
Sensors 2013, 13, 12295-12328; doi:10.3390/s130912295 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Currents Induced by Injected Charge in Junction Detectors  

Eugenijus Gaubas *, Tomas Ceponis and Vidas Kalesinskas  

Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10223, Vilnius, Lithuania; 

E-Mails: tomas.ceponis@ff.vu.lt (T.C.); vidas.kalesinskas@ff.vu.lt (V.K.) 

* Author to whom correspondence should be addressed; E-Mail: eugenijus.gaubas@ff.vu.lt;  

Tel.: +370-52-366-082; Fax: +370-52-366-079. 

Received: 25 July 2013; in revised form: 21 August 2013 / Accepted: 4 September 2013 /  

Published: 12 September 2013 

 

Abstract: The problem of drifting charge-induced currents is considered in order to predict 

the pulsed operational characteristics in photo-and particle-detectors with a junction 

controlled active area. The direct analysis of the field changes induced by drifting charge in 

the abrupt junction devices with a plane-parallel geometry of finite area electrodes is 

presented. The problem is solved using the one-dimensional approach. The models of the 

formation of the induced pulsed currents have been analyzed for the regimes of partial and 

full depletion. The obtained solutions for the current density contain expressions of a 

velocity field dependence on the applied voltage, location of the injected surface charge 

domain and carrier capture parameters. The drift component of this current coincides with 

Ramo’s expression. It has been illustrated, that the synchronous action of carrier drift, 

trapping, generation and diffusion can lead to a vast variety of possible current pulse 

waveforms. Experimental illustrations of the current pulse variations determined by either 

the rather small or large carrier density within the photo-injected charge domain are 

presented, based on a study of Si detectors. 
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1. Introduction 

The drifting charge-induced current is often a prevailing component in detector signals. An analysis 

of this injected charge drift current is employed for the detection of photons or particles and for 

reconstruction of the electric field distribution over the charge drift area in detectors. However, the 
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problem of the charge-induced currents remains a sophisticated issue in more complicated situations of 

photo-and particle-detectors when devices operate in partial or full depletion regimes with a complex 

field distribution in the presence of carrier capture-generation. Then, the induced current due to the 

charge trapping/de-trapping should be considered. The effects of the acting electric field screening or 

the gain caused by the interplay of the injected carrier charge and the bulk charge of ions in the 

depletion volume should also be involved. As usual, the principles of interpretation of the current 

transients in detectors under injected charge are based on the Shockley-Ramo theorem [1,2]. Ramo’s 

theorem was derived based on consideration of Green’s theorem and Gauss’s law, thus, on the balance 

of electrostatic energy changes and on the analysis of bulk as well as of surface charge induced 

electrostatic fields. Ramo’s current is derived at the assumption of the symmetry of an infinite 

electrode and of the spherical invariance of the potential surrounding an elementary charge. Therefore, 

the electrical capacitance of a real system of the finite surface area electrodes and its dependence on an 

applied voltage are out of consideration. Several attempts to generalize a simple Ramo’s approach to 

multi-electrode and arbitrary space-charge field distribution systems had been made [3–6], although 

these solutions [3–13] are under debate, as referenced in [3–10]. As pointed out in [7], a simple 

Ramo’s relation Equation (19) in [7] between the current within an external circuit and an introduced 

weighting field of geometrical sense is held only in the special case of moving charge in active area of 

a detector with a fixed external voltage applied. Therefore, a simple generalization or direct application 

of Ramo’s theorem can be erroneous [7]. Most of the generalization approaches are again based on a 

consideration of electrostatic energy conservation [7–10]. For the space charge systems, like a pn 

junction and pin semiconductor devices, the simple Ramo’s relations are not valid, and differential 

weighting potentials [8] are artificially introduced to restore the simple Ramo’s type of expressions of 

the convection current. More systematic approaches are employed in [9,10], where space charge and 

different types of charges are included. However, the solutions obtained [9,10] for the estimation of the 

induced current on an arbitrary electrode provide no practical relevance of application with regard to 

semiconductor devices, as pointed out in [10], when the real velocity field of the charge domain is not 

known, and it should be evaluated by means of the complete analysis of field distribution. Thereby, an 

additional kinetic equation should be considered to determine the instantaneous velocity of the charge 

domain. However, