure 4c, in the laser’s 

scanning frame, the ground at time t is defined as G
t
: g1x + g2y + g3 = 0. To find the G

t
 that is the most 

probable to be the real ground G
t*

, a MAP (Maximum-a-Posteriori) estimation of G
t*

 is searched as

arg max P( | )
t

t t

e
G

G G . Using the Bayesian rule, the posterior probability P( | )t t

eG G  can be derived as 

P( | ) P( )P( | )t t t t t

e eG G G G G , where P( )tG  is the prior probability of G
t
 and P( | )t t

eG G  is the 

likelihood of a given G
t
 by observing ground evidence t

eG . 
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Figure 4. Ground estimation in laser scanning frame. (a) Laser data in 3D frame; (b) laser 

data in 2D scanning frame; (c) ground model definition. 

   

(a) (b) (c) 

Ground evidence t

eG  is measured through the point-wise error ei(pi, G
t
), which is defined as the 

Euclidean distance between the laser point and the hypothesized line model. As illustrated in Figure 4c, if 

G
t
 is the ground, then the laser points on the ground can be regarded as the ―inliers‖ of this G

t
, and the 

laser points on objects can be regarded as the ―outliers‖ of G
t
. With this observation, the probability 

distribution of ei(pi, G
t
) is modeled as a mixture of two parts, as in Equation (5). The inlier error is 

modeled using a Gaussian distribution, and the outlier error is modeled as a uniform distribution. The 

two parts are combined by using a radio parameter r. Assuming that ei(pi, G
t
) at each point is 

independent from the others, P( | )t t

eG G  can be defined as shown in Equation (6). 

2

22

1 1
P( ) exp( ) (1 )

22

i
i

e
e r r

v
     (5) 

1

P( | ) P( )
n

t t

e i

i

G G e


  (6) 

To calculate P(ei) using the mixture probability distribution defined in Equation (5), three parameters 

(r, σ, v) must be determined. Given a set of laser point data, the EM (Expectation-Maximization) 

algorithm is used here to fit (r, σ, v). As Figure 5 shows, for a given model hypothesis G
t
, the set of all 

point errors E = {e1,e2,...en} is used to initialize (r, σ, v), which is then updated iteratively by 

calculating the probability of each laser point belonging to the ground. Here, a set of indicator 

variables zi is introduced; zi = 1 indicates that the i-th data point is from the ground, and zi = 0 means 

that it is from the object. Here, zi is treated as missing data, and its probability values are updated 

iteratively together with (r, σ, v) in order to approach the best values. This iterative procedure is 

repeated until convergence. 

A random sampling scheme is used to form the ground model hypothesis. Two laser points are 

randomly selected in the laser data frame to give a hypothesized line model G
t
. For each G

t
, P( | )t t

eG G  

is calculated using P(ei), the pdf (Probability Density Function) of which can be fitted through the 

above EM procedure. Finally, among all hypothesized G
t
, the one with the maximum P( | )t t

eG G is 

chosen as the ML (Maximum Likelihood) estimation of the real ground. 

  



Sensors 2014, 14 18677 

 

 

Figure 5. EM procedure for fitting P(ei). 

 

The results of ground estimation are shown in Figure 6. Figure 6a shows the best ground line model 

G
t*

 among all hypothesized G
t
, and Figure 6b shows the fitted error probability distribution with 

respect to this G
t*

. Moreover, when EM converges, a ground probability map can be obtained using 

P(zi = 1), as is denoted by the heat color indicated in Figure 6a. This ground probability map is a 

valuable cue for labeling laser data points as in the ground or in objects. 

Figure 6. An example of the ground estimation result. (a) Ground probability map;  

(b) fitted error distribution. 

  

(a) (b) 

To obtain a MAP estimation of the ground, instead of using random sampling, a guided sampling 

scheme is used to generate hypothesized G
t
. Here, each data point is assigned a sampling weight to 

denote its importance in the sampling process. An initial sampling weight is assigned using a 2D 

Gaussian distribution, as in Equation (7), where (x, y) is a point in the laser’s 2D scanning frame and  

(x0, y0) is the ground center position obtained from prior knowledge. For the frames following the 

initial frame, P(G
t
) is modeled using the posterior probability of the ground model at time t−1. The 

final prior probability P(G
t
) is defined as in Equation (8). In the initial frame, P(G

t
) is determined by 
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the initial sampling weight of two laser points. In the following frames, P(G
t
) is determined by the 

posterior probability of the ground model in the previous frame. 

2 2

0 0

2 2

( ) ( )
P( , ) exp( ( ))

2 2x y

x x y y
x y A

 

 
    (7) 

1 1 2 2

1 1

P( , )* ( , ) 0
P( )

P( | ) 0

t

t t

e

x y P x y t
G

G G t 


 


 (8) 

3.3. Object Detection 

3.3.1. Object Probability Map Labeling 

After the best ground model G
t*

 is found, P(zi = 0) gives the probability of each laser point 

belonging to the object. By using P(zi = 0), an object probability map can be obtained, which is a 

reversed version of the ground probability map, as shown in Figure 7b. Using this object probability 

map, the problem of object detection can be modeled as seeking the optimal labeling of laser points as 

belonging to objects or the ground. 

Figure 7. Object probability map. (a) Ground probability map; (b) object probability map; 

(c) optimal labeling threshold. 

