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Abstract: The problem of drifting charge-induced currents is considered in order to predict
the pulsed operational characteristics in photo-and particle-detectors with a junction
controlled active area. The direct analysis of the field changes induced by drifting charge in
the abrupt junction devices with a plane-parallel geometry of finite area electrodes is
presented. The problem is solved using the one-dimensional approach. The models of the
formation of the induced pulsed currents have been analyzed for the regimes of partial and
full depletion. The obtained solutions for the current density contain expressions of a
velocity field dependence on the applied voltage, location of the injected surface charge
domain and carrier capture parameters. The drift component of this current coincides with
Ramo’s expression. It has been illustrated, that the synchronous action of carrier drift,
trapping, generation and diffusion can lead to a vast variety of possible current pulse
waveforms. Experimental illustrations of the current pulse variations determined by either
the rather small or large carrier density within the photo-injected charge domain are
presented, based on a study of Si detectors.
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1. Introduction

The drifting charge-induced current is often a prevailing component in detector signals. An analysis
of this injected charge drift current is employed for the detection of photons or particles and for
reconstruction of the electric field distribution over the charge drift area in detectors. However, the
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problem of the charge-induced currents remains a sophisticated issue in more complicated situations of
photo-and particle-detectors when devices operate in partial or full depletion regimes with a complex
field distribution in the presence of carrier capture-generation. Then, the induced current due to the
charge trapping/de-trapping should be considered. The effects of the acting electric field screening or
the gain caused by the interplay of the injected carrier charge and the bulk charge of ions in the
depletion volume should also be involved. As usual, the principles of interpretation of the current
transients in detectors under injected charge are based on the Shockley-Ramo theorem [1,2]. Ramo’s
theorem was derived based on consideration of Green’s theorem and Gauss’s law, thus, on the balance
of electrostatic energy changes and on the analysis of bulk as well as of surface charge induced
electrostatic fields. Ramo’s current is derived at the assumption of the symmetry of an infinite
electrode and of the spherical invariance of the potential surrounding an elementary charge. Therefore,
the electrical capacitance of a real system of the finite surface area electrodes and its dependence on an
applied voltage are out of consideration. Several attempts to generalize a simple Ramo’s approach to
multi-electrode and arbitrary space-charge field distribution systems had been made [3-6], although
these solutions [3-13] are under debate, as referenced in [3-10]. As pointed out in [7], a simple
Ramo’s relation Equation (19) in [7] between the current within an external circuit and an introduced
weighting field of geometrical sense is held only in the special case of moving charge in active area of
a detector with a fixed external voltage applied. Therefore, a simple generalization or direct application
of Ramo’s theorem can be erroneous [7]. Most of the generalization approaches are again based on a
consideration of electrostatic energy conservation [7-10]. For the space charge systems, like a pn
junction and pin semiconductor devices, the simple Ramo’s relations are not valid, and differential
weighting potentials [8] are artificially introduced to restore the simple Ramo’s type of expressions of
the convection current. More systematic approaches are employed in [9,10], where space charge and
different types of charges are included. However, the solutions obtained [9,10] for the estimation of the
induced current on an arbitrary electrode provide no practical relevance of application with regard to
semiconductor devices, as pointed out in [10], when the real velocity field of the charge domain is not
known, and it should be evaluated by means of the complete analysis of field distribution. Thereby, an
additional kinetic equation should be considered to determine the instantaneous velocity of the charge
domain. However, applications of Ramo’s theorem generally ignore this consideration, rendering the
expressions obtained not practically applicable. The current pulse shape and duration are directly
dependent on the temporal variation of the injected charge domain position within the inter-electrode
space, where the instantaneous velocity and acceleration can be changeable. More complications
appear within the consideration of a kinetic equation, when the injected charge amount can vary due to
carrier traps inside the inter-electrode space.

In this work, the fixed area abrupt junctions with a plane-parallel geometry of electrodes are studied
by considering the partial and over full-depletion regimes. The vectorial nature of the employed
quantities of the surface charge domain, of the electric field and of the charge drift velocity is always
kept in mind. The scalar relations are analyzed along the unite ortho-vector with proper signs ascribed
to directions. To simplify the understanding of applied models, the single type of induced surface
charge domain motion is initially considered. This simplification can be sufficient to model current
transients due to highly absorbed photons or alpha-particles in Si detectors, while the generalization for
a bipolar charge domain is also discussed. The specific features of the induced charge domain drift
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currents (ICDC) are revealed within analysis of the simulated ICDC transients and highlighted in
illustrations of the experimental characteristics, measured on Si pin diodes.

2. Modelling of the Current Transients Induced by Injected Charge Drift
2.1. Geometry, Circuit and Electric Field Distribution for Different Regimes

The same electrical circuit as in Ramo’s theorem derivation, is considered: one electrode is
grounded and the high potential is kept on the other one. These two electrodes are connected to the
external voltage source in series with a load resistor to register a current transient within external
circuit, as illustrated in Figure 1a. The circuit for detection of current transient i(t) routinely includes a
load resistor and closed input of an oscilloscope type instrument. It is, as usual, assumed that the load
resistor R, is properly chosen to get the recordable signal, and that a voltage drop on load resistor (iR.)
for all the range of detected currents can be ignored, i.e., iR, << U.

As usual, a quasi-neutral domain of excess carriers is initially generated in particle detectors. It is
accepted the domains are flat surface vector quantities. These domains injected by light or ionizing
radiation are characterized by the surface charge density and the direction (vector) of the surface
normal. Thereby, these domains are directly represented by the electric field of the surface charge. The
sign (polarity) of the injected charge and the direction of the drift velocity vector are also included. For
the grounded circuit, the single-side surface charge (and field) is ascribed to the voltage source. The
drifting domain is also considered as the one-side surface charge vector correlated with drift velocity
vector direction. The surface charge electric field vectors are initially considered, like the first Poisson
equation. Then, the scalar equations for an instantaneous field distribution are analyzed. By applying
an external field source, the injected carriers (by light or ionizing radiation) can be separated into
oppositely moving surface charge sub-domains ge and gn, which induce charges of opposite sign on
electrodes. The positive charge on the grounded electrode induced by a drifting charge domain is
moved by the external source (battery) to the electrode of the high potential and vice versa. The latter
charge transfer current is actually measured within the external circuit as a signal of either the charge
domain drift or the charge density change. A sketch of the instantaneous field components is presented
in Figure 1.

External voltage source U produces a positive surface charge o on the high potential electrode,
which is positioned at the distance d from the grounded electrode. Specific for the junction type
detectors, the mobile charges within an active volume of a device lead to varied depletion width wg
dependent on the applied (reverse U;) voltage on electrode. The grounded electrode is assumed to be
located at the beginning of the coordinate system (x = 0). The complete neutralization of the depletion
charge (e.g., eNp™) in the n-base active layer is obtained through respective depletion (wp.) of the other
layer (eNa ) of a junction: eNpwp — eNa'W, + = 0. In the abrupt junction of a pin type diode, it is valid
Wp+ << Wo. Therefore, the assumption of the grounded electrode location at x = 0 is valid with
precision of wy+/wg << 1. The injection of the electron domain, with surface charge density ge, into the
active volume of a detector at the instantaneous position X, causes a change of the charge on the high
potential electrode, in the case of the over full-depletion regime.



Sensors 2013, 13 12298

Figure 1. (a) Sketch of circuit for analysis of ICDC transients. Symbols denote as follows:
Xe, n IS the instantaneous position of the drifting one-sided surface charge domain of the
electrons (—qe) or holes (gn) (with normal vectors ne and ny), respectively; E1 = Eqn + E, + Enpx
is the electric field caused by the superposition of the hole charge (g,) domain, the surface
(of an area S) charge (+o , with a normal vector n,) on the high potential electrode and the
local surface charge introduced to represent the electric field at x created by a bar (of a
width (d—x)) of the bulk ion charge (with a normal vector nenpx); E2 = Eqe + E; + Enpx IS
the electric field caused by the superposition of the electron charge (-ge) domain, the
surface charge (+o) and the local surface charge of the ion bar; Ez = E, + Enpx IS the
superposition of field between the electron and hole domains and the surface charge of the
ion bar; vep Is the instantaneous velocity vector of a drift of the surface charge domain —qe
or g, respectively; d is the inter-electrode distance; & and & are the material and vacuum
dielectric permittivity, respectively; ko is the unit ortho-vector in the uni-directional
coordinate system; y, and . are the dimensionless, normalized positions of the drifting
hole or electron domains, respectively; j, is the current density; U is the external source of
voltage; R_ is the load resistor. The sketches are illustrated for the electric field
instantaneous distribution due to the injected negative charge surface domain within a
partially depleted (b) and fully depleted junction (c), respectively. wy is the steady-state
depletion width; wq(t) is the charge drift introduced depletion width.
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For the partial depletion regime, this leads to changes of the depletion width wg, due to the mobile
carriers in the electrically neutral region (ENR). As the electrodes are only connected to the external
measurement circuit, the current induced by the moving charge —ge within the external circuit is
determined by the surface charge do changes (being a full differential) in time: dofdt. To find these
changes, the superposition of the induced fields should be considered.

The junction based detectors contain rather complicated field distribution, and, thereby, need
specific analysis. The instantaneous field distribution in n-type conductivity region of the p*n abrupt
junction structure during the monopolar drift of a negative charge in partially and over-depleted base
region is sketched in Figures 1b, c, respectively.

2.2. Current Transient Induced by Charge Drift in Abrupt Junction

The analysis can be easily applied to the consideration of the barrier capacitance changes for unit
area Cp = eg/wq(t). The charge drift dependent depletion width wq(t) should then be introduced, due to
the injected charge ge. The reverse biased steady-state depletion width wy = [2eg0(U + Upi)/eNpet]
serves as an equivalent of the inter-electrode spacing d. Here, Uy denotes the built-in potential barrier,
and Nger IS the effective dopant density. Variations of surface charge o are equivalent to the changes of
the surface charge at wo, induced by an additional depletion charge bar, as o ~ eNper(Wq(t) — Wo). It can
be proved that consideration of the time dependent changes of the system dynamic capacitance
Csq (ascribed to a surface area unite) is equivalent to the analysis of the convection current. In
semiconductor devices an important role is played by carrier capture and generation processes. Also,
different regimes of the partial-depletion, of the full depletion and the over-depletion (depending on
detector width and applied voltage) have their specific features. The mixed regimes of the electrode
surface charge changes and of the depletion width variations are inherent for the applied voltage values
close to the values Ugp of the full depletion (FD). For clarity, these different regimes are separately
analyzed below.

2.2.1. Current Transients of the Injected Charge Drift in Partially Depleted Detector

This regime is partially discussed in [14]. Let’s consider a regime of the applied reverse voltages
Upi < U < Ugp on the n-type conductivity layer at an assumption that the electron domain is injected
nearby the metallurgic abrupt junction, and the strength of the electric field there is capable to separate
the electron-hole pairs, with consequent extraction of holes into p*-type layer. This leads to a
synchronous change of the depletion widths in the n- and p- type conductivity layers to keep the
junction system electrically neutral behind the depletion wo, and wp+ width boundaries. To simplify
the analysis, an assumption of the asymmetric doping of n- and p-layers, i.e., the abrupt p-i-n junction
is accepted, which enables ones to ignore a voltage drop on p*-layer. It is also assumed that the
external metallic electrodes are in a rapid dynamic balance with neutral n- and p*- layer material. Thus,
a rate of the processes within an n-layer region is the slowest one. The latter processes determine the
current transient caused by a drift of the injected electron domain.

Using the methodology described in [14], an instantaneous field distribution is obtained by
integrating the first Poisson equation and by assuming an infinitesimally thin drifting domain of
surface charge of density g, as:
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eN eN
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Here, a vector of the electric field is directed towards the junction, while a surface charge domain of
electrons can drift towards high potential electrode. To find a depletion width wq and, alternatively,
E1(0), due to the injected charge g. domain and the external reverse bias voltage (U;) source, the
second Poisson integral should be taken, which leads to expressions:

2 T
=22 (E1<o>+q—e)=J‘zgg—° U =W0J<1+—W°”eqe’ o Xey Ly, frs om0 Ko
eNps &y | ENpe & HUggy W Tmgwg o

and:

£, (0) = o JZ‘% U+t X, ] - (3)
& Def & &,

Here, a common depletion boundary condition (E(wy) = 0) and a proper root of the quadratic
equation are accepted; x denotes the carrier mobility. For the reverse biased junction, it is assumed as
usual [15] that U = U,—Up. Within a coordinate system at rest, the characteristic time parameters
mgwo and zrorwo, are defined relative to a steady-state width wp, instead of d. Thereby, the
characteristic time parameters zwqwo (time of the Maxwell relaxation of charge g, Mq) and zrorwo (time
of flight, TOF) are expressed as:

_w
TTOF,WO_E 4)
T - %o
A CNITS ©)

These characteristic times, namely, their equality (zvgwo = Zrorwo), Can be a measure for the validity
of the electrostatic induction approach. These characteristic times implicate the response time of the
extended (of distributed charge) electrode (zrorwo) and of a drifting domain (zvigwo).

A steady-state depletion width wy is expressed by a well-known formula derived within depletion
approximation [15] as wo = (2e5U/eNp)*?. Consequently, a barrier capacitance is obtained as:

C._ = &o _ &9 _ Cho
MW, T X T X
T, L4 e Re g FTOFM R (6)
TMq,WO WO TMq,WO WO

where Cpo = ggo/Wo. It can be noticed that wq > Wy, and, therefore, the barrier capacitance decreases due
to the injected charge domain.
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It can be inferred from Equations (1-6), that the regime of the surface charge domain drift within a
partially depleted layer of a junction, can only be considered under a few restrictions on relations
among values of the applied voltage, the doping and the injected charge density. A spatial range for wy
variations is limited by a geometrical width d of a n-base layer (and consequently by the barrier
capacitance decrease to its geometrical capacitance value), as:

W, = 2 U [+ quO] d= 2es U @
eN b & U eN b

For electrodes of surface unite area S = 1, this leads to the inequalities, written as:

&, (. ETM,Ndef <li(1_ U ) g
eNp, d &, Tm 2 W, Uep (®)

q

Here, tmnder = &ol€ueNper 1S the material dielectric relaxation time within a space charge region.
Inequality Equation (8) leads to a limitation:

N, d?
<e Def (1_ U ) (9)

2W, Uep

Qe

of the injected surface charge which can be moved off by U < Ugp. The current density is obtained by
the analysis of the time dependent variations of a surface charge on electrode due to the extracted
electrons, as:
. do  aC X, aC ow, X,
dt X, ot ow, oX, ot

The rearranged (by these differentiation procedures) expression of a module of the current density
of the injected charge domain (ICD) drift can be represented as follows:

. 1 1 dx 1. dX dy,,
‘JICD‘:qewi T X dte: eV\TKr dte: eKr dt
0 2(1+m7e)3/2 0 (11)
TMq,wo WO

The obtained scalar form of the current density within a coordinate system at rest (wp) is very
similar to that of the Ramo’s current expression. The main difference is an appearance of a coefficient
K., dependent on the dimensionless position i = Xe/wq of a drifting surface charge domain within w,
and it is composed of the characteristic times as:

1
T .
2(L+ 1My, ")3/2 (12)

TMquO

K =

T

The appearance of the coefficient K. is a specific feature of the non-fixed position of the virtual
electrode (wg), charge on which is varied by a changed depletion range of ions. Simultaneously, the
possible drift length is also dependent on the rate of the formation of wy and wy, i.e., on the
characteristic time oy nger = £60/€1Npet = g&oleunenr OF the stabilization of the transitional A-thick layer
(between the depletion and ENR layers) due to extraction of the mobile carriers ngng = Nper from ENR.
This transitional A layer is related to the Debye screening length [15].
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The additional scalar equation (with properly accepted vector direction sign) for a velocity of the
charge domain drift is now expressed as follows:

dXx eN W, T X X
. zlueE(Xe):_:ueEZ(Xe)zlue Def (Wq_xe)= ¢ ( 1+ TOF. % 76_78) (13)
dt &g TM, Ndef Tmgwy Wo Wo

The rearranged equation into the dimensionless i = Xe/wo form can be written as:

d - 1 TTOF, * *
. [[1+—=y -] (14)
dt M, Ndef z-Mq,wo

with the adequate boundary conditions, as t=0 for = w and t=ty for w = 1, respectively. This
Equation (14) is the first-order ordinary non-linear equation, a solution of which is expressed as:

0 1
t:TM,Ndef[ L dé]
0] 1_{.5@ _5 (15)
TMq,wo

Extraction of the i/ (t) function, by integrating Equation (15), might be complicated [16], and it can
commonly be found by a numerical solution. These solutions y (t) are only determined for an interval
of the £ values, evaluated by using condition [1 + §(rTOF,W0/qu,WO)]1’2 — &> 0. The same difficulty
appears in evaluation of drift time tg,, implemented by inserting the second boundary condition i = 1:

1 1

tar = T et [ f* dé] .
VO 14 ¢ FTofmo 4 (16)
z-Mq,wo

Then, the obtained i/ (t) should be inserted into the right hand side of Equations (11) and (12).
Actually, a direct numerical solution of Equation (14) might be preferable in order to simulate the
current density transients. The initial component of a rise to the pulse vertex (jicp r(t)) and the rearward
relaxation component (jicpr(t)) of a current pulse can also be modelled. Here, it is assumed for
simplicity that the kinetic equation of motion Equation (14) is only slightly modified due to tmgwo
during Qe injection.

For N, carriers located within a domain on its surface area S., comprising a surface density
ge = eN¢/Se, the injected charge drift is assumed to be a uni-directional process. Therefore, to relate
more adequately the characteristic times zrorwo and zvgwo, the inequality Equation (9) could be
rearranged as:

TT0F w, <1 17
Tvon (17)

Thus, for the partially depleted junction, both components d%/S, < 1 and (1-U/Ugp) < 1 should be
small, and these conditions ensure that zrorwo/ 7mgwo < 1. Actually, the correlated drift of the injected
charge domain (as assumed for the Ramo’s regime) can only be implemented at zrorwo/ mgwo = 1.

Thereby, the exact Ramo’s regime is impossible for the partially depleted junction if K, = 1.
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Generally, variation of an initial component jicp £(t) as a function of time t within the current pulse
evolution is described for the time interval 0 <t <ty as:

Trorm, = .
[1/1+;Lw ® -y @]
qe Ma,w,

2TM,Ndef [1+ TTOFon l//*(t)]3/2

jICD 'F (t)= (18)

TMquo

Equation (18) describes a component of the pulse with a decreasing current shape within the pulse
vertex, Figure 2.

