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Abstract: In recent years, acoustic emission (AE) sensors and AE-based techniques have 

been developed and tested for gearbox fault diagnosis. In general, AE-based techniques 

require much higher sampling rates than vibration analysis-based techniques for gearbox 

fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a 

better or at least the same performance as the vibration analysis-based techniques using the 

same sampling rate. To answer the question, this paper presents a comparative study for 

gearbox tooth damage level diagnostics using AE and vibration measurements, the first 

known attempt to compare the gearbox fault diagnostic performance of AE- and vibration 

analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded 

in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the 

AE-based approach has the potential to differentiate gear tooth damage levels in 

comparison with the vibration-based approach. While vibration signals are easily affected 

by mechanical resonance, the AE signals show more stable performance. 
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1. Introduction 

Gearboxes are used in almost all transmission systems and power systems. Wind turbine systems 

and helicopter impetus systems are two typical systems that rely heavily on gearboxes. According to 

the existing literature, gear failure plays a critical role in the overall failure modes of a gearbox and 

transmission system. As reported in [1], approximately 59% of the failure modes in wind turbines 

involved gear failures. In another report [2], it was shown that among all the helicopter transmission 

system failures, 19.1% of them included gear failures. The use of a health and usage monitoring 

system (HUMS) is mandatory for helicopter operating service. HUMS allows better and more cost 

effective maintenance practices because it can provide indications and warnings prior to any collateral 

damages. Various sensing techniques have been applied to gearbox fault diagnostics, such as vibration, 

acoustic emission (AE), oil debris, and so on. Currently, vibration analysis is still the most widely used 

technique in industry. Acoustic emission has been investigated as a potential alternative for machinery 

fault detection and diagnosis. 

Vibration analysis is a well-developed technique for machinery fault diagnosis. A large number of 

research papers on vibration-based fault detection and diagnosis have been published. When there is a 

force variation in a gearbox, the component will generate a vibration. This vibration is then transmitted 

to the surrounding structure, and therefore noise and vibration will be generated in the gearbox [3]. 

Transmission error (TE) is generally considered to be the primary excitation mechanism for gear noise 

and vibration. According to [4], a transmission error is defined as ―the difference between the actual 

position of the output gear and the position it would occupy if the gear drive were perfectly conjugate‖. 

Vibration signal analysis is an important tool to experimentally investigate gear vibration because 

gears generate vibrations at specific frequencies, which are related to the number of gear teeth and the 

rotational speed of the gear shaft.  

AE is defined as transient elastic waves within a material caused by deformation and the release of 

localized stress energy [5]. Even though AE has been studied as a potential tool for machine fault 

diagnosis for a long time, the source and characteristics of AE signals, especially in machine fault 

detection, are still not fully understood. Initially, burst type AE signals were used for fault detection in 

structural health monitoring. The AE bursts are believed to be fault related. While this might hold a 

ground truth for static structural fault detection, it has never been proved for rotating machines. For 

bearings, it has been proposed that asperity contact was the primary sources of AE signals [6]. For 

gears, similar studies have not been performed systematically yet. The relationship between AE signals 

and asperity contact under an elastohydrodynamic lubrication regime has been studied, which is 

synonymous with gears [7,8]. The authors in [7] and [8] identified asperity contact as a significant 

source of AE signals, but did not investigate other sources such as the gear dynamics, backlash and so 

on in detail. It is generally accepted that an increase in meshing stress would generate AE responses 

with larger amplitude [9]. In this paper, AE signals are postulated to be mostly related to the 

interaction and impact of teeth during tooth meshing. The impact on the surface of the tooth causes 

material deformation and this is followed by the stress energy release, which will then cause transient 

elastic waves.  

In gear and bearing fault diagnosis, research has reported that AE sensors are more sensitive to 

early faults than vibration sensors. For gears, Tandon and Mata [10] applied AE to a spur gears test rig 
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with a jet oil lubrication system to investigate the detectability of gear pitting damages. Simulated 

pitting has constant depth (500 µm) but variable diameter (250/350/450/550/1,100 and 2,200 µm). 

Their investigation has shown the advantage of AE over vibration for early detection of defects in 

gears by observing that the AE data displayed a sharp increase in the parameters when the defect size 

was around 500 µm, while vibration data did not display a comparable increase until the defect size 

was more than 1,000 µm. Scheer et al. [11] have shown that AE is effective to capture early stages of 

gear faults (e.g., tooth edge fracture and pitting) before they grow and change their vibration behavior. 

For bearings, Yoshioka and Fujiwara [12,13] have shown that AE parameters were able to identify 

bearing defects before their appearance in the vibration range. This led to an investigation that used the 

AE technique for the detection of subsurface cracks resulting from rolling contact fatigue [14]. The 

method provided the ability to determine the position of sub-surface fatigue cracks by relating the 

crack positions to the location of the AE signal source. The conclusions in [12,13] were later validated 

by Hawman and Galinaitisin [15] in a study that also made the observation that AE techniques are able 

to detect bearing faults earlier than vibration analysis methods. In a study by Eftekharnejad et al. [16] 

comparing the applicability of AE and vibration technologies for the monitoring of rolling bearing 

degradation, it was shown that AE was more sensitive for incipient fault detection when compared  

to vibration. 