  

(a) (b) (c) 

In the multimodal profile model, Q
t
 is used to denote such a labeling. Searching for the optimal 

labeling emerges as another MAP estimation problem as: 
* arg max P( | )

t

t t t

Q

Q Q G . By applying the 

Bayesian rule, the posterior probability P( | )t tQ G can be written as P( | ) P( )P( | )t t t t tQ G Q G Q . 

Assuming each labeling is equally likely to be Q
t*

, P(Q
t
) can be omitted. The P(G

t
 | Q

t
) is measured 

using a between-class variance 
2

og . To define this 
2

og , a histogram of the object probability map is 

built as shown in Figure 7c. The horizontal axis is −log(P(zi = 0)) ranging from zero to 50, and the 

vertical axis is the number of laser points that fall in each bin. Based on this minus-log-probability 

histogram, the hypothesized labeling Q
t
 is formed by choosing one of the bins as a threshold to divide 

the laser points into either the object or the ground class, and the between-class variance 
2

og  can be 

calculated as in Equation (9), where robj and rgnd are the ratio of the object laser points and the ground 

laser points and ìobj and ìgnd are the mean minus-log-probability of the object class and ground class. 

Finally, the Q
t
 with the largest 

2

og  is selected as the optimal labeling Q
t*

. In Figure 7c, the bin with the 
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value ―22‖ is selected as the best threshold. The minus-log-probability of 22 corresponds to a 

probability value of 0.82. Therefore, in the object probability map, a laser point with a probability 

value larger than or equal to 0.82 is labeled as belonging to the object. 

2 2

og obj gnd obj gnd( )r r     (9) 

3.3.2. Laser Profile Clustering 

Object detection at a high resolution is a highly uncertain process. A MAP estimation of P( | )t tQ G  

can reduce uncertainties when separating object laser points from ground laser points. In order to 

handle uncertainties when separating individual objects from each other, the maximum value of 

P( | )t t

mO Q is to be searched. Assuming that the object generally has a smooth surface profile, then

P( | )t t

mO Q  can be measured according to the degree of smoothness observed in the laser data.  

This turns into a laser profile clustering problem. Here, we solve this problem based on a mean shift  

clustering scheme. 

Mean shift clustering can be considered as a nonparametric kernel density estimation [29,30], where 

an unknown density function f(x) of the data is estimated via a kernel density function
^

f( )x . The local 

maxima of the estimated kernel density function then yields cluster centers of the data. A general form 

of the kernel density function is given by Equation (10), where K is the kernel function and h is the  

kernel size. 

^

1

1
f( ) ( )

n i

d i

x x
x K

nh h


   (10) 

Based on this kernel density estimation scheme, the kernel density function is defined to determine 

the smooth laser clusters. Now, given a set of object laser points P = {p1,...pn}, the goal is to cluster a 

smooth profile in this set of laser points. Here, a local smooth likelihood function Si(x) is defined in a 

neighborhood of pi to estimate the probability that a point x is located on a local object profile in this 

neighborhood. To define Si(x), a combination of two kernels is used. 

Figure 8. Definition of circular and ellipse kernels. 

  

As is shown in Figure 8, the flat circular kernel determines the scale of the neighborhood to be 

evaluated, depending on kernel size h. All laser points that are included in the circular kernel are used 

to calculate an ellipse kernel Ei by applying PCA (principal component analysis) to the involved laser 

points, as in Equation (11), where ci is the centroid and iΣ  is a covariance matrix with two 
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eigenvectors v1 and v2. Because v2 is the direction in which the smallest depth variance occurs, its 

orthonormal vector v1 indicates the most probable position of a local object profile in  

this neighborhood. 

T 1( ) { : ( ) ( ) 1}i i i i

   E x x x c Σ x c  (11) 

2 2

2S ( ) N ( , , )[ [( ) ] ]i i i i i ih   x x c Σ x c v  (12) 

The smoothness likelihood Si(x) of this local neighborhood is then evaluated with respect to v1 as in 

Equation (12). The squared distance from a position x to the possible object profile location v1 is used 

to measure the smoothness, which reflects the probability of a position 2x R  located on this profile. 

A 2D anisotropic Gaussian weighting function is used to diminish the possibility of distant points on 

the local profile. For each sampled laser point pi, a corresponding Si(x) can be calculated,  

which is illustrated in Figure 9. By accumulating all of the Si(x) defined at each laser point in the 

neighborhood, a complete kernel density function 
^

f( )x  can be obtained as in Equation (13), where K is 

a normalizing factor. This kernel density function 
^

f( )x  is used to approximate the unknown object  

density P( | )t t

mO Q . 

^

1

1
P( | ) f( ) S ( )

nt t

m ii
O Q

K 
  x x  (13) 

Figure 9. Local smooth likelihood function. 

 

Figure 10. Accumulated smooth likelihood function. (a) Ellipse kernel in the laser frame;  

(b) accumulated smooth likelihood function in the 2D view and 3D view. 

   

(a) (b) (c) 
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As shown in Figure 10, the local smoothness likelihood Si(x) defined at each ellipse kernel is 

accumulated to approximate the unknown pdf of P( | )t t

mO Q . Ellipse kernels that have similar positions 

and orientations will accumulate a higher probability vote on the positions involved, which reflects that 

they are more likely to locate on a smooth profile. The locations that get the largest vote are the cluster 

centers that indicate the existence of an object profile. 

Using the defined 
^

f( )x , the optimal segmentation of objects can be found by searching for local 

maxima in 
^

f( )x . Here, a mean shift scheme based on gradient ascent maximization is used, as is 

defined in Equation (14). An iteration procedure from a sample point pi converges if the mean shift 

vector is less than the given threshold. 