Figure 2. (a) Normalized current density j X< zrore/de transients simulated without
including of the external circuit impact (red solid curve) and under the impact of external
circuit with R = 10 Q (dash-dotted blue curve). Solid black curve represents the barrier
capacitance variations during charge drift. (b) The electric field redistribution within the
partially and the over-depleted diode layer during the drift of the electron domain.
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The rearward component (jicor(t)) (Figure 2) of the current pulse is determined by the processes of
the system capacitance Cysq restore to its steady-state value Cpso = eeo/wo. At arrival of the drifting
charge domain to the wg location, the surface charge field qe/eg is equal to the electrostatic induction
charge field determined by a depletion charge bar eNp(wg—Wo)/es. Therefore, the field ge/sg is
completely screened being at wo, as the reverse voltage determined field of positively charged ions
becomes zero at the point wo. Thus, from the time instant t = tq,, an interplay of carrier diffusion from
electrically neutral region (ENR) and surface charge field qge/s& determines the reduction of the wy to
the steady-state value wo. This process originates a current (relatively to a domain drift one)
determined by narrowing of the depletion region, —carriers from the ENR drift into the opposite
direction relative to the injected domain drift. This current represents the decreasing with time
(t—t4r) component.

This current component may be responsible for the appearance of the offset within a current
transient, inherent for the partially depleted detector. Duration of this process is determined by a
dielectric relaxation time of the material, namely, zv nger. This current flows until the instant tcyo of the
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barrier capacitance restore to its stationary value eg/wp. It is determined by the barrier capacitance
charging current. Superposition of these currents leads to a current relaxation component expressed as:

(t _tdr)

TM Ndef

Jicor (1) = Jico (ta ) exp[ 1 (19)

applied for the time scale of ty <t <tcwo. Here, Cwo = Cp 50S, including the surface area S of electrode.
As a result, the current density within a pulsed ICD transient is expressed as follows:

L[+ T 1)~y )]

T W
o (=5 e Cfor ts<t,
Jieo (0= TNy O ) (20)
z-Mq,w(,
(t_tdr)

jICD,R (t): jICD (tdr)exp[ ]! for 1:dr <t StCWO

TM Ndef

The offset current relaxation to zero is additionally governed by the parameters of the external
circuit. The relaxation component of the current pulse is determined by the relaxation processes within
an RC chain consisting of the system capacitance Cpsq and a load resistor R.. These elements together
with the value of the applied external voltage determine the amplitude as well as the shape of the
current pulse, and duration of the jicp r and jicpr COMponents.

2.2.2. Current Transients in Fully Depleted Detector

The surface charge on a metallic (or heavily doped layer) electrode changes together with the space
charge bar width due to a moving surface charge domain, when external voltage U is equal to or
exceeds the full depletion (Ugp) value, U > Ugp. This happens due to a lack of semiconductor material
(supporting mobile carriers) width (relative to a partially depleted layer case) to withstand the action of
the electric field due to the injected charge. The equilibrium carriers are extracted into the external
electrode, if depletion covers completely the active layer width.

Again, using the methodology described above, a field distribution for the negative drifting charge
is obtained by taking the first Poisson equation:

eN,d
E(x)=-2-"%"a-% for x<X,
0 & d
o ENDefd X q
- E,(X)=——— 1-2)—— for x> X,
E(x) 2(X) =, &, ( ) &, (21)
E,(X)-E(X,)=——= for x=X,
&g
and the second Poisson integral as:
d eNDefdz d X
U=—o+ + 1-—=2
&, 2&8, O &, ( d ) (22)

or, alternatively, including the value of Urp = eNpeid?/2&5 , it can be re-arranged as:
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d d X
U-Upp=—o+g,—(@1-2¢
FD . o+ (%0( q ) (23)

The solution for a scalar surface charge density on the high potential electrode is expressed as either:

& X
o=U _UFD)TO_qe(l_?e) =UCSNDq

(24)
or:
& X .
o=U _UFD)TO_qe(l_Fe) =U —U,:D)CSNDq (25)
with:
& U q X
C =201 Ty _Hde_"e 26
SNpq d ( U ) U( d) ( )
or:
* &€ q
C <0 e 1_ZLte
"4 U U a0 @
The instantaneous field distribution can then be represented as follows:
- N, d
El(xe)Z—ﬁ+ % (1- Xe)_e - Xe),for x< X,
E(x) = &, d &, ; d 28)
- N
EZ(Xe z_ﬁ_&&_e Def (1_ Xe)’for X>Xe
d &, d &, d

It can be deduced from Equations (26 and 27) that similarly to the above considered structures, a
capacitance of the system is decreased relative to its steady-state value, due to a drifting (Xe(t)) surface
charge domain. It can be inferred a limitation for the charge density possible to move off:

0. < Ues, [1_eNDefd2]E e [1_eNDefd2]
: d( _Xe 285U (1_£) 28U (29)
d d

This ge density also serves for evaluation of the relevant range of the positive capacitance Csngq
values with gc = UCy = Ueg/d.

A module of the current density, derived from Equations (26 and 27), in the case of the over
full-depleted (OFD) junction, is again expressed as:

. do 1dX,
JOFD_dt _qed dt

(30)

which formally represents the Ramo’s type current component.

However, the considered situation for a fully-depleted junction is more complicated relative to those
discussed above. The reason is a degenerated point wgp = d, Figure 2b. From one side, this is caused
by the synchronous action of the capacitor-specific and the junction-inherent field distribution
symmetries. As the junction determines a decreasing electric field shape, this field is exactly zero at
the electrode (wrp = d, the full-depletion condition) and o does not change. Thus, any displacement
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current component for wep = d, which is caused by the changes of an electric field behind the drifting
domain, immediately becomes equal (transferred into) to a conductivity (convection) current, due to
annihilation of the surface charge domain at X = d. But the symmetry of a capacitor-inherent field
implies that the displacement and convection currents, flowing within a capacitor in opposite
directions, exactly compensate each other to keep the external voltage invariable. The displacement
current in the over-depleted junction is obtained as:

1 dX
—eNd+0q,]——=,for X, <d/2, (A
o _ [-eNoe d +0.] = (A)

ot d;(te,for X,>d/2, (B)

(31)

1
en.d+q. ]1—
[ 0 qe]d

This jaispi (Equation (31)) component is different (through an additional eNpedXe/dt type term) from
that jorp derived by consideration of the changes of a surface charge on the electrode of the capacitor.
Actually, the current (displacement and drift) components measured within external circuit cannot be
separated, while the complete current is determined by the changes of charge on the external electrode.

On the other hand, the displacement current (Equation (31)) eNpefdXe/dt and the conduction current
engdXe/dt components completely compensate each other: the displacement current is caused by a
space charge bar eNperyed of ions, and the conduction current enydXc/dt (Equation (31)) component,
which appears due to a seeming extraction of equilibrium electrons ny and by producing the surface
charge engd on electrode, contain the opposite signs in Equations (31). This peculiarity occurs, if the
space charge bar (eNperied) (either behind the injected surface charge domain (when X, = 0) or in front of
it (when X, = d)) determines an appearance of the displacement current component to exactly
compensate the conductivity current component engd (to ensure invariance of external voltage U).
Only for a singular set of boundary conditions U =Ugp and X, = 0 as well as Xe = d, the displacement
current ggcEl/A is equal to pE the material’s conductivity current, i.e., egdEl/d t= pE, where p
represents a conductivity of semiconductor material.

Thus, the complete current within an external circuit is again determined by the displacement
current due to the injected charge, as obtained in Equation (30). While the space charge bar induced
displacement currents (within Equation (31)) are employed to exactly compensate the conductivity
(convection) current component in a fully depleted junction layer. These peculiarities should be kept in
mind when considering the field of velocities to express definitely the time dependent current changes
within a current pulse.

A dimensionless velocity field can be considered by using the accelerating electric field component
for a geometric width d of the inter-electrode spacing as:

M5+ v+ yl= + +y| ——

V(Xg) dy U 16Npy eNpy e 1 1 1
d dt “d* 2 & & &od TroF 2T\, Ndef

] (32)

The coefficients in Equation (32) can easily be rearranged by using the characteristic times:
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(33)

(34)

(35)

and their ratios. It can be noticed in Equation (32), that depending on the relations among values of the
specific time parameters (Equations (33-35)), and to hold Equation (29) for ge limitation, three type

solutions are obtained as:

1 1
—+
t 4V TroF 2T Nef t ™™
woexp[-—(——-1]+ —{l-epl-— (-} for Ty > Ty (A)
Tmg TM Ndef 1 1 TMg UM Ndef
TmNdef Mg
1 1
w(t) = V/0+(1'7+21 )t for zyq=tmner  (B) (36)
TOF M, Ndef
1 1
—+
t ™™ TroF 2T\ Nef t ™
pr ool (1" ))+ T ool 1M g for 1y <ry e (©)
Mg TM Ndef _ Mg TM Ndef
Mg TM,Ndef

These equations (Equations (36)) describe the changes of a dimensionless position 0 < w < 1 with

time in the interval of 0 <t <ty for these three (A, B and C) regimes. The

corresponding evaluations

of a drift time ty, are obtained by using the relevant boundary condition (y(ty;) = 1) for Equations (36).