AE signals are relatively unaffected by structural resonance and could be more sensitive to early 

fault activities [17]. When an unknown fault starts to form in the machinery, energy loss actions such 

as impacts, friction, and crushing generate sound wave activity that spans a broad range of  

frequencies [18]. AE sensors could capture frequencies that are much higher than those in vibration 

signals and therefore their use enables the technicians to detect inchoate faults before any damage 

occurs. Also, by quantitative methods, one could monitor the fault evolution process from the very 

beginning. Compared with vibration analysis, AE signals have the potential to detect small abnormal 

friction, initial cracking and so on. There are some possible explanations for this. The first one, as 

discussed above, is that AE emitted by very small defects occurs in frequency ranges that are higher 

than the operational ranges of vibration sensors and therefore might not be caught by vibration sensors. 

The second explanation is that when there is only a small crack or surface wear in the machinery, it is 

not severe enough to change the structural vibration. Vibration signals collected by accelerometers, 

which measures the second derivative of the displacement, may still remain the same, and thus be unable 

to detect the incipient fault. In this paper, vibration sensors are explicitly assumed as accelerometers. 

Many studies on AE- and vibration-based gear fault detection have been reported. Ogbonnah [19] 

applied a wavelet analysis method to gear fault diagnosis and prognosis using AE sensors. A linear 

relationship between AE amplitude, gearbox running time, and pit progression was shown in that 

study. It has been shown that the wavelet analysis method offers good prognosis for the pitting 

progression as well as the pitting rate. In an early study which applied the AE technique to the analysis 

of fatigue crack growth in a carburized gear tooth [20], AE energy rate was found to be proportional to 

the stress intensity factor range and crack growth rate. Another comparative study using AE, vibration 

and spectrometric oil samples for spur gear pitting fault detection was reported in [7]. As an 

experimental study, it was found that based on the raw signal root mean square (RMS) levels, the AE 

technique was more sensitive for fault detection purposes. However, in their experiments, the AE 

sensors were attached directly on the faulty gear inside the gearbox, which is infeasible for most real 
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applications. Baydar and Ball [21] used the smoothed pseudo-Wigner-Ville distribution to compare the 

results from acoustic signals and vibration signals. They simulated three types of progressing local 

faults: broken tooth, gear crack, and localized wear. Their results suggested that acoustic signals are 

more effective for the early detection of faults and may provide a powerful tool to indicate the various 

types of progressing faults in gearboxes. However, the acoustic signal presented in their paper was 

collected by a microphone, which was not exactly acoustic emission. Acoustic emission signal is the 

elastic stress wave generated inside a solid material, typically metal, due to energy release. Acoustic 

signal refers to the sound signal which travels in the air and can be collected by a microphone. 

Acoustic signals are different from acoustic emission signals in that acoustic signals generally lay in 

the audible range (20 Hz~20 kHz), while the acoustic emission frequency lies in a higher frequency 

range (1 kHz~1 MHz). 

Used as a ground reference, reliable AE signals of healthy cases have been acquired by many 

researchers as an important pre-requisite for the success of AE-based fault detection. In a very recent 

study on wind turbine condition-based monitoring, a design of a new continuous condition monitoring 

system with automated warnings based on a combination of vibration and AE analysis was reported  

in [22]. The authors of the study tried to determine a ground reference for the healthy turbine. The 

vibrational and AE signatures for a healthy wind turbine gearbox and generator were obtained as a 

function of wind speed and turbine power. They listed a number of limitations in current research of 

AE on rolling elements diagnostics. First of all, the measurements are mostly performed on laboratory 

test rigs other than under field service conditions. Second, the signal to noise ratio is low due to the 

short duration of data collection. Third, classification algorithms such as pattern recognition could 

possibly cancel the coherent elements of the noise but not the random or quasi-random components. 

Thus, they proposed that in order to address the above limitations, future AE work using much longer 

monitoring times and repeated measurement on actual defect rolling elements in service is needed to 

compensate for the random noise and instrument performance errors. In another AE-based gear 

diagnosis paper [23], an energy-based condition indicator was introduced for monitoring and diagnosis 

under any machine operating conditions in spite of speed and load variations. A feature called energy 

index (EI) was proposed to measure the statistical relative energy levels of segments in a time domain 

signal over a cycle. The proposed technique was validated by comparison with some of the existing 

methods using the same AE data for early fault detection. The proposed method was also tested with 

vibration data. When applied to AE signals, it was able to effectively detect early faults. However, in 

their research, AE signals were sampled at a high rate of 1 MHz, which hindered them from doing time 

synchronous averaging due to the large data volume. They used an alternative method of plotting the 

result of each revolution together to get a visual data graph of the results. Also, their work aimed to 

evaluate AE and vibration for fault detection purposes other than fault level diagnostics.  