0

1

1

,

N ( ) [( ) ]

N ( )

k+1 k k

i i i i i

n k k

j i j i j j jjk

i n k

j i jj





  

 








p p p p m

p c p c n n
m

p c

    (14) 

The above mean shift process is applied to every laser point in order to allow each one to converge 

to the nearest local maxima. After merging local maxima that are sufficiently close to one another, the 

final cluster centers can be determined. Each laser point is assigned to the cluster center to which it 

converges, and each laser profile cluster represents an individual object. 

3.4. Multi-Category Object Classification 

3.4.1. Pixel-Level Fusion of Laser and Image Data 

Although laser data are efficient for ground and object detection, the depth profile they provide is 

still limited with regard to identifying object categories. Therefore, the edge profiles from images are 

used to supplement laser profiles in order to classify objects into multiple categories. To combine the 

edge profiles with the laser profiles, sensor calibration is performed to map laser profiles into the 

image domain. 

Figure 11. Mapping laser points into the image frame. (a) Pixel-level fusion of laser and 

image data; (b) fusion uncertainties on the image plane. 

  

(a) (b) 
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We use the method proposed in [31] to calibrate the laser sensor with the camera. After calibration, 

a mapping relationship is determined in order to map a laser point Pl from the laser’s coordinate 

system into the point Pi in the image plane, as in Equation (15), where <Φ  Δ > gives the mapping 

relationship between the laser and camera coordinates, K is the camera’s intrinsic matrix and d is the 

non-linear distortion parameters. The example of a mapping result is shown in Figure 11a. 

i lf( , , , , ) -1
P P Φ Δ K d  (15) 

In Equation (15), the set of calibration parameters <Φ ,Δ ,K,d> may contain errors. Therefore, 

uncertainties exist when using this parameter set to map Pl to Pi. Here, we want to estimate the 

uncertainty of a non-linear mapping function f( )ξ , based on the uncertainty of its mapping parameters 

( , , , )ξ Φ Δ K d . By using the non-linear covariance propagation theorem [32], the covariance matrix 

of f( )ξ  can be approximated by Equation (16), where ξ is the covariance matrix of calibration 

parameter vector ξ , and 
fJ  is the Jacobian matrix of f( )ξ , evaluated at 



ξ . 

T

li f ξ f J J  (16) 

Given one laser point Pl, a 2 × 16 Jacobian matrix Jf can be calculated with respect to the 16 

calibration parameters. Thus, Equation (16) finally produces a 2 × 2 covariance matrix 
2 2

li u vdiag( , )σ σ , which gives the deviation of the coordinates of Pi mapping from Pl. Figure 11b 

shows this pixel-level fusion uncertainty. The mapping position on the image is shown in blue dots, 

and the uncertainty of each mapped position is illustrated using an ellipse centered at the mapping 

position. The major and minor axes of the uncertainty ellipse are spanned by u3σ  and v3σ , 

representing 95% of the probability that the mapping position lies in this ellipse. 

3.4.2. Profile-Level Fusion of Laser and Image Data 

Based on the pixel-level fusion of the laser points and image pixels, we can further move to the 

profile-level fusion of the laser profile and edge profile. This multimodal profile fusion is represented 

as P( | )t t

m mE O  in the multimodal profile model. 

Figure 12. Profile-level fusion of laser and image data. 
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Figure 12 illustrates the modeling of P( | )t t

m mE I  in the form of a weighted edge-orientation 

histogram. In general, object laser profiles are supposed to break up at object boundaries. Therefore, if 

edge pixels are traced from these break-points on the image, useful local features concerning object 

shape can be obtained. In Figure 12, the image on the left side shows object laser profiles mapping 

onto the edge map, where li  at each break point specifies an ellipse neighborhood, within which the 

mapping uncertainties can be modeled as a 2D Gaussian distribution. 

As Figure 12 shows, inside this ellipse neighborhood, each sampled point specifies a rectangular 

window. For each rectangular window, a chain-code histogram is built to represent the edge 

orientation distribution around this neighborhood. Finally, all histograms are combined into one 

histogram, as in Equation (17), where hi is a vector containing eight bins and wi is a weight that is 

determined by the 2D Gaussian distribution that is used to model pixel-level fusion uncertainty. 

1

n

i ii
w


H h  (17) 

The weighted chain-code histogram can work effectively as a local shape descriptor. For objects 

with quasi-vertical side-profiles, a dual-peak pattern at Bin 2 and Bin 6 can be observed in the chain-code 

histogram, whereas for objects with lateral side-profiles, a dual-peak pattern at Bin 3 and Bin 7 can be 

observed. Therefore, the chain-code histogram can provide useful shape cues with which to identify 

vertical objects with lateral objects. An example of chain-code histogram extraction in a real scene is 

shown in Figure 13. The laser profile and its associated edge profile constitute a multimodal profile 

representation of the object. 

Figure 13. An example of the weighted chain-code histogram. 

  

3.4.3. Temporal Correlation of Multimodal Profile Model 

To further reduce uncertainties in moving scene analysis, temporal correlation cues across adjacent 

data frames are included in the multimodal profile model. The temporal correlation cues are 

represented as 1P( | )t t

m iO O   and 1P( | )t t

m iE E   in the multimodal profile model. 