These evaluations of a drift time are expressed as follows:

1 1
—t
TroF 2T\ Ndef
1 1 Vo
Tmq TMm Ndef  TMgq
In : for 7y, >7 (A)
’ q M ,Ndef
( Tng ) 1 1
T Ndef TroF 2T\ Ndef _
1 1
M Ndef  TMq
(1-yy)
i 1T 1 for  7yg = 7w neer (B)
o=+ (37)
Tror 2T e
1 1
—t
Tror 2T\ Ndef +1
1 1
™™ Tmg  TM,Ndef
q q Nde
I 1 o for ryg <tymnger (C)
Thg
-——)
2
T\ Ndef TTOF  4TM Ndef
1 1 0
TMg M Ndef

These different regimes can be realized by varying the applied voltage U

(through zrof), the doping

Nper (7mnder) @and the injected surface charge density ge (zvg). The first regime A (Equations (36 and
37)) is attributed to a small charge drift. Here, the time dependent variations of the dimensionless
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position y(t) are similar to that of the partially depleted junction. These y(t) contain a fast initial
increase followed by a saturation character of the y(t) changes when t approaches to tq,. The drift time
is mainly determined by the injected charge dielectric relaxation time zyq, modified by a mismatch
between g and zunger. The second regime B can be associated with a correlated drift of the surface
charge domain, when yAt) increases linearly with t, characterized by the invariable tqy, which is directly
determined by zror. The third regime C is attributed to the large charge drift, when the injected charge
is able to locally screen the depletion space charge of ions. Then, zror = @ug < Zwmnder, and the
correlated (Ramo’s type) drift of the injected rather large charge appears. The large injected charge
determines the increasing drift velocity. Then, neither a drift velocity nor acceleration is constant. This
leads to an exponentially rising (in time) current density during the charge domain drift time (0 <t <ty,).
For this regime, the injected charge density is only limited by values ge < gc = C4(1 — Ugp/U)U. The
complete shielding of the external voltage created surface charge o appears if ge > gc =CyU. Only a
diffusion of the injected carriers is then possible for g > qc.

The current density ascribed to different regimes can be modelled by using the relevant expressions
for y(t), taken from Equations (32) and (36), in the drift velocity equation (Equation (32)). The current
density is then expressed as:

1,1
0e , ™™ T Tm t T T1oF ZTM‘Ndf t Tm
S My - Yy e — (— 1))+ . 19 {l-ep[-— (2 _n3, for Tvg > Tt ()
Tmg  TTOF ZTM,Ndef TM, Ndef Tmg "M, Ndef ( - Tmg  Tm, Ndef
TmNdef  Tmg
1 1
j =10 —+ ) for ry =1 © (B
jorp(t) = qE(TTOF 2TM‘Ndef) Mg = 7 M, Ndef (B) (38)
R
Qe ™M Tm Tm t Tm Tior 200 Naef t Tm
[ )Wy ep[— (-—)+ 1 “{op[—(1-—)-B, for rror 2oy <ty (©)
Mg TTOF 20 gef T, Ndef Tmg O™ Ndef (- ) Tmg M, Ndef
Tmg  TM,Ndef

for the respective regimes A, B and C.

The current density changes within a pulse vertex acquire a relaxation curve shape for the regime A,
when screening of electrons (drifting charge domain) by ion charge within the depletion width
prevails. For the correlated screening regime B, a square-wave shape current density pulse appears
with a flat vertex. While for the correlated (Ramo’s type) drift regime C (zror = 7mq), the transient with
increasing in time current density is inherent.

The monopolar drift of holes can be expressed using methodology described above for the case of
electrons drift. The positive charge g drift is only possible towards the p*-layer. Then, the field for x < Xo,
which accelerates gy, is important for the consideration of the induction current. This yields:

&
oc=U _UFD)TO_th//h (39)
The current density, for U = const, again acquires the Ramo’s-type expression:
- dO' dCth 1 dx
=0 " e T (40)

The drift velocity field is described by a differential equation:
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N WU IS Y .\ B XN TS
dt d d d 2 &, & & TMa,h He TM Ndef

using the characteristic time parameters defined as:

d* (42)
Trorh = 1y
U
r = o
Mgh = o N
‘ Hy (g, /d) (43)
Assuming the proper boundary conditions:
t=0 for w, =y, (44)
t=t, for yw,=0
(45)
the solutions of the kinetic equation (Equation (41)) are expressed as follows:
TMg,h +%& TMg,h +1
Wi (1) = o Hn Tmah gt exp Hn Tmah | U 4| FTOFh € He TmNdef (46)
He T Ndef TMgh He T\ Ndef TMg,h Hpn Tmgh 1
,ue z-M,Ndef
The monopolar drift time is then evaluated as:
TMgh +£ﬂ TMgh 1
TT0F )h 2 ue TM ,Ndef
Mo Tvan g
Hh “Mgh 1 Mg,h +7& Mg,h +1
He Tm Ndef Trorn 2 HMe Tmindet
Hn TMan g i
He Tm Ndef

The current density of the hole drift is expressed (by inserting Equations (41) and (46) into
Equation (30) (modified for holes drift)) as:

T 1 T
Cwan LAy uen g

e)(p[,llhzw+1jt_l} Troen 2 Mo Ty el [ﬂh Thgh +1]_2W1_1/fl;~|z-!\4(ﬂ1_1 (48)

He Tyinger ) Twgh Hy Twigh +1 He Ty naet Troen 2 He Ty et

Jor (1) = LR Yo EXp[uhTMM +1jt_

Thgh He T naet Thgh

:ue TM Ndef

In the case of the positive charge drift within n-base material, holes are always accelerated due to
acting space charge field. The transient is then observed with the current density increasing with time.

2.2.3. Impact of lon Space Charge in Fully Depleted Detector

The moving charge inside the over depleted space charge layer induces a displacement current
component, which exactly compensates the conductivity current component, arisen due to a proximate
contacting of the depleted layer with external electrode (outside layer). As can be inferred for the
regime B (Equation (38)), characterized by the matched relaxation lifetimes zg = zvnder, the space
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charge eNpes Over d accelerates a drift of the injected charge domain by the shortening of the drift time
to the value t4, = Z'TOF/[l + (TTOF/ZTM,Ndef)] < 770oF, for Wo =0 (Equation (37))

However, for the regime A of the non-correlated relaxation times of the space charge eNpes and of
the drifting ge/d one, existence of the space charge eNper leads to a reduction of the effective value of
the drifting charge:

Oeef = e eXp(_ )’ for Mg = TM, Ndef - (49)

TM, Ndef
Then, a surface density of the drifting charge gees IS instantaneously and locally shielded by the
space charge of ions, due to the rapid local reaction of the sufficiently large density charge of ions.
Then, an increase ~ exp[t/zvq] of the drift current density (Equation (38)) competes with a seeming
reduction of the charge density qe ~ exp[—t/zu, ndet], Caused by the ion space charge. The space charge
of ions modifies the current density during ge drift by varying of length of the eNpeXe bar.
The large injected charge is able to locally screen the depletion space charge of ions, for the
regime C. Then, a drift of the injected domain proceeds similarly to that in a capacitor-type device.

2.2.4. Bipolar Drift of Surface Charge in Junction Structure

As usual in detectors, a quasi-neutral domain of the excess carriers is initially generated. Then,
owing to a steady-state applied field, these carriers can be separated into the oppositely moving surface
charge sub-domains ge and gs. These drifting sub-domains induce charges on the electrodes and
determine a field in between of them (ge and gy), to hold the initial quasi-neutrality. A sketch of the
field components is presented in Figure 1a.

An instantaneous electric field distribution along the x axis (0 < x < d) for the bipolar drift can be
represented as:

£ == —MNo g -9 for x<X,
&, &, &,
E(x) = E3(x):_i_eND(d—x)),for X, <Xx<X, (50)
o &y
E,00=-2—MNo g _y_% for x>x,
o &g 0

A field discontinuity at the instantaneous location of surface charge domains is expressed as:

E,(X,) ~E(X,) = for X,

E &o
- g G
E,(X,)— Ey(X,) =——% for X

&g

e

Then, the relation between the surface charge +o on high potential electrode and the external
voltage U is obtained by taking the second Poisson integral. The solution for a scalar surface charge
density o can be written as:

o= _UFD)?_qe(l_l//e)_th//h =(U -Ug)Ce (52)



Sensors 2013, 13 12311

where the expressions are employed for a full depletion voltage Urp = eNpd®/2es and for the
dimensionless positions wenh = Xen/d of the sub-domains. However, the full depletion voltage value
may become variable in the case of carrier capture/emission due to a change of effective dopant
density Np = Nper.

It is worth to point out, that in the case of the bipolar drift, the charge o on the high potential
electrode becomes dependent on the instantaneous location of both electron and hole separated
domains o(we, wp). This leads to the appearance of the fields acting on electrons (Ez) and holes (E;).
Theses fields also depend on the instantaneous location of the drift counter-partners as:

£ = Sy Iy Moy for ko,
&‘0 (%‘0 &‘0
E(w)= Ut " (53)
E2 —_ + FD _&We _;,_qih(//h +7e D l//,for X> xe
d &, &, &,

The induced charge current density, due to a bipolar drift, is expressed as follows:

. do 1dx, 1dX,

J E:_(qhaﬁ_qed dt) (54)

It can be noticed that, owing to ve = —v;, the scalar current density can be represented by a sum of
Ramo’s-type components:

I=q(

dy,  dy,
7h+F) (55)

dt

The bipolar drift velocities are correlated during the bipolar drift time z, (within time z, domain) as:

A-we) _ vn __
dy. — dy, (56)
dt dt

Here, the drift directions are included by accepting the relevant sign for the scalar velocity. There
exist several situations of the pure bipolar and the mixed drift regimes. These regimes can be separated as:

Yo (L-w,) _

d W = V =Ty for T = Tdre = Tdrh (57)
Cdt dt
Yo (1_ ‘//e)
-9 - =T4p, TOF 7,=74p,<T
_% % dr,h b dr,h dr.e (58)
1_
lgilt;/: ( dl/(///O) = Tyrer for Ty = Tdre <Tdr,h
T oa )

The regime (Equation (57)) of the synchronous drift of both type carriers within the entire inter-
electrode gap can only be realized for a single definite point of the charge domain injection y,. While
the mixed drift processes appear when the bipolar drift (within current pulse) changes to either the
monopolar drift of the electron domain after holes reach a p*-layer or it becomes the monopolar drift of
the hole domain after electrons reach the high potential electrode. These latter situations depend on the
injection location yn = won = woe Within n-base region of the junction and on the mobility of carriers.
In the general case of the junction structure, the drift process in both layers of the junction should be
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included. For instance, a drift of holes within n-base region should be extended into p*-layer of the
abrupt junction to exactly account for the bipolar and monopolar regimes.