In general, AE-based techniques require much higher sampling rates than vibration analysis-based 

techniques for gearbox fault diagnosis. In a recent paper, Qu et al. [24] proposed a new AE-based 

gearbox fault diagnostic approach. Their proposed approach combines a heterodyne-based frequency 

reduction technique with time synchronous average (TSA) and spectral kurtosis (SK) to collect AE 

signals with a sampling rate that is comparable to that of vibration sensors, processes AE sensor 

signals, and extracts features as condition indictors for gearbox fault detection. They have shown  

that the proposed AE sensor-based approach gave good gear fault diagnostic results. However, it is 
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questionable whether an AE-based technique would give a better or at least the same performance as 

the vibration analysis-based techniques using the same sampling rate. To answer the question, this 

paper presents a comparative study for gearbox tooth damage level diagnosis using AE and vibration 

measurements with the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and 

experimentally tested. 

2. Gear Mechanics Background: Backlash, Contact Ratio, and Tooth Cut 

Gear conjugating involves several kinds of stress, among which two basic stress are: contact stress 

and root bending stress [25,26]. Excessive contact stress causes surface pitting/wear, while the latter 

causes tooth breakage or tooth root cracks. Backlash and contact ratio can be considered as two major 

factors contributing to excessive contact stress and the gear noise. They determine the smoothness of 

the gear meshing and therefore cause the vibration and acoustic emission. 

Backlash, in the context of gears and gear trains, is the amount of clearance between mated gear 

teeth. It is the gap that can be seen when the direction of movement is reversed and the slack or lost 

motion is taken up before the reversal of motion is complete. The presence of backslash has a 

significant effect on impact dynamics of meshing gear teeth-pair. Backlash is essential for the gear 

transmission in the sense that too little backlash may result in interference between the teeth while 

excessive backlash would cause looseness during gear mating. Backlash has been discussed in gear 

papers [27–30]. Generally, larger backlash would generate higher gear noise, which is the source of 

AE and vibration signals. 

In order to understand the actual effect of the varying tooth conditions on the gear meshing activity, 

it is important to take a brief look at the gear profile before and after the tooth cut. The schematic 

diagram of two gears meshing is shown in Figure 1. 

Figure 1. Schematic diagram of two gears meshing. 

 

The relationship between gear noise and contact ratio has also been discussed by Tuma [31]. He 

concluded that high contact ratio of gears is an important factor for gearbox noise reduction. Contact 

ratio is defined as the number of angular pitches through which a tooth surface rotates from the 

beginning to the end of contact. In a simple way, it can be defined as a measure of the average number 

http://en.wikipedia.org/wiki/Gear
http://en.wikipedia.org/wiki/Gear_train
app:ds:schematic%20diagram
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of pairs of teeth in contact during the period in which a tooth comes and goes out of contact with the 

mating gear. It can be calculated as: 

               
    

     
      

     
       

      
 (1) 

where, ra1 and rb1 are addendum radius (distance from the tops of the teeth of a gear to the gear center) 

and base radius (distance from the base circle to the gear center) for the pinion gear center, and ra2 and 

rb2 are addendum radius and base radius from the pairing gear center, respectively; C is the gear axis 

center distance;  is the angel of the pressure line; Pc is the circular pitch of the pinion gear. Circular 

pitch is length of the arc of the pitch circle between the centers or other corresponding points of 

adjacent teeth. For more details of the concept and calculation, readers may refer to [32]. 

From Equation (1), it can be inferred that as the tooth cut gets deeper, the term r
2 

a1–r
2 

b1 keeps 

decreasing until it reaches 0 when the tooth cut approaches the base circle. That is, as the gear tooth 

cut gets deeper, the local contact ratio of the gear gets smaller. As the contact ratio decreases, the 

amount of meshing looseness increases, which is expected to generate larger gear noise. 

In addition, if a tooth was cut deeper than the addendum circle, the tooth would lose the initial 

contact point during gear meshing and lead to more backlash. For the most common involute gears, the 

ratio between addendum and dedendum is 1:1.157. Therefore, a 50% depth tooth cut would introduce 

larger backlash than healthy gear and a 25% tooth cut. A 100% tooth cut would further cause even 

larger backlash during gear meshing. In short, the deeper the tooth cut, the smaller the contact ratio, 

and the larger the backlash. 

3. Gearbox Fault Diagnosis using AE and Vibration Sensors 

In this paper, the diagnostic performance of AE sensor- and vibration sensor-based techniques is 

investigated and compared on a set of seeded gear tooth cut fault test data collected using the same 

sampling rate. Before the results are presented, both the diagnostic techniques using AE sensors and 

vibration sensors are explained in this section. 