Here, a Bayesian tracker based on data association is proposed. As shown in Figure 14, there is a 

collection of l object profiles tO  at time t and a set of k object profiles 1tO   at time t−1. For one object 

profile t

mO  in tO , decisions should be made regarding which object profile in 1tO   corresponds to 1t

mO   

or whether no object profile corresponds to 1t

mO  , when t

mO  is a newly-emerging object. The posterior 

probability of each object profile in 1tO   being 1t

mO   is evaluated as in Equation (18), where 1P( )t

iO   is 
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the prior probability that each object profile in 1tO   is 1t

mO  , and 1P( | )t t

i mO O  is the likelihood of each 

object profile in 1tO  , given t

mO  as an on-line model. 

1 1P( | ) P( )P( | )t t t t t

m i m i mO O O O O   (18) 

Figure 14. Laser profile association. (a) Laser profile in time t; (b) laser profile in time t−1. 

 

(a) (b) 

The prior probability term P( )t

mO  is modeled as a 2D isotropic Gaussian distribution N ( , , )m mx u Σ , 

where x is a position in the laser’s scanning frame and um is the centroid of laser profile t

mO . The 

variance ,x y   is specified using the largest movement T of an object laser profile between adjacent 

frames. The likelihood of 1P( | )t t

i mO O  is calculated using the ICP (iterative closest point) algorithm. 

By applying ICP matching between model profile t

mO  and each target profile 1t

iO  , an optimal 

transformation <Ri, ti> can be obtained. In addition, a point-wise error can be calculated as 

j j je


  x R tx . Here, a threshold is applied on each ej and the point xj, whose transformed error ej 

is smaller than  , is defined as an inlier, and the remaining points are all regarded as outliers. The 

number of inliers is used to define the likelihood, as in Equation (19), where inlierN  is the number of 

inliers in the target profile, MS  is the number of points in the model profile and TS  is the number of 

points in the target profile. 

1 inlier

M T

P( | )
max( , )

t t

i m

N
O O

S S

   (19) 

By calculating the posterior probability of each target profile 1t

iO   as 1t

mO  , the target profile with the 

highest posterior is selected as 1t

mO  . Additionally, if none of the candidates has a posterior probability 

higher than the minimum threshold, then 1t

mO   is assumed to not exist, and t

mO  is deemed the newly 

emerging object profile. When 1P( | )t t

m iO O   reaches the maximum by finding the 1t

mO  , 1P( | )t t

m iE E   

can also be regarded as reaching the maximum with 1P( | )t t

m mE E  , which is calculated as in Equation 

(20). An accumulated chain-code histogram can be built by propagating the chain-code histogram 

extracted around the corresponding laser profiles across frames. 

1 1P( | ) P( ) (1 )P( )t t t t

m m m mE E E E      (20) 

The accumulated chain-code histogram is more stable than the one built from the single frame is. 

When the laser scanner moves forward, the laser profile will project on different parts of one object. In 

real situations, some parts of this object might suffer from partial occlusion, whereas other parts might 
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not. The accumulated chain-code histogram incorporates the local edge distribution from different 

local parts of the same object, thus greatly strengthening the histogram’s tolerance to partial occlusion. 

3.4.4. Object Classification 

The chain-code histogram provides shape features from edge profiles. Size, height, orientation and 

vertical motion are extracted from laser profiles to constitute another four-bin histogram after 

normalization. Finally, a multimodal profile histogram can be obtained for object classification. A 

three-layer classification structure is proposed, as shown in Figure 15. 

Figure 15. Three-layer structure for object classification. 

 

At the first level, three object types are defined. ―Vertical Object (Vobj)‖ have quasi-vertical edges 

on their side-profiles, such as poles, pedestrians, doors and trees. ―Lateral objects (Lobj)‖ have 

diagonally distributed edges on their side profiles, such as road curbs, side walls and guardrails. 

―Irregular objects‖ do not have regular shapes, such as bushes or piles of stones, and are addressed as 

―pile‖ in our system. Edge profiles are used as major features to classify objects in the first level, 

because it is more stable than the motion feature is, and it does not require the relative movement 

between the laser sensor and the object. However, if there is no sufficient edge profile that can be 

extracted around this object, then the motion feature from the laser profile is referred to in the 

classification process. 

At the second level, objects are further classified into more specific categories by using features from 

the laser profile. ―Poles‖ are vertical objects that have thin cross-sections, usually within a width of  

30 cm. ―Curb‖ usually has a lower height and quasi-horizontal profile orientation in the laser data domain. 

Stairs can also be identified as a specific object out of the ―lateral object‖ group. After fitting the laser 

profile into a poly-line model, the number of poly-line segments is used as a criterion to identify stairs. 

At the third level, a sophisticated image descriptor, such as the HOG (Histogram of Oriented 

Gradient) [33], is used to identify more specific object types from their ―parent-categories‖. One of the 

benefits of this layered structure is that the recognition of more complex object types can be guided by 

the position of their parent-object instances. The location of their parent-object instance provides an 

ROI (Region of Interest) that can help reduce the recognition cost of complex object types. Here, in the 

current stage of our system, only pedestrian recognition is applied at the third level. A pre-trained 

HOG descriptor is used to match the ROI where the ―pole‖ object is detected. If the matching score is 

higher than the pre-defined threshold, then the ―person‖ is identified in the ―pole‖ category. 
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In order to perform the classification using the above three-layered approach, the category 

prototypes of the defined object categories must be built from training data. In brief, after the 

collection of the training data concerning all object categories, the multimodal profile histogram is 

extracted for each object in the training data set, and then each multimodal profile histogram is treated 

as a 12-dimensional feature vector. K-means clustering is then performed in this 12-dimensional 

feature space to cluster the feature vectors into seven clusters. The cluster center is used as the object 

category prototype, as shown in Figure 16. 