Pure Bipolar Drift

In the case of the pure bipolar drift regime (Equation (57)), a system of kinetic equations for the n-
base region and their solutions are expressed as follows:

d t
Fno Yoy, =‘//0(1_7)

dt 7, b (60)

d 1- t t

I e A (61)
t 7, T, T,

These solutions should satisfy the boundary conditions:
Vi ho=Vo Wiy =0 (62)

l//e |t:0: l//O ; l//e |t:z'b = 1 (63)

However, in the more precise approximation, the monopolar drift of holes within p*-region included
by wo = won + wop+, Should be analyzed. Therefore, in rigorous consideration, the pure bipolar drift can
be assumed as an idealization. Nevertheless, for the case of zrnp+ << wnn, the single layer
approximation can be a relevant approach.

Then, the inherent time 7, of the bipolar drift is obtained by integrating an expression for the drift
velocity (using Equations (55, 57, 60 and 61)) as:

d
vy _ g
a d

U 1eNpd eNnd t
i D D= o(L——)]dt

TR S AL WL W L
&9 Zo Th Zo b (64)

Ty Ty

_ YoT10F h N
Ty = ¥ oTT0F h

T T
Lt Lo gy TRy, LR

e Y TM, Ndef z'Mq,e TMq,h 2 TMq,h

Inserting these solutions (Equations (60, 61 and 64)) into Equation (55), the current density (in the
case of the pure bipolar drift) is expressed as:

L o VA LR S (65)
Ty Volrorn 2 He Tm,Ndef  TMge TMgh Tmgh YoT10F h
Thus, the pure bipolar drift leads to an invariable current density with pulse duration of tp = yy zrorp,
Equation (65), provided that carrier capture can be ignored. The dimensionless position of the charge
injection always is wp < 1. Therefore, the injected charge drift current pulse is even shorter than a time
of flight of the counter-partners in bipolar drift, i.e., either tp < zrorn OF zrore(1—w0).
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Bipolar Drift During Hole Drift Time

In the case of the hole drift time =z, is the shortest one among the characteristic times, a bipolar
(ms =mrp) drift (Equation (58)) is described by a system of the kinetic equations and their solutions,
which can be presented as follows:

d t
TN v

dt Tun b (66)
d 1- t t
#:ﬁ; Ve =y, 0p(-—)+[1-exp(——)] (67)
Ty h Tir h Tirh

These solutions should satisfy the boundary conditions:

Wi lho=¥o W |t:r‘,’h =0 (68)

Ve |t:0 =Vo Ve |t:r‘,‘h = W;O (t:r','h ) = [1_ EXp (_1)] +¥, eXp(_l) (69)

Here, e ° serves as the start position for a drift of the electron domain, just during an instant of
disappearing of the domain of holes at the grounded electrode. The time zs of the initial bipolar drift

is obtained by integrating the expression for the drift velocity (using Equations (6669 and 55)), as:
Y _ g
dt d *

Ttr,h
U 1eNDd+W t eNDd+q7h) t t

0
q
[dy, = [{E[-—-2 00— —)( —— (yoexp(——) + (L-exp(———)) [t
) o d d 2 & oy & &y & Tir h Tir h (70)
_ _ Y oTTOF h

T =Tirh = L L L .

1+ 50 e Y S Ty ety | e TR

He 2T nget 2T Ndet TMge TMge 2 TMa.h

Here, the step-like change of field and current density would have obtained for an instant of hole
arrival to the grounded electrode. To validate the charge, charge momentum, and energy conservation,
the coordinate transform should be performed, to stitch the solutions obtained in the moving (zs time
domain) coordinate system to that obtained (Equation (30)) for the system of coordinates at rest. This
transform should include the charge induction on the electrodes, the drift velocity conservation and the
coordinate relations, which can be represented as:

c'=0+( (71)
dy* . d d
vl vy (72
- (73)
—yt = _TMqi._l —(w. - l//;o)! Tmge = TM Ndef
—_— (74)

These transforms relate the “new” i coordinate in the system at rest with that i (within bipolar
drift time domain) moving one for the proceeded monopolar drift analysis, after the charge induction
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procedure is accounted for, and velocities are matched. Then the prolonged monopolar drift velocity of
electrons (for the case when zuge < 7w naer) 1S expressed as:

d V, *
'//e,mon _ 0,e,mon+ 1 [TMq,e +1 TMq,e _1+(‘/’e,mon_l//eo)(l_ TMq,e )]:

dt d TMmge TTOFe 2 Ty Noef M, Ndef
VO e,mon 1 1 *0 Z'Mq e (75)
= ;'Fi[Rel +— Rez -1+ (l//e,mon —VYe )(1_7)]
d ThMge 2 TM, Ndef

Here, Re1 and Re; are the lifetime ratios, which can be dependent on the voltage drop sharing; Vo e mon
is the initial velocity of the monopolar electron drift, which is obtained using relations of velocity
vectors and their directions for bipolar drift and for the re-calibrated monopolar drift as:

- - -

Ve,mon t=ry g = Ve,bip— Vh,bip (76)

- — -

VO,e,mon‘n//e*0 = Ve,bip,‘y/;‘),rb +{Vhbipo,5, | = Vypip Yo (77)
e

This gives a coincidence of Vg emon and Vmip | V,e*o values at the position e ° of an electron domain.
Expressions for the function y(z) and monopolar drift time are obtained by integrating (Equation (75))
expression with the initial and boundary conditions:

Ve |t:0: l//:O; Ve |t:ze,m0n:1 (78)

These solutions are given as:

T 17 Vo7
Maq.e i Mag,e 14 0°Mg,e

Tmq, t Trore 2 TM.NG N
Vemon = (@0 ((1- ) ——) (-2 )+
M Ndef  Tmae 1- "Mae (79)
TM, Ndef
"mae 1 Tmae . VoTwmae
Trore 2 T Ndef 1y
Z-Mq,e ¢
T - T )
- Ma.e M ,Ndef
Te,mon - Tqu In( Tqu 1 Z'qu VOTqu )
1-——— =+ = — -1+ ’
M, Ndef Trore 2 T Ndef d (80)
T
(-
TM, Ndef
The entire duration tp of the current pulse contains the both phases:
tP =Tpp + Te,mon (81)

of the bipolar (=mg) and the monopolar (z mon) drift of electrons. Inserting these solutions
(Equations (66-70)) into Equation (55) for the monopolar drift of electrons with . as an initial
position, the current density (in the case of the mixed regime (Equation 58)) is expressed as:

i = fyalt-ep(-— ]+ ep(-——

Tt Tirh Tir h
it= (82)

. Tm t ,Twm 1 7w VoTu
iy = [exp-Maey b (Mae 1 Fwae g TofMaey g goper,
TMge M Ndef  “Mge TTOF e 2Ty et d

)} for 0<t<r,,

e,mon*
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The current transient (for the analyzed case of zuge < 7mnger) has a decreasing current component
within the initial phase (during a bipolar drift) and an increasing one within the rearward component of
the transient due to a drift of the electron domain which screens the space charge. For the case when
Tmae = ZvNdef, the electrons drift with the constant initial velocity Voemon due to a compensation of the
drifting charge and the space charge fields. For the case of zuge > zmnaer, the electrons drift with a
decreasing velocity, as the large space charge of ions (relative to a drifting charge) screens the
drifting charge.

Bipolar Drift During Drift Time of Electrons

In the case the electron drift time z. is the shortest one among the characteristic times, a bipolar
(e = mre) drift is followed by a monopolar drift of holes towards p* layer of the junction. After
performing analogous (as described in previous section) coordinate transformations and solving drift
velocity equations for the bipolar (during drift time of electrons (Equation 59)) and prolonged
monopolar drift of holes, the current density is expressed as:

g t
ji=—{l-ygpll-ep(-—)}, for O<t<r,,
Tre Tre

. q Hy Tmgh t Tvmgh 14, Tmgh My Tmgh Hy Tmgh o  VoTmgh
o= fep(( ) ) S (S ) (s —
TMgh He Tm Ndef Tmgh  TTOF N 2 e Tynder Mo T Nget He Tm Ndef d (83)
* T T
0 M e M0y D for 0<tsr, oy

He TM,Ndef He Z-M,Ndef TMq,h

with the entire duration tp of the current pulse:
tP = 2-bC + z-h,mon (84)

which consists of the components of the bipolar drift time:

. A-vo)Tror e
b,C = “tre —
’ ! T- T
1+ TORE 4 ( 1 )TroF %o +(1—'//0)TTOF,e(i—;)E—&ma—e&) (85)
2TM ,Ndef z—Mq,e TM ,Ndef TMq,e TM ,Ndef 2 Hn z—Mq,e

and the monopolar drift time:

_Twah 1y Twan | Hn Twah gy oHe Tvah g 0 YoTMan
Trorh 2 He TM Ndef He TM Ndef He TM Ndef d
(&M +1)
_ “Mgh | He TM Ndef
Feimon = Hn Tmae N mgh 14y Tmgn Hn  Tmgh Hn Tmgh 0  VoZmgh ) (86)
4]l - — — 4+ (= —+) - (————+Dy, +——
He TM Ndef Trorn 2 He T Naef He TM Ndef He Tm Ndef d +l//*0
h

(Hh Tar g
He Tm Ndef
Here, yn ° denotes the initial domain position within the monopolar drift of holes; Vopmon is the
initial velocity of the monopolar hole drift which is obtained using the relations of velocity vectors and
their directions for the bipolar drift and for the re-calibrated monopolar drift as:



Sensors 2013, 13 12316

- - -
VO,h,mon‘y/*0 =V e,bip,7y | + |V h,bip,7p | *Q
Yh

h = Vspip - (87)

In the case of the proceeded hole monopolar drift within n-base material (after the phase of the
bipolar drift is finished), holes are always accelerated due to the acting space charge field. The hole
drift with an increasing velocity determines an inherent shape of the increasing current density within a
transient, during the monopolar drift phase.

3. The Impact of Carrier Trapping and Generation
3.1. The Impact of Carrier Trapping

The injected charge current can also be changed by carrier trapping and generation. The surface
charge density dependence on time for the simple traps can be expressed as:

0e (t) = deo EXP(-t/ 7). (88)
Introducing a trapping dependent dielectric relaxation time as:

&

He (qeO /d)exp(_t/TC)

= Ty OP(t/7¢) (89)

Tmgtr =

the time dependent changes of the charge on the high potential electrode are described as:

O'(t) -U i _ eN Def (t)d

0

—q. (A -w. (1) (90)

Here, the time dependent quantities of Npe(t) and ge(t) should be employed. Capture of the injected
excess carriers, as usual, leads to a synchronous filling of empty donor and acceptor type traps those
determine the overall charge neutrality and effective doping Nper. Then, the current density within a
pulse, at assumption that Nper(t)= NpeoeXp(—t/7c), is expressed as:

. do q.(t),, X,(t), eNp(d 1 dX, (t)
t)=—="-(1- + +q, (t)=—2=
Joro, () at " ( q ) 27 q, (t) 4 dt (91)
This equation should be properly matched with the drift kinetic equation:
dw_w(exp(—t/rc) _exp(—t/fc)J_ 1 _ep(-tin) )
dt Mg TM , Ndef TToF 27\ Nef

The latter equation can only be solved numerically, although the general solution [17] can be
expressed through complicated integrals [16].

A few aspects of the impact of carrier trapping on the injected charge transients for a partially
depleted junction layer have been mentioned in [14,18]. Evaluation of other parameters (e.g., tyr) of the
transients determined by the injected charge drift and trapping becomes even more complicated, and it
can be implemented only by the numerical methods. For prevailing of trapping processes, no
articulated features of the detector response ascribed to the injected domain drift can be separated, and
only the relaxation-type shape followed the charge domain injection peak can be observable within a
current transient.
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No drift exists (dy/a = 0) and, consequently, Ramo’s current component disappears, if a trapping
lifetime of the induced charge geo domain is the shortest one within a set of characteristic relaxation
parameters. Then, equation (Equation (91)) for current density can be simplified as:

jtr (t) _ Qe EXP (_t/TC) (93)

Tc

which describes the induction current, - due to the local changes of the injected ge(t) charge density.
3.2. Generation Current Component

Carrier trapping, associated with a drifting surface charge domain, may determine the immediate
(during time significantly shorter than other characteristic time parameters) and local changes of the
effective charge. A decrease of Nper due to a filling of the charged donor-type traps is equivalent to a
local charge generation. Thus a simplified approach for evaluation of the generation current can be
considered. Then, carrier trapping and generation can be analyzed synchronously by rearranging
Equation (88) as:

qe (t) = qeO [exp (_t / z-C) + erTIOd exp (t / Tg,ef )] (94)

Here, mo denotes the initial carrier density on filled traps or the density of the neutralized donor-
type traps, e is the elementary charge, and zyes is an effective generation lifetime. At these simplified
assumptions, Equation (94) can further be rearranged as:

0 (t) =g X (—t/ 7 )[1+ 9,0 EXP (t/Tgc,ef =0, exp(-t/z.)f(t) (95)
with the additional designations as:
- em,d ; (96)
" qeO
I
Tyc,ef = (Tc + Tg,ef) : 97)
f (t) = [1+ Omo €XP (t/TgC,ef )] . (98)

This simplified approach enables one to include into consideration the local charge generation.
Unfortunately, the solutions can be obtained only by numerical analysis.

The discussed above simplified analysis of the components of carrier drift, trapping and thermal
release enables one to make the rough estimations of the impact of different components. However, the
rigorous consideration of processes should be based on the causality principle. The current changes can
only appear during or after injection of ge.. Therefore all the relations for the electric fields and charges
caused by q., obtained within the electrostatic approach, and containing the time dependent ge(t)
components should appear as the convolution integrals, for instance, as:

i0=22-L1%Oq__epdo+ zef(t)d L 1a,© %0 (99)
fLo (100)
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t _(t — t —_(t —
dt 7.0 TMq (©) TL 0 TMm,Ndef (t-0) T1oF

This specification leads to the integral-differential equations. These equations can only be analyzed
numerically. Then, the above presented simplified models can be employed for the initial and
qualitative prediction of the numerical solutions.

4. The Role of Carrier Diffusion

The drift velocity is varied through the electrostatic interaction of injected charge ge and surface
charge o on electrode, due to external voltage source. The initial zero drift velocity actually appears
when the detector signals are caused by the secondary electron-hole pairs generated by the energetic
elementary particles (high energy photons, hadrons, etc.). Then, a neutral domain with an equal density
of electrons and holes in pairs is locally generated. The external field is able to separate and move
these counter-partners towards opposite directions if the density of these carriers is less than qc, i.e.,
for ge < qc = CgU.

In the partially depleted junction layer, for U < Ugp, the current (ascribed to the injected charge
drift) varies due to the temporal changes in wq(t), and it really contains a pair separation Xen(t) = Xe—Xn
length. The charge separation process induces the change of the depletion width wqy (an increase,
relatively to its steady-state value wongp+) in both layers of the junction, i.e., wq,n and wg,p+. The
extracted excess holes are located at p*-side producing the same value of the surface field. Thus, the
overall charge balance wy + N'ap+ = WoN"p,, together with gnp + Xop+ = QenXon is Maintained in a
diode for the moderate density of the injected charge domain. In the heavily doped layer, the
characteristic times, e.g., dielectric relaxation times, are significantly shorter than those in the resistive
layer. Therefore, current transient pulse duration is mainly determined by the longer processes within
more resistive layer. This motivates an approach of a separate consideration of electron drift within a
base region of the reverse biased diode detector, where a charge separation process is assumed to be
sufficiently short, and a drift starts after extraction of counter-partners (separation of pairs) process is finished.

In the general case of the local injection of excess carrier pairs, separation of counter-partners
depends on their densities. The external source induced charge o on electrode can be completely
shielded by the large injected charge ge within a Debye screening length during the dielectric
relaxation on metallic electrode, which is extremely short. The space charge of ions is also screened
during zwg, Which is then the shortest one among the characteristic times, in the case of ge >> eNperd
and (ge/&e)d > U. The external source is able to react by changing o, till the system capacitance is
Csq > 0. However, the large injected charge g nearby the grounded electrode (X, = 0) is able to create
an internal field and a voltage drop (ge/£é£)d, which reduces the dynamic capacitance of the system to
Csq = 0. Then, the external voltage source is completely blocked in supporting of o. As a result, no
separation of the electron-hole cloud (into domains of electrons and holes) appears. Thereby,
relaxation of the injected quasi-neutral domain happens completely by carrier diffusion process.

The reason is the excess carrier diffusion and appearance of the diffusion induced inner field [19] as:

_ 1 _ _
E, =—(D,Vp-D,Vn) (101)
p:uh + n:ue
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This field is proportional to the excess carrier density gradients. For the locally generated domain of
the nearly infinitesimal width (for instance in tracking of hadron path) within significantly wider inter-
electrode gap of detector, diffusion due to a sharp gradient (which is also proportional to the carrier
density) induces an inner electric field which balances a further widening of the domain. Strength of
this field can be sufficient to compensate partially or fully the applied external field (surface charge o)
in the case of low applied voltage and the rather high densities of the injected carriers. Then, carrier
diffusion and drift leads to the outspread of the domain. Such a process is characterized by the
ambipolar diffusion coefficient D,. In thin detectors with small applied dc voltage, a width of the
outspread domain can approach the geometrical dimensions of the inter-electrode layer, even when it is
formed by the strongly absorbed radiation. The same situation can be realized by the photo-injection of
excess carrier into a rather thick detector using the homogenously absorbed light. Then, the injected
domain sweeps the inter-electrode spacing. The external electric field acts as the accelerating factor for
the surface recombination sd/D (of velocity s, related to sd/D = d/Lp by Debye screening length Lp).
This problem is very similar to the excess carrier ambipolar diffusion moderated carrier recombination
on surfaces. Then, action of the external field and carrier drift can be included into the properly modified
surface recombination velocity s. Solution of this problem is well-known [20-23], and it leads to a
transient of conductivity current due to the carriers arrived to the electrode and extracted to its surface.
Time variations of the excess carrier density in this domain (averaged over the geometrical thickness d
of inter-electrode space) is expressed through a sum of the space mode 7, components as:

N, (£) =N, (t = O)i A, exp(-172D,t) (102)

The space frequencies (7) of these decay modes are described by the solution of the transcendental
equations of type:

S D S
ctg 7d =$(?’7—D—2n) (103)
Here, s; = Lpn/zrorpp @nd Sz = Lp e/ 7rorLp e denote the surface recombination velocities ascribed
to the electric field caused extraction of carriers towards the front and rear (surfaces) electrodes (with
relevant Debye lengths Lppn, Lpe), respectively. These (Equation (102)) solutions with roots found
from Equation (103) predict a two-componential, the relaxation type current transient. Such a transient
contains the initial non-exponential relaxation component. The asymptotic decay component is
characterized by the time parameter o = 1/7,°D of the main decay mode, representing the effective
time of the domain dissipation,— due to diffusion over the entire inter-electrode spacing.

5. Current Transient Changes Determined by a Signal Recording Circuit

A signal registration circuit (namely, load resistor) inevitably transforms the current transient shape.
This appears due to the voltage sharing and the consequent change of a voltage drop on detector
depending on current value within the circuit. In more general case, the transients are described by the
solutions of the differential equation with variable coefficients, derived as:
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o) iR U, with i=s3%
Cqy(t) dt (104)
dc,,(t i
idg(t)_g(t) Sq()+gRL=O, with UCR:U_iRL' UCR:ﬂ (105)
Cq, dt  Cg Cgdt dt Cs,

This leads to a differential equation:
di ,dInSCq,(t) 1 . U dnSCg(t)
prnal + I=e = (106)
dt dt RSCg ()" R.  dt

which should be solved by using the initial conditions:

iL,(t=0)=0 (107)
SCSq(t=0!qe=O)=CO (108)

for the ascending component of a transient, and:

o, (t=1g,) = j(t=14,)S =i(ty,) (109)
SCq, (U=t v, =1)=C

Sq,( dr ¥ ) 0 (110)
for the relaxation stage of the transient, respectively.

The changes of a system dynamic capacitance determine the initial delay and the final stage
(relaxation) components within the simulated transient. These components are inevitable within the
charge drift current transients, recorded in experiments. Also, these components should be included
into the evaluation of the charge collection efficiency. Depending on the geometrical capacitance (Cg)
and load resistance (R.) values, the current pulses are significantly modified.

6. Discussion

The simplified models [23,24], based on Ramo’s expression for the drift current, are attractive as
they provide a simple analytical description of the detector signals. However, the analytical
expressions can only be obtained for the simplest approximations. The analytical form of the correlated
drift (Ramo’s-type) current for the junction type detectors is only applicable for a primary estimation
of a transient shape. Different regimes in the formation of the pulsed response of detectors can appear
in a real measurement. The time-dependent variations of the current transients may be determined by
the injected charge dissipation through the domain drift, dielectric relaxation (due to media
polarization effects), through carrier capture and thermal release processes in the traps containing
material, via ambipolar diffusion processes. Several specific aspects of these phenomena have been
discussed above.

6.1. Limitations of Models

Adaptability of the simplified models presented above is additionally limited by several factors. A
principal limitation leads to the threshold values of the acquired drift velocity that should be
significantly less than those of the electric field (light) propagation velocity in the material under
consideration, to ensure the validity of the electrostatic approach. This condition excludes the
possibility to detect the primary charged particles (moving with relativistic velocities) within the
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inter-electrode spacing. Thus, the secondary particle (the electron-hole pairs with a zero initial drift
velocity at the injection point) induced currents should be calibrated to the primary particle impact.
The specific feature of the prevailing drift current caused by the monopolar charge domain is the
increase of the drift current with time within the vertex of a current pulse. To separate the neutral
domain (locally generated) into the drifting charge sub-domains, the sensitivity threshold for the
applied voltage appears. This limitation leads to a condition of the elevated values of bias voltage, at
least U > Uy for the partially depleted semiconductor detectors. An enhancement of the external
voltage may lead to the carrier velocity saturation, which complicates the analysis of the drift velocity
field: vgr(Xe). Values of the highest external voltages are also restricted by the necessity to exclude
repeated and non-linear drift processes, —such as the photo-electric gain moderated by carrier trapping
and the avalanche processes of the impact ionization or Pool-Frenkel effect.

6.2. Limitations in the Evaluation Precision of the Depletion Layer Boundary

In the analysis of the junction type detectors, the parabolic approach has been employed, which
relates the applied voltage and the width of the depleted region, and it is routinely exploited in device
physics [15,25]. This approach enables one to simplify the expressions for the electric field
description, as discussed in [15]. But this approach limits the precision in evaluation of the
characteristic widths of wy, wq and wep. In the steady-state case, the Debye screening length Lp can be
a measure for the evaluation of the precision in the estimation of wy. Thus, the transition layer [15]
width, expressed as:

2¢ee
ﬂz(ﬁ)ﬂzuﬂllz,

(111)

depends on a voltage drop U, ascribed to this transition layer, and on the effective doping of a
material. Thereby, for the large resistivity material, a relative inaccuracy (A/wp) of the determination
of the effective widths woqrp £ A4 can be unacceptable in the range of small reverse bias voltages.
Traps and their filling processes can also be a reason for the instantaneous and local changes of the
effective doping. Thereby, the resolution limit in time scale is expressed through the relaxation times as:

TToF U

TM,Ndef = 5 (112)

with zror, Uz = f/yeui. The latter condition is determined by a necessity to stabilize the geometrical
boundary by the balance of the local fields of carrier diffusion and drift.

The transitional layers are actually inherent to the boundaries between the metallic electrodes and
dielectric or external heavy doped layers of junctions. Owing to a short dielectric relaxation in the
heavy doped layers, the semiconductor junction is preferential relative to a dielectric in between
of electrodes.

6.3. The Impact of the Injected Charge Density

In the Ramo’s derivation of the charge drift current, it was clearly proved the reciprocity principle:
the reversibility and equality of the mutual action and reaction of the charged electrode and drifting
charge. This is based on the conservation of the charge (o induced electro-statically on the electrode
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plane by a drifting injected charge q = o), charge momentum qdy/dt (qvgr) and the electrostatic
energy (Q@ = o U). Here, @ is the surface equi-potential surrounding the drifting charge. The main
equation for the current density (for instance, considering the motion of the electron domain) can be
directly obtained by using the electrostatic energy balance 5q@ = —&oU). Here, 6 means a change in
the electrostatic energy due to a variation of the surface charge (do) on the electrode, which should be
balanced by a change in the energy of the moving charge ge. In the latter balance, g. is assumed to be
invariable, and these energy changes are ascribed to the changes of the potential 6&(Xe), —during
charge drift. The temporal changes of the surface charge on the electrode gives current density variations
dependent on time (for a fixed external voltage), and this current density is generally expressed as

j®) = dodt = —(gJ/U)(dDdX.)(dXc/dt). Accepting the general electrostatic relation
= —grad® = neQe/cen = Eq4 and assuming that instantaneous Eq(ye) = Qeweleeo, for its scalar
representation, the expression for the current density is rearranged as j(t) = do/dt =

ge(d?/U) (qe/d o) [d(Xe/d)/dt] = e(Tror.e v,q)[d(Xe/d)/dt]. Thereby, the just derived current density (on
the basis of electrostatic energy conservation in the case of our consideration) is consistent with
Ramo’s derivation (also made on the basis of energy conservation) if zrore/7mg = 1. On the other hand,
the equality of zrore and zvq is consistent with electrostatic induction approach. Using the scalar values of
the field within the inter-electrode space as E, = U/d and divEq = V-Eq(yg) = delecod, for the injected
charge field E; (over a geometrical width d), and a balance of electric fields and
E, = U/d = divEq = V-Eq(w) = Qelesod, one gets a weighting field We = divE/E, = d™*. This result
validates the equal action and re-action of the surface (o and q) charges and leads to the equality of the
response times zwqe = 7rore. Actually, the equality of the response times zwqe= zrore IS ensured due to
correlated changes of the acting voltage which is varied with y(t). To find the drift velocity field
var(Xe) = dXe/dt, the problem should be solved by consideration of the fields and charges in details.

As it has been demonstrated above, the drift velocity vy is a function of the instantaneous charge
domain position and the characteristic times: zrore, 7mq and zvnder. It can be proved that the current
density j(t) = 9esuU%8d® obeys Mott-Gurney’s law [26,27], for vgr(Xe = d/2) = g[(U/d) + (qe/2£&)].
Therefore, all the applied voltage U drops within the gap between the high potential electrode and the
ge domain, during the initial phase of a drift process. The drifting domain additionally acts as a voltage
sharing element (divider) with the parabolic-like characteristic of U, = (1—y#)U. As a consequence,
the drifting charge coordinate yA(t) ~ exp(t/zmq) increases exponentially with the drift time t, leading to
a variable drift velocity vy ~ dyAt)/dt) ~ (d/ zwg)exp(t/ z7mg) and the acceleration a(t) ~ (d/ quz)exp(t/ T™g),
to hold the processes (of drift, voltage sharing, and the induced amount of charge) correlated in time.
In the case of the pure bipolar domain, the correlated drift of g. and g, sub-domains is equivalent to a
widening of the quasi-neutral e-h domain.

In real detectors, the prevailing regime is the detection and collection of a small drifting charge,
where zvqe/trore >> 1. Unfortunately, this regime can only be approximately considered within the
one-dimensional approach. The reason is a slow dielectric relaxation (zmge/trore > 1) of a small
drifting charge ge. Due to the small ge, the charge domain surface becomes corrugated under the action
of the electrode charge (at boundaries of the detector electrode of finite surface area S) and the charge
density gradients within the surface plane of a drifting domain. To stabilize the gradients (or the
oblique action of o surface segments), the drifting charge should vary its position in all three spatial
dimensions. Thus, the lateral fields should be taken into account, —the charge of dangling bonds on
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perpendicular boundaries acting as the surface recombination sinks can be a reason for such fields. On
the basis of the Lagrange variational principle, it can be understood that charge movements within both
the electrode and the domain planes should be correlated, to react most rapidly on each others changes.
Then, energy conservation can only be considered by an analysis of the three dimensional charge drift
and diffusion problem. This leads to the appearance of charges and their neutralization currents on the
perpendicular (to an inter-electrode drift direction) boundary planes of the base region of the junction
type detector. The small drifting charge ge is able to terminate the electric field of the electrode’s equal
to its amount. Therefore, a small drifting charge acts as a linear voltage divider within the
inter-electrode gap, and, consequently, the I-V characteristic obeys Ohm’s law. Then, due to the charge
drift, the acting voltage is different from that applied on electrode U, and it changes under the variation
of the charge position. The small charge drift current density is less (in comparison with the regime of
the large charge drift) due to the less effective voltage Us, acting on the injected charge, ge. This leads
to the increased zrore (t). The approximation models for Ues should be applied to cover the entire range
of the injected charge values. Namely, for an electron domain the ratio Re1 = 7mge/ 7rore and
Reo :TMq,e/TM,Ndef should be replaced by Ref,el = (TMq,e/TTOF,e)(Uef,e/(U + UFD)) and
Refe2 = (mmge/ under)(Uere/(U + Uprp)) (which modifies the voltage) using the approximation
Uere = 1.22500(we %)Y/ c50. Here, we ° is the dimensionless location of a drifting domain at the end of
a bipolar drift. While, for a hole domain drift, these are Retn1 = (zwgn/ 7rorn)(Uern/(U — Ugp)) and
Reth2 = (7mgn/ mmnder)(Uern/(U — Ugrp)) (which modifies the voltage) using the approximation
Ucetn = 1.9950nd(un °)?/eg. These approximations can be understood by an equal redistribution
between degrees of freedom for the three-dimensional motion, if R # 1. The applicability of the U
approximation models has been verified by their relevance to stitch together the one-dimensional
solutions of the bipolar and the monopolar drift, thereby matching the synchronous conservation of the
charge, charge momentum and current density continuity. This enables one to get continuous current
density variations within the simulated vertex of the charge drift current pulse.

6.4. Correlation with Experimental Results

As mentioned above, a vast variety of possible pulsed current transients, composed of drift,
diffusion and displacement current components exists depending on the detector design and different
external factors, such as the injected charge quantity, applied voltages, presence of traps, etc.

The simulated specific transient shapes associated with different regimes of the injected charge drift
are illustrated in Figures 3 and 4. These simulations have been performed by using the above presented
models and keeping nearly the same charge drift conditions, while varying external voltage to
implement the partial or full depletion regimes. The described analytical solutions enable ones to get
the continuous curves of the drifting charge velocity and of current density as a function of a domain
position and of time. These illustrations demonstrate that current density transients, containing a rather
flat pulse vertex, can be found in experiments implemented for the small injected charge density by
using a small load resistance. However, only the largest current components can be resolved due to a
weak signal. The double peak containing current transient shape should be observed as usual in the
case of the relative large charge drift, Ramo’s type, regime. Thereby, depending on the applied load
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resistor and voltage, a vast variety of current transient shapes can be obtained in modelling of
detector responses.

Variations of current transients due to the injected charge drift, observed in experiments, are
illustrated in Figures 5. These variations are demonstrated as a function of the injected charge density,
in Figure 5a. These transients were recorded on the non-irradiated CERN standard pad-detectors, made
of pure Si of 2 kQ cm resistivity p'nn* structures. The reverse bias voltage was kept fixed with the
rather moderate values U < Ugp. The surface domain was injected by strongly absorbed light laser
pulse of 400 ps duration. Density of the injected domain of electrons, initially located nearby a
junction boundary, was varied by changing intensity of excitation laser beam. The laser pulse was
sufficiently shorter than RC = 1 ns of the measurement system. The pulsed current was detected on 50
Q load resistor and registered by a 1 GHz band real time digital oscilloscope.

Figure 3. Transients of the normalized current density j > zror¢/ge Simulated for the large
(a) and small (b) monopolar charge drift, simulated using different values of the carrier
capture lifetime zc. Solid curves are calculated using the analytical expressions, while the
intermittent curves are obtained including the RC of a signal recording circuit.
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Figure 4. Transients of the normalized current density j> zror ¢/qe Simulated for the bipolar
charge drift during hole (a) and electron (b) drift times for various regimes, dependent on
the densities of the drifting charge and of the space charge of ions. Solid curves are
calculated using the derived above analytical expressions, while the dotted curves are
obtained including the RC of a signal recording circuit.
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The transients, —characteristic to the pulse durations controlled by the ambipolar diffusion lifetime,
are illustrated in Figure 5a using a logarithmic time scale. Here, the pulse duration is varied in the time
scale from a few of nanosecond, —that is inherent for the electrons drift time in the base region, to a
few microsecond of the diffusion time. It can be easily noticed that current increases with time within a
vertex of a pulse for the smallest injected charge densities, as predicted by models described. The
current pulse has nearly exponential relaxation component, after domain reaches the rear electrode.
Duration of the pulse vertex, measured between the initial (which is on the left in this scale) and
rearward kinks within current transient is well correlated with electron drift time in d = 300 um thick
Si layer, using 1 = 1,220 cm?/Vs value of the electron mobility. The enhancement of the injected
charge density, proportional to the neg injected carrier concentration, leads to the increasing delay (of
the rear kink in current transient) and to an increase of the current (proportional to ge), approaching to
the ambipolar diffusion lifetime 7o = d*/n”Ds, ascribed to the main decay mode. The extracted value of
the D, = 15 cm?/s using the measured 7o time is in good agreement with parameters ascribed to a
rather pure Si material.

Figure 5. (a) Variation of current transients, registered in Si pad-detector biased with a
fixed reverse voltage of value U < Ugp, as a function of the injected charge density.
(b) The current transients, ascribed to the charge domain injected by a laser pulse, as a
function of 25 MeV neutron irradiation fluence, evaluated from the exposure time of the in
situ experiment.
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Variation of current transients measured at extremely small excitation densities (close to those
possible to detect at a threshold sensitivity of the measurement system equipped with proper current
amplifier) is illustrated in Figure 5b. These transients were recorded during 25 MeV neutron irradiation
when density of radiation induced traps varied with neutrons fluence. The electrical (U, = 150V) and
optical (nexo) parameters were carefully controlled to be fixed within measurements. The sample was
kept in air just behind the neutron beam cone, while other experiment details are published in [14,28].
Evolution of the current transients is illustrated in Figure 5b, where currents had been controlled
starting from that registered in the non-irradiated diode up to exposure duration for which the collected
irradiation fluence reaches value of > 10' n/cm® The transient waveform inherent to the drift
dominated current (curve 1 in Figure 5b) is observed in the non-irradiated diode, which is coincident
with modelled transient shape. The radiation introduced traps determine a rapid reduction of carrier



Sensors 2013, 13 12326

lifetime and an enhancement of carrier capture and generation current components. The transient of the
carrier capture dominated current contains the single peak, and the relaxation-type curve occurs
(curve 4 in Figure 5b). In the range of the intermediate exposure time (curves 2 and 3 in Figure 5b), the
current pulse duration sustains values of the electron drift time within a diode base. The double peak
and rising pulse vertex shapes alternate during increase of fluence. Applying of the smallest possible
densities of the surface charge was sufficient to hide the inhomogeneities of the photo-generated
domain. This evolution of current transients can be explained by the competition of carrier
capture/generation and drift currents. For the largest irradiation fluence, the carrier trapping process
becomes dominant, while a drift current component is completely competed, and the relaxation-type
current pulse is only observed.

7. Summary

The models of the formation of the injected charge pulsed currents have been developed concerning
the junction-type detectors. The partial and full depletion regimes have been analyzed. It has been
shown, that, in junction detector, the drift time for the rather small density of the injected charge is
shortened relatively to that of the capacitor-like detectors when a proper frame of reference (for
comparison) is accepted and the characteristic relaxation times are matched. The description of the
current pulse shape for the large injected charge drift in a finite area detector is coincident with that
derived for the correlated drift (Ramo’s-type) expressions. However, the induced currents obtained for
the regimes of the small injected charge and of partial depletion lead to deviations from the Ramo’s
expressions. The analysis of the drift velocity field revealed the current increase within a vertex of the
current pulse, for the monopolar drift regime. It has been shown, that presence of carrier traps
considerably modifies the shape of the current transients. For the extremely large density of the
injected charge q > CyU, the ambipolar diffusion of the injected carriers may become dominant in
formation of the injected charge current pulse. It has been illustrated, that synchronous action of carrier
drift, trapping, generation and diffusion lead to a vast variety of possible current pulse waveforms.
Experimental illustrations of the current waveform variations obtained for both the rather small and the
large charge density of the photo-injected domains are presented, based on study of Si detectors.
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