3.1. AE Based Gear Fault Diagnosis 

3.1.1. The Heterodyne Technique 

To explain the AE-based gear fault diagnostic approach using a comparison, the traditional AE 

signal processing procedure is first presented in Figure 2. 

Figure 2. Traditional AE signal acquisition and preprocessing procedure. 

Acoustic
emission sensor 
(100KHz-1MHz)

Pre-amplifier
Typically, 20/40/60 dB

AD converter 
Computer 

post-processing

 

In a traditional AE signal processing procedure, all of the data is collected and stored on a computer 

without any signal processing. There are two disadvantages associated with this procedure. First, it 
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increases the data acquisition cost. Second, it relies on the computer to process the resulting large data 

set. A heterodyne-based frequency reduction technique has been proposed in a previous paper [24]. 

For the purpose of explanation, the basic principles of heterodyne-based frequency reduction technique 

are introduced next. 

For rotating machinery, a periodic displacement (which may only cause a small acceleration) can be 

an indication of a fault. The displacement will cause a dislocation associated with the AE signature. 

The information contained in the AE signature is related to the modulation rate of the signature. This 

information can be recovered through a demodulation process. The demodulation process is similar to 

information retrieval in an amplitude/phase modulated radio frequency signal. The carrier signal of a 

typical AM radio signal is several MHz, while the information modulated onto that signal is an audio 

signal of a couple of kHz. After demodulating the carrier using an analog signal conditioning circuit, 

the acquisition system can then be sampled at audio frequency (10 s of kHz). This signal processing 

can then be performed at lower cost with an analog circuit in comparison with using a high speed 

analog to digital converter and the associated computation power required to process the large data set 

as a result of a high sampling rate. 

The AE signal demodulator implemented in this paper work similarly to a radio quadrature 

demodulator: shifting the carrier frequency to baseband, followed by low pass filtering. The technique 

is called heterodyne. Mathematically, heterodyning is based on the trigonometric identity. For two 

signals with frequency f1 and f2, respectively, it could be written as: 

                    =
 

 
                

 

 
                (2) 

where, f1 is the carrier frequency, f2 is the reference input signal frequency of the demodulator. 

It is worth mentioning that the heterodyne technique is aimed at demodulating the amplitude 

modulated signals other than phase or frequency modulated signals from the raw AE signals. Although 

frequency modulation and phase modulation could present in the raw AE signals potentially, they are 

assumed to be trivial and will not be considered. The diagram of the proposed down sampling system 

using heterodyne is shown in Figure 3. 

Figure 3. The AE signal acquisition and preprocessing procedure. 

Gear Box AE Sensor

Function 
Generator

Demodulation 
board

Data 
Sampling

Computer

 

By adding a demodulation step, the purpose of reducing the signal frequency to tens of kHz could 

be achieved. This is close to the frequency range of general vibration signals. Any data acquisition 

board with a low sampling rate could be able to sample the pre-processed AE data. 

A key to the success of applying the heterodyne technique to AE signals is to select the right 

frequency of the reference signal. In this paper, an optimization procedure is developed to search for 

the optimal frequency of the reference signal using a linear chirp function as the demodulation input. 
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In a linear chirp, the instantaneous frequency f(t) varies linearly with time. A linear chirp function 

could be described as:  

              (3) 

where f0 is the initial frequency, k is the chirp rate, f(t) is the instantaneous frequency at time t. 

In searching for the optimal reference frequency, normally a frequency range is pre-selected, for 

example, 50 kHz–1,050 kHz. The chirp function will start with an initial frequency of f0 and chirp with 

a constant rate of k. Before the presentation of the algorithm, the following terms are defined: 

fmin = lowest reference frequency 

fmax = highest reference frequency 

f = frequency increment 

  
         

  
, the total number of frequency segments  

Ni = number of digitized data samples in each segment i, i = 1, …, n 

X(j) = digitized modulated signal of x(t), where      
 

 
                as derived from 

Equation (2) 

f
*
 = the optimal demodulation reference frequency 

The optimization process is to search for the best frequency such that the RMS of the demodulated 

signal is maximized. It is defined by the following algorithm.  

Algorithm: Optimal AE reference frequency searching procedure  

Step 1. Set the initial frequency f0 = fmin 

Step 2. For i = 1 to n  

       
     

  

  

   

 

End For 

          
     

      

Step 3. Compute optimal reference frequency of demodulation as: f
*
 = f0 + i

*
   f 

3.1.2. Time Synchronous Averaging 

TSA has been widely used in processing the vibration signals for rotating machine fault  

diagnosis [33–36]. The idea of TSA is to use the ensemble average of a raw signal over a certain 

number of revolutions in order to enhance signals of interest with less noise from other sources. For a 

signal function x(t), being digitized at time intervals nT will result in samples x(nT), where T is the 

sampling interval. Denoting the averaged period by mT and the total number of averaged periods by N, 

TSA is given as [36]: 

      
 

 
          

   

   

 (4) 

More details about TSA could be found in [33]. 

http://en.wikipedia.org/wiki/Instantaneous_phase#Instantaneous_frequency
http://en.wikipedia.org/wiki/Instantaneous_phase#Instantaneous_frequency
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The successful application of TSA in vibration signal analysis provides opportunities for processing 

AE signals. Basically, two types of TSA algorithms are available in the literature, i.e., TSA with 

tachometer, and tachometer-less TSA. In comparison with TSA with tachometer, tachometer-less TSA 

needs to estimate the angular information from the vibration data. For slow speed variation cases, time 

domain features like gear meshing information could be used. However, tachometer-less TSA will 

introduce more phase reference errors and thus have less accuracy than TSA with tachometer. For a 

complete discussion of order tracking with or without tachometer, please refer to [37]. In this paper, 

TSA with tachometer is used. 

Despite of the popular applications of TSA to vibration signal analysis, applications of TSA to AE 

signal processing for gear fault diagnosis have not been reported in the literature. The complicated 

feature and large data volume of AE signals make it unrealistic to execute TSA algorithms directly on 

AE data. TSA enables the direct comparison of the vibration/acoustic signals produced by each tooth 

on the same gear over one revolution. TSA for gear diagnosis generally computes the vibration/acoustic 

signals of a single shaft revolution. After TSA is calculated, basically all kind of fault detection 

condition indicators can be evaluated on the TSA signal.  

3.1.3. AE Condition Indicators 

There are many condition indicators available in literature. Most of the condition indicators deal 

with the data distribution, such as peakiness, amplitude level, deviation from the mean and so on. A 

brief introduction of the condition indicators applied to AE signals is given next. 

RMS: The root mean square for a discretized signal is defined as: 

      
 

 
    

  

 

   

 (5) 

where, xrms is the root mean square value of dataset x, xi is the ith element of x, N is the length of 

dataset x. 

P2P: Peak to peak value of a dataset   is defined as: 

    
             

 
 (6) 

where, Max (x) is the maximum value of x, Min (x) is the minimum value of x. 

Kurtosis: kurtosis describes how peaky or how smooth of the amplitude of dataset x is. If a signal 

contains sharp peaks with high values generated by a fault in the gearbox, it is expected that its 

distribution function will be sharper. Thus, the kurtosis of the fault signal should be higher than that of 

the healthy signal. The function of kurtosis is given as: 

     
           

   

           
     

 (7) 

where Kurt is the kurtosis of dataset x, xi is the ith element of x, N is the length of dataset x,    is the 

mean value of dataset x. It is worth mentioning that for any normal distribution, the kurtosis value is 3. 

This could be easily verified by the moment generating function. 
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In addition to the condition indicators computed directly using the AE TSA signals, RMS of the 

residual signal can also be computed. A residual signal is generally defined as a synchronous averaged 

signal with the shaft, gear mesh, and their associated harmonic frequencies removed. 

3.2. Vibration Based Gear Fault Diagnosis 

For vibration signals, a similar process flow is applied except for the heterodyne technique which is 

not needed for vibration signals. After TSA, different condition indicators are computed for vibration 

signals. Basically, the vibration signal frequency is more closely related to gearbox rotational 

frequency and mechanical interaction. In addition to RMS and P2P, two physical meshing behavior 

related condition indicators: FM0 and SLF are introduced next.  

FM0: FM0 is the zero-order figure of merit. It is a global indicator that reacts to changes in the 

whole frequency range of the average and identifies major abnormal behaviors with regard to meshing 

pattern. FM0 is defined as the ratio of peak to peak amplitude (PPA) of the TSA signal to the sum of 

amplitudes of gear mesh frequency and its harmonics. An increase in peak to peak level is generally 

observed in case of major tooth faults such as tooth breakage without significant change in the mesh 

frequency, which will result in increase of FM0 value [38]. FM0 will increase if a periodic signal 

contains a local increase in amplitude. Mathematically, it is expressed as follows:  

    
      

      
 
   

 (8) 

where, FM0 is the zero-order figure of merit; P2PTSA is the peak to peak value of the vibration TSA in 

the time domain; A(fi) is the amplitude of the ith harmonic of the gear meshing frequency. 

SLF: SLF stands for the sideband level factor. It is the sum of the first order sideband amplitudes of 

the fundamental gear meshing frequency normalized by the RMS of the synchronous time  

average [39]. SLF is a good indicator of single tooth damage or gear shaft damage. The formula for 

SLF is given by: 

    
                 

      
 (9) 

where x is the vibration signal TSA,          is the amplitude of the first order left-hand side sideband, 

         is the amplitude of first order of right-hand side sideband. RMS(x) is the RMS of  . 

4. Experimental Setup 

In order to compare the gearbox fault diagnostic performance of the AE and vibration sensors, tests 

with gear tooth cut seeded faults were conducted on a notational two stage split torque gearbox (STG) 

in a laboratory. In a STG, there are several identical intermediate gear pairs which could split the 

torque evenly. Also, the intermediate gear pair could offer a larger transmission ratio. Both the input 

side and output side of the STG use a parallel shaft layout. All of the gears inside are spur gears. On 

the input side, the input driving gear is a 40 teeth gear which drives three input driven gear with 72 

teeth each. On the output side, three output driving gears with 48 teeth drive a 64 teeth gear. A 3 HP 

three phase induction AC motor with a maximum speed of 3,600 rpm is used to drive the notational 

gearbox. To accommodate for shaft misalignment and reduce the vibration transmission, a disc type 
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coupling is utilized to transmit the torque from the motor to the driving shaft. A magnetic loading 

system is controlled by a power supply and the load can be adjusted by changing the output current of 

the power supply. Figure 4 shows the structure of the notational split torque gearbox. The test rig and 

sensor locations are shown in Figure 5.  

Figure 4. The structure of the notational split torque gearbox. 

 

Figure 5. The notational split torque gearbox and sensor locations. 

 

As a speed reduction gearbox, the input side and the output side have a 2.4 times speed reduction 

ratio. Based in the input speed tested in the experiments, the corresponding output shaft speed and 

intermediate shaft (faulty gear shaft) speed is provided in Table 1. 

Table 1. Output shaft speed corresponding to input shaft speed. 

Input shaft speed (Hz) 10 20 30 40 50 60 

Faulty gear shaft frequency (Hz) 5.56 11.1 16.7 22.2 27.8 33.3 

Output shaft speed (Hz) 4.17 8.33 12.5 16.7 20.8 25 

Output side gear meshing frequency (Hz) 266.7 533.3 800 1,066.7 1333.3 1,600 
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For the faulty gearbox, one of the intermediate gears with 48 teeth on the output side was damaged 

by artificially cutting a tooth by a certain percentages of the tooth depth. As shown in Figure 6, 25%, 

50%, and 100% tooth cuts were created, respectively. The fault created here is relatively large, but the 

tooth cut did not cause any severe failure to the gearbox because of the split torque feature. The slack 

or loss of motion due to the tooth cut or tooth missing on one of the driving pinion gears can be 

compensated by the other two driving pinion gears. 

Figure 6. Seeded tooth cut faults. 

 

One AE sensor and two accelerometers were mounted on the gearbox. The AE sensor was attached 

to the gear housing using adhesives as shown in Figure 5. One accelerometer was mounted on the 

gearbox housing in the axial direction and the other one was mounted on top of gearbox housing in the 

radial direction (see Figure 5). The signals from all of the three sensors were collected simultaneously 

during the test runs. In addition, tachometer signals were collected along with vibration and AE signals. 

For AE data acquisition, a true differential wideband sensor with high sensitivity and bandwidth 

was used. It has a good frequency response over the range of 100–900 kHz. Differential sensors offer a 

lower noise output from a pre-amplifier. The accelerometers used for vibration data collection were the 

industrial ICP accelerometer model No. IMI 608-A11. The frequency response of the accelerometers is 

from 0.5 Hz–10 kHz. The heterodyne process was accomplished by a hardware demodulation. A 

demodulation board (Analog Devices-AD8339) and a sampling device (NI-DAQ 6211) were used. 

The demodulation board performed the multiplication of sensor signals and reference signals. The  
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demodulation board is an analog device and much more affordable than a high sampling rate data 

acquisition board. It takes two inputs, one from the AE sensor, and the other from function generator 

as a reference signal. The basic principle of AD8339 could be explained by Gilbert cell mixers. In 

electronics, the Gilbert cell is commonly used as an analog multiplier and frequency mixer. The output 

current of this circuit is an accurate multiplication of the base currents of the both inputs. According to 

Equation (4), it could convert the signals to baseband and twice the carrier frequency. The frequency 

of reference signal was obtained as 400 kHz by the optimization algorithm described in Section 3.1. In 

searching for the optimized reference frequency, a chirp function with a range of 50 kHz–1,050 kHz 

was selected to cover the whole sensor response range. The chirp function started with an initial 

frequency of 50 kHz and chirp up at a rate of 139.89 kHz/s. The output of the demodulation board 

goes to the sampling board and the high frequency component is filtered out. NI-DAQ 6211 is a low 

speed data acquisition device with a sample rate up to 250 kS/s. 

For signal acquisition, Labview signal express software was used. During the experiments, 

continuous AE signals were collected. The data sampling rate was set to 100 kHz for both vibration 

and AE signals in order to make a fair comparison. Zero loading condition was applied throughout the 

test. The gearbox was run with six different input shaft speeds starting from 10 Hz and increased in  

10 Hz increments to 60 Hz. For each speed, five data sets were collected. In order to get a good TSA 

result, signals were recorded over approximately 200 revolutions. 

5. Results and Discussions 

In this section, the diagnostic results of the gear seeded cut fault tests using both AE and vibration 

sensors are provided and discussed.  

5.1. Results of AE Signal Analysis 

After heterodyning, TSA was performed on the signals first to get the TSA signals using the 

tachometer signal as the phase reference. Then the AE signal condition indicators were calculated on 

the TSA signals. Three condition indicators as introduced in Section 3.1.3, were computed using the 

AE TSA signals: RMS, P2P and kurtosis. In addition, RMS values of the residual signals were also 

computed for comparison.  

Figure 7 shows the RMS plots of AE TSA signals. The data set numbers were arranged from  

10 Hz–60 Hz, five data sets for each speed. Other plots in the following context are arranged in the 

same manner. It can be seen from Figure 6 that the RMS AE TSA signals provided a good trend for 

the energy level with the increase of speed. For different levels of the tooth cut, it offers clear 

separation. This result shows that AE signals are very sensitive to the gear meshing impact due to both 

speed and level of severity of tooth cut fault. 

Figure 8 shows the RMS plots of AE residual signals. Residual RMS provides similar separation as 

the AE TSA RMS but reduces the degree of fluctuation. It also increases the fault detectability 

between healthy and 25% tooth cut fault since the separation between the two is bigger. As residual 

signals normally contain the fault features except gear meshing and harmonics, it could be more 

effective than the TSA signal itself. 

  

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Analog_multiplier
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Figure 7. RMS of AE TSA signals. 

 

Figure 8. RMS of AE residual signals. 

 

Figure 9. P2P of AE TSA signals. 

 

Figure 9 shows the P2P plots of the AE TSA signals. As can be seen from Figure 9, P2P generally 

follows the trends with the increase of the speed but contains some more fluctuation compared  

with RMS. Figure 10 shows the kurtosis plots of AE TSA signals. Although kurtosis is not able to 

distinguish fault levels, it acts as a good condition indicator for fault detection. For any Gaussian 
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distribution, the value of kurtosis is calculated as 3. As can be seen from Figure 10, all of the healthy 

signal kurtosis values are close to 3. On the other hand, the faulty signal kurtosis values are mostly 

above 3. Since kurtosis is not affected by the speed, it is useful for making fault detection decisions. 

Figure 10. Kurtosis of AE TSA signals. 

 

5.2. Results of Vibration Signal Analysis 

The frequency response range of vibration signals is much lower than that of AE signals. Therefore 

a vibration signal has the advantage of representing the mechanical behaviors more closely, but it also 

has the disadvantage of being easily effected by mechanical resonance. Like AE signal processing, 

TSA was performed on raw vibration signals first, then the condition indicators were computed. A 

total of 4 condition indicators were computed for vibration signals: RMS, P2P, FM0, and SLF. During 

the experiments, both axial and radial direction vibration signals were collected and analyzed.  

Figures 11–14 show the results from the axial direction vibration sensor. Figures 15–18 give the results 

from the radial vibration sensor.  

Figure 11. RMS of axial vibration TSA signals. 
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Figure 11 shows the RMS plots of the vibration TSA signals. Note that the sensors used in the 

experiments have a sensitivity of 100 mV/g. Based on this rate, the voltage unit on the vertical axis 

could be converted to g units by multiplying by a factor of 10. It can be seen that in the low speed 

range below 30 Hz, the vibration TSA RMS does not give any indication of the fault. In the high speed 

range above 30 Hz, vibration TSA RMS with tooth faults increases significantly and provides good 

indication for fault detection. However, vibration TSA RMS is not sensitive to the level of tooth cut as 

the vibration TSA RMS for 100% cut is lower than that of 50% and 25% tooth cut. 

Figure 12 gives the P2P plots of vibration TSA signals. P2P values of the faulty signals are mostly 

higher than the healthy counterpart, except at 10 Hz input speed. Like RMS, P2P shows potential 

capability for fault detection, but not for fault level diagnostics.  

Figure 12. P2P of the axial vibration TSA signals. 

 

Figure 13 shows the FM0 plots of the axial vibration signals. FM0 could detect the anomalies in 

most of the cases. However, it has a lot of fluctuation at different speeds. Again it is not effective for 

damage level separation. 

Figure 13. FM0 of the axial vibration TSA signals. 
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Figure 14 shows SLF plots of the axial sensors. It can be seen that at 10 Hz, 30 Hz, and 60 Hz, the 

healthy SLF is lower than all faulty ones. But for the other speeds, some of the faulty signal SLFs are 

lower than healthy one. This result shows that SLF of axial vibration is not effective for fault detection. 

Figure 14. SLF of axial vibration TSA signals. 

 

Figure 15 shows the RMS plots of the radial vibration TSA signals. It can be seen from Figure 15 

that the radial vibration signals are seriously affected by the mechanical resonance, especially at  

30 Hz. Basically, the RMS of radial vibration signals does not give a good indication for gear tooth cut 

faults and the level of the cut. 

Figure 15. RMS of radial vibration TSA signals. 
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a bound of approximately 10, while the faulty signals can go as high as 40, which makes FM0 a good 

condition indicator for tooth cut fault detection. 

Figure 16. P2P of radial vibration TSA signals. 

 

Figure 17. FM0 of radial vibration TSA signals. 

 

Figure 18. SLF of radial vibration TSA signals. 
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Figure 18 shows SLF plots of radial vibration sensors. SLF works like FM0. It could clearly 

separate the healthy signals from the faulty ones under the low speed of 10 Hz as well as the high 

speed of 30 Hz and above, but it fails to distinguish the faults at 20 Hz and 30 Hz.  

In summary, it can be seen that for axial vibration sensor mounted on the bearing housing, the RMS 

and P2P show good fault detection potential. FM0 and SLF of the axial sensor work in most cases but 

are not stable. On the other hand, for the radial sensor mounted on the top of the gearbox housing, 

RMS and P2P fail to work, while FM0 and SLF work for fault detection purposes. Compared with AE 

results, none of the vibration condition indicators could detect the tooth cut level. The vibration signals 

are highly affected by background noise or mechanical resonance, making their performance unstable. 

AE RMS and P2P show a roughly linear relationship with shaft speed. They could clearly indicate the 

tooth cut levels for diagnostics. Also, kurtosis of AE signals offers another effective index for fault 

detection. It should be emphasized here that given the frequency range of 0.5–10 kHz of the vibration 

sensors used in the experiment, the vibration signals collected at a sampling rate of 100 kHz were still 

considered as oversampled. 

It is also necessary to point out that vibration signals offer better frequency domain resolution. 

Since both FM0 and SLF are calculated based on gear meshing frequency and considered as frequency 

domain condition indicators, FM0 and SLF computed using vibration signals give better performance 

than other time domain condition indicators such as RMS and P2P. However, FM0 and SLF computed 

using AE signals were not as good as RMS and P2P computed using AE signals. Therefore, they are 

not included in the AE results. 

As explained in Section 2, the tooth cut fault is the direct cause of larger backlash and reduction in 

contact ratio. Both the large backlash and low contact ratio introduce more looseness during gear 

meshing and therefore cause higher impact and gear noise. From this perspective, it can be inferred 

that AE sensors are much more sensitive to impact energy. Vibration measured by accelerometer is the 

acceleration signal, which is less sensitive to direct impact energy. 

In analyzing the vibration data, in an attempt to remove noises from the vibration signals before the 

TSA signals were computed, different types of filters were tested. Among them, the best two filters 

were selected. The first filter was a low pass filter with a cut-off frequency of 10 kHz since the 

vibration sensor response range is 0.5 Hz–10 kHz. The second filter was a band pass filter with a band 

width of 1 kHz–10 kHz which would filter out most of the low frequency mechanical background 

noise as well as high frequency noise. Both filters were designed using a zero-phase shifting filter 

which would not affect the accuracy of TSA. However, the results with the filters were not 

significantly different from those obtained without filtering. 

It should be emphasized that the results presented in this paper were obtained in a laboratory test 

rig. It is expected that the level of environmental noise in an actual application could be higher than in 

a laboratory. The effect is that AE signals have a lot of noises. However, the proposed methodology 

validated in a laboratory environment should work as well in an actual application. First, AE sensors 

are known to be less sensitive to background noise and mechanical resonance. Second, the TSA 

method is a well-developed noise reduction technique. It could significantly increase the signal to 

noise ratio for the AE signals through synchronization, especially for gear structures. 
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6. Conclusions 

Previous research has showed that AE sensor-based approaches using a sampling rate that is 

comparable to that of vibration analysis gave good gear fault diagnostic results. However, it is 

questionable whether an AE-based technique would give a better or at least the same performance as 

the vibration analysis-based techniques using the same sampling rate. To answer the question, this 

paper presented a comparative study for gearbox tooth damage level diagnostics using AE and 

vibration measurements. Three different levels of tooth cut faults were artificially created and tested on 

a notational split torque gearbox in a laboratory. For the AE-based gear fault diagnostic approach, a 

hardware frequency convertor based on heterodyne technique was used for AE data collection. Both 

the AE signals and vibration signals were collected with the same sampling rate of 100 kHz. Time 

synchronous averaging was applied to both types of signals. Condition indicators were then calculated 

respectively for AE and vibration signals. Experimental results were provided and explained. Based on 

the experimental results, the following conclusions can be drawn:  

1. AE signals could be sampled at 100 kHz while maintaining the capability of 

distinguishing tooth damage levels using TSA RMS and P2P. 

2. AE signals are insensitive to mechanical background noise and mechanical resonance. 

Therefore, AE signals have the potential to provide better condition indicators for gear 

fault diagnosis.  

3. Vibration signal condition indicators are not consistent with gear tooth damage level. 

Vibration is less sensitive than AE to small tooth damage in the low speed range. 
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