Figure 16. Object category prototype. 

 

In the multimodal profile model, the probability of assigning an object type to a detected object is 

described by P( | , )t t t

m m mC O E . According to the Bayesian rule, this probability can be derived as in 

Equation (21), where P( , | )t t t

m m mO E C  is the likelihood of given object prototype C, and P( )t

mC  is a prior 

probability term. In general, it is assumed that all of the object categories are equally likely to appear 

on the road; therefore, P( )t

mC  can be omitted. The posterior probability is dependent on the likelihood 

term, P( , | )t t t

m mO E C . 

P( , | )P( )
P( | , )

P( , )

t t t t
t t t m m m m
m m m t t

m m

O E C C
C O E

O E
  (21) 

1

1

P( | ) Z( ) exp( d ( ))

Z( ) exp( d ( ))

t t t t

m m i m

Kt t

m i mi

C i 



  

 

H H H

H H
 (22) 

The likelihood is modeled using the Gibbs distribution, as in Equation (22), where d ( )t

i mH  

represents the histogram distance from a measured multimodal profile histogram t

mH  to the i-th object 

category prototype histogram, and Z( )t

mH  is a normalization factor. To calculate the histogram 

distance d ( )t

i mH  between a measured histogram and a prototype histogram, the 2  distance 

measurement is used as in Equation (23), where h0 is the prototype histogram and hm is the measured 

histogram. Parameter i represents the i-th histogram bin. 

2
2 ( [ ] [ ])
( , )

[ ] [ ]

m
m

i m

i i

i i






 0

0

0

h h
h h

h h
 (23) 
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4. Audio Message Generation 

4.1. Walking Context Estimation 

The walking context is defined as the safety level of the walking condition. A fuzzy logic inference 

model is built to evaluate this safety level, based on several factors defined in the output of the moving 

scene analysis, as illustrated in Figure 17. To define the membership functions of four input variables, 

sample data of these four variables are collected from various scenes. By examining the sampled data 

distribution in their respective domains, data clusters are localized and used to define fuzzy sets, as 

shown in Figure 18. 

Figure 17. Fuzzy logic model for walking context estimation. 

 

Figure 18. Fuzzification of walking context factors. (a) Fuzzification of ñ;  

(b) fuzzification of d; (c) fuzzification of ö; (d) fuzzification of v. 

    

(a) (b) (c) (d) 

The output variable of the walking context is defined as the degree of safety. It is denoted as c and 

measured as a percentage value. Because no direct data is available to calculate this value, the intuition 

and experience of a normal person is used to define its membership function. For each sampled 

scenario with a set of fuzzy values of four input variables, we let the users decide the degree of safety 

in this scenario by using their intuition and experience. With a set of fuzzy values of four input 

variables on one side and the user’s answers on the safety degree on the other side, the parameters of a 

piece-wise linear function are learned from these data. 

To perform fuzzy inference, a set of fuzzy rules is also needed. Basically, fuzzy rules take the form 

of ―If...then...‖ in correlating a set of fuzzy values of input variables to a unique fuzzy value of the 
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output variable. For example, ―If   is low, and d is far, and   is small and v is low, then the walking 

context c is safe‖. The fuzzy rules used in our fuzzy logic model are derived from the user-labeled data 

when the membership function of output variable c is learned. Therefore, these fuzzy rules reflect 

normal human decisions in a walking context under different situations. A list of the fuzzy rules is 

shown in Table S1, and a fuzzy inference process is illustrated in Figure S1. The result of all fuzzy 

inference processes can be represented as a solution space shown in Figure S2. 

4.2. Message Definition 

The message structure is defined based on the type of information it expresses. The information that 

should be delivered to the user is divided into four basic sets, as shown in Table 1. The words in 

brackets are template words that can be changed according to the result of the detection. 

Table 1. Message definition. 

Message Type Message Example 

Safe direction ―Go (12 o’clock)‖. 

Walking context 
―Danger context attention‖.  

―Back to normal/safe‖. 

Closest object type 
―vertical object‖, ―lateral object‖, ―pole‖,  

―person‖, ―curb‖, ―pile‖ 

Closest object location Acoustic beeper message 

User motion 
―Please walk faster/slow down/stop‖.  

―Large departure attention‖. 

In the safe-direction message set, clock-face directions are used to give messages about direction, as 

shown in Figure 19. The laser’s scanning plane is shown as a big clock-face, in which two leftward 

directions are specified as 10 and 11 o’clock and two rightward directions are at one and two o’clock. 

Twelve o’clock is used to represent a straight, forward direction. Object-type messages are defined 

based on the object classes described in Section 3.4.4. When many objects appear at the same time, the 

type of every object cannot be announced one by one. Considering that the object closest to the user is 

the most critical, only the closest object’s type is delivered to the user. However, the location of the 

closest object is difficult to deliver using verbal messages, because it changes from frame to frame. 

Therefore, an acoustic beeper message set is defined to announce the nearest object position, which is 

similar to that in [16]. The definition of beeper messages are shown in Figure S3 and Table S2. 

Figure 19. Definition of clock-face direction. 

 



Sensors 2014, 14 18689 

 

 

4.3. Message Delivery Scheme 

To define a proper message delivery scheme, the estimated walking context offers valuable cues for 

selecting the messages that are more important at the moment. The set of message delivery rules is 

defined in Table 2. 

Table 2. Message delivery rules. 

Walking Context Output Message Set 

Safe 
safe direction, user motion 

close obstacle type and position 

Normal 
safe direction, user motion, 

closest obstacle type and position 

Danger safe direction, walking context 

In a ―danger‖ context, it is urgent for the user to receive instantaneous messages about safe walking 

directions. Less important messages should be blocked in order to avoid their interference with the 

delivery of messages that give safe directions. In normal, safe contexts, it is more desirable for the user 

to know the types and positions of objects in the surrounding environment in order to maintain a safe 

walking direction. Therefore, in safe and normal contexts, a full set of message types can be delivered, 

whereas in dangerous contexts, only safe-direction and walking context messages are allowed to  

be delivered. 

Another important aspect is the delivery timing. Here, the messages are divided into three types of 

timing, as shown in Table 3. Hard timing messages have a higher priority than soft timing messages 

do, and they must be delivered instantly whenever changes in the situation are detected. In hard timing 

messages, safe direction messages have a higher priority than walking context messages do. User motion 

messages have the lowest priority in these hard timing message sets. 

Table 3. Message delivery timing. 

Types of Timing Instruction Set 

Hard timing safe direction > walking context > user motion 

Soft timing closest object type 

Real timing closest object position 

Messages about the closest object’s type are defined as soft timing messages. This type of message 

is considered less critical for the user’s walking safety. Therefore, soft timing messages can be blocked 

by any hard timing message. Messages about the location of closest object are defined as real timing 

messages. Because an acoustic beeper is used to indicate object location in real time, this type of 

beeper message can be delivered in parallel with other verbal messages. 

5. Experimental Results 

To validate the effectiveness of the proposed system, it was tested using real-scene data collected 

from a laser scanner and a camera. In this section, the experimental results of each part of the system 

will be shown and discussed. 
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5.1. System Prototype and Test Data Collection 

A prototype of the system is shown in Figure 20. A camera and a laser scanner were bound to each 

other and fixed on a solid shelf. The combined sensors were connected to a tablet computer for the 

acquisition and processing of the sensor data. The specifications of the sensors used in the experiment 

are shown in Table 4. A wearable design of the system prototype is shown Figure S6. In the 

experiment, the prototype system was mounted on a human who traversed various urban paths. Image 

frames with synchronized laser scan data on these urban path scenes were collected and recorded. 

Some test data samples are shown in Figure 21, and the system output on processing these test data is 

shown in Figure S4 and Figure S5. 

Figure 20. System prototype. 

 

Table 4. Sensor specification. 

System Component Specification 

Hokuyo Laser Scanner 

UTM-30LX-EW 

Angular resolution 0.25° 

Range resolution 1 mm 

Scanning speed 25 ms/scan 

Scanning range 270° 

Measuring range 0.1 m~30 m 

Logitech Webcam 

9000L 

Image resolution 640 × 480 

Frame rate 30 fps 

Figure 21. Test data samples. 
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Figure 21. Cont. 

 

5.2. Ground Estimation Performance 

In this section, the ground estimation performance will be evaluated using the collected test data. 

Ground estimation is the most essential part of the whole system. It not only gives the ground location, 

but also provides a reference for generating hypotheses about the objects. 

The performance of the ground estimation is analyzed according to two aspects: ground  

evidence model fitting and ground laser point detection rate. The ground evidence model refers to the  

Gaussian-uniform mixture type of error model. To evaluate its fitting performance, 13 representative 

scenarios were selected from test data. These 13 scenarios contained various ground conditions,  

from flat to rough, and various object densities, from low to high. The mixture type of error model  

was used to fit the laser scan data of these 13 scenarios. In the first round, the mixture model 

parameters were fitted from data using the EM algorithm. In the second round, the mixture model 

parameters were manually tuned to reflect real data distributions. The parameters of the manually 

tuned mixture model were used as true model parameters in order to evaluate how well model 

parameters were fitted. 

In Figure 22, the best fitting parameters (r, ó) for each scenario in the first round are referred to as 

the ―estimated model‖ marked with small circles. The parameters of the manually tuned model are 

referred to as the ―true model‖ marked in small rectangles. Variance ó reflects the spreading range of 

the ground laser points, and the inlier ratio r reflects observable ground areas in the scene. It can be 

observed that in scenarios with small ó and large r, the estimated model parameters approached true 

model parameters very closely, whereas in scenarios with large ó and small r, more obvious deviation 

can be noticed between the estimated model and the true model. 

From the results shown in Figure 22, it can be concluded that the Gaussian-uniform error model 

reflected the real data distribution well in cases of relatively flat ground with few objects. In cases of 

rough ground with many objects, the estimated ó tended to be smaller than the true ó value, which 

indicates a higher probability of identifying ground laser points as object laser points. This might give 

rise to the false negative rate in terms of ground laser point detection. Despite some increased 

inaccuracies in cases of rough ground, the errors were still within the acceptable range. 
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Figure 22. Ground evidence model fitting performance. 

 

The ground point detection rate was evaluated using captured video sequence data. The results of 

detection from a representative video sequence that contains about 1876 data frames are shown in 

Figure 23. The horizontal axis represents consecutive image frames indexed from zero to 2000, and the 

vertical axis indicates the true positive rate, which is calculated as in Equation (24), where TP is true 

positives and FN is false negatives. 

/( )TPR TP TP FN   (24) 

Figure 23. Ground point detection rate. 

 

To calculate true positive and false negatives, the laser points of each data frame were manually 

labeled as ground points or object points. These manually labeled data are used as the ground truth. 

The results of detection in each data frame were compared with the ground truth; true positives were 

correctly detected ground points, and false negatives were ground points that were wrongly classified 

as object points. Of the two types of detection errors (false positive and false negative), here, we are 

more concerned with false positives. The proposed method tends to produce more false positive errors 

than false negative errors, which means that there is a higher chance for classifying ground points as 

object points than vice versa. This error producing property is also reasonable for reducing blind user’s 

collision risk. 

For a comparison, a method using a fixed threshold to determine ground points and object points 

was implemented. This fixed threshold method used a fixed distance threshold to the linear ground 

model to determine whether a laser point was a ground point or not. The true positive rate of ground 
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points detected using the above two methods was calculated for every frame, and the results are shown 

in Figure 23. The results showed that the proposed method maintained a high detection rate through all 

frames compared with the fixed threshold method. Although the fixed threshold was tuned to achieve a 

high detection rate in the first few frames, its detection rate dropped dramatically, then increased and 

decreased vigorously in a very unstable manner. This result showed that the fixed threshold method 

could not adapt to accommodate various ground conditions. In contrast, the performance of the 

proposed method was stable in keeping a high detection rate across all frames. 

5.3. Object Detection and Classification Performance 

To evaluate the performance of object detection, the number of objects in the test video sequence 

was used as the major measurement. The results of detection from a representative video sequence 

containing 2670 data frames are shown in Figure 24a. The horizontal axis shows frame indexes, and 

the vertical axis shows the number of objects. 

Figure 24. Object detection performance. (a) Proposed method performance; (b) jumping-distance 

method performance. 

 

(a) 

 

(b) 

The ground truth data were obtained by manually labeling the number of objects in each data frame, 

and the number of objects detected in each frame was obtained by using the proposed clustering 

method. As Figure 24a shows, the proposed method tracked the ground truth data well in over 83% of 

the data frames, which indicates that the proposed smoothness likelihood function was able to capture 

smooth discontinuities by estimating laser data distributions in a local region. 
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For a comparison, a jumping distance-based method was implemented. The results of its object 

detection in the same video sequence are shown in Figure 24b. The jumping distance method used a 

fixed threshold to segment the laser profiles. As Figure 24b shows, the object detection accuracy of the 

jumping distance method was much worse than that of proposed method. There are not only large 

deviations from the ground truth, but also a large variance across frames. The result showed that 

compared with the proposed method, the jumping distance method tends to produce less accurate and 

unstable detection results. 

The object classification performance was evaluated by using the confusion matrix shown in  

Figure 25. In the confusion matrix, the vertical axis shows the actual category and the horizontal axis 

shows the predicted category. The object types in each frame of the test video sequence were manually 

labeled as ground truth data. The results of classification from a representative test video sequence 

consisting of 2680 frames are shown in Figure 25. 

Figure 25. Object classification performance. (a) Performance with proposed model;  

(b) Performance without temporal correlation; (c) Performance without temporal and 

spatial correlations. 

   

(a) (b) (c) 

As shown in Figure 25a, the predicted object category labels were produced by using the full 

multimodal profile model, following the three-layer classification structure. As Figure 25a shows, the 

classification errors mainly occurred among the object types that belong to the same mid-level 

category, which is illustrated by the two sub-regions marked in Figure 25a. On the other hand, the 

confusion rate between the vertical object category and the lateral object category was relatively low. 

The weighted chain code histogram with temporal accumulation was effective in maintaining a low 

rate of classification errors in the first layer. This result provided a good basis for identifying finer 

object classes in the following layers. In fact, the major factor affecting the classification of mid-level 

categories in the first layer is the partial occlusion and overlapping of object edges in a local region. In 

the multimodal profile model, we proposed building edge histograms by fusing the edge distributions 

in multiple local regions both spatially and temporarily to reduce the influence of edge occlusion  

and overlapping. 

To show the effectiveness of this multiple local region scheme, Figure 25b provides the results of 

classification obtained by using the incomplete multimodal profile model, without the temporal 

accumulation of the weighted chain-code histogram. Compared with the classification rate shown in 

Figure 25a, the results showed that the true positive rates in the diagonal dropped, and first-layer 

classification errors increased, which led to significant error propagation in the second and the third 
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layers of object classes. A chain reaction initiated by the increase in classification errors among the 

first-layer categories resulted in the increase in total errors, which affected almost all classes. 

In addition, Figure 25c shows the classification results using the direct fusion of edge and laser 

profiles. In this direct fusion method, the edge histogram was built using only a single, local region 

centered at the break point of the laser profile, without considering the edge distributions of other 

adjacent local regions or adjacent temporal frames. Built in this way, the edge histogram is much more 

easily affected when edge profile occlusion or overlapping occurs. The deterioration in the rate of 

object classification is clearly shown in Figure 25c. The chain reaction of severe error propagation 

caused a dramatic decrease in the true positive rates, with classification errors spreading to the false 

positive and false negative elements. 

In the proposed three-layer classification structure, more specific object types with complex 

appearances can be identified using sophisticated image descriptors in the third layer. In the three-layer 

structure, the object class in the bottom layer benefited from its ―parent category‖ in the upper layer. 

An example is pedestrian detection: if we use the HOG descriptor to detect pedestrians in the entire 

image, there will be many false positives, and the detection speed will be slow. However, if we use the 

multimodal profile model with a three-layer classification structure, the recognition of vertical objects 

will give reasonable constraints on the possible location of pedestrians. The HOG descriptor can be 

used to check only several vertical object locations for the recognition of pedestrians. This not only 

helps reduce false positives, but also hastens the detection of pedestrians. 

Figure 26. Pedestrian detection performance. 

 

The receiver operating characteristic (ROC) curve of the pedestrian detection rate is shown in  

Figure 26. The ROC was obtained by using the HOG descriptor with the three-layer structure in the 

multimodal profile model and by using the HOG descriptor alone to scan the entire image. The results 

clearly showed that pedestrian detection using the proposed three-layer structure outperforms the direct 

detection approach. 
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5.4. System Run Time Performance 

The entire algorithm was implemented in C++ and tested on a laptop computer. The specifications 

of the testing platform are listed in Table 5. In Table 6, average runtime is shown with respect to each 

module, each function in the module, as well as each iteration unit of the function. The iteration unit of 

each function is shown in Table 7. The runtime of each function is calculated as the average runtime 

value on test data sets for one frame. 

Table 5. Testing platform specification. 

Platform Component Specifications 

CPU Intel i5@ 2.5 GHZ 

Memory 4GB DDR3 

GPU GeForce GT 740M 

OS Windows 7 32 bit 

Programming Tool Visual Studio 2010 

Compiler Microsoft VC++ 10 

Table 6. Average run time performance. 

Module Function 
Runtime/ 

Iteration Unit 

Runtime/ 

Function 

Runtime/ 

Module 

Ground estimation Ground model fitting 1.03 ms 7.34 ms 7.34 ms 

Object detection 
Laser profile clustering 0.12 ms 6.52 ms 

21.25 ms 
Laser profile tracking 0.83 ms 14.73 ms 

Object classification 

Multimodal profile histogram 0.62 ms 8.56 ms 

38.83 ms Generic object classification 0.58 ms 6.82 ms 

Pedestrian classification 4.87 ms 23.45 ms 

User feedback 
Context estimation 5.35 ms 5.35 ms 

8.75 ms 
Message generation 0.86 ms 3.4 ms 

Total All functions  76.17 ms 76.17 ms 

Table 7. Iteration unit of each function. 

Function Iteration Unit 

Ground model fitting One hypothesized model fitting 

Laser profile clustering One point converges to cluster center 

Laser profile tracking Tracking of one laser profile 

Multimodal profile histogram Get multimodal histogram from one object 

Generic object classification Classification of one generic object 

Pedestrian classification Classification of one pedestrian 

Context estimation Estimate context for one frame 

Message generation Generate one message  

The indicator ―Runtime per iteration unit‖ shows that it takes about 1.2 ms (0.62 ms + 0.58 ms) to 

recognize one generic object type. Generic object types are those in the first and second layer of the  

three-layer structure, as shown in Figure 15. For pedestrian detection in the third layer, it takes 4.87 ms 

to calculate the HOG descriptor and to do the classification for one hypothesized window. When 
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calculating the HOG descriptor, a GPU accelerated version was used, which is much faster than  

a CPU-based version. The total average run-time was 76.17 ms for one data frame, which is 

approximately 13 fps. 

In our experiment, a blind pedestrian was observed to walk at a speed of around 0.5 m/s~1.8 m/s on 

average. Under this walking speed, 3~5 s was an appropriate time interval for message delivery. 

Therefore, to meet the run-time requirement of the guidance task, a minimum processing speed of 5 fps 

was required. With non-optimized code in debugging mode, the proposed system can run at approximately 

10~15 fps. This shows that the proposed system could fully satisfy the real-time requirements for 

general guidance tasks. For the maximum traveling speed at which the runtime performance of the 

system is still reasonable, it actually depends on the time it takes to read out one verbal message to the 

user; because the time it takes to read out one verbal message to the user is much longer than the time 

it takes for data acquisition and processing. For example, it normally takes 1 s to finish reading one 

verbal message defined in Table 1. Given that data acquisition and processing costs an additional 0.1 s, 

then the system response time will add up to 1.1 s. Assuming sensors can detect objects at 5 m ahead 

of the user, the maximum traveling speed of the user can be estimated as 4.54 m/s. This maximum 

speed is already over two-times faster than normal pedestrian speed. 

6. Conclusions 

In this paper, an audio guidance system based on context awareness is proposed to assist blind 

people in traversing local pathways safely and efficiently. The proposed multimodal profile model 

greatly improved the resolution of scene interpretation by enabling multi-category object identification. An 

audio message interface was proposed to deliver highly semantic information to the user, based on a 

walking context. The proposed system has the following limitations. In ground estimation, the 

proposed ground model worked under the assumption that a sufficient number of ground laser points 

can be observed and approximated by a linear model. Therefore, in highly crowded situations where 

the ground area is largely occluded by other objects, ground estimation may not be correct or even fail. 

The detection of objects, especially low-level objects, relies heavily on ground estimation. If ground 

estimation is wrong or fails, large errors will also occur in object detection. Future work would include 

the estimation of sensor motion by fusing visual odometry and IMU data, which would further improve 

the laser profile tracking and object detection. Localization functions using GPS or image-based scene 

recognition could also be added to improve the usefulness of the system. 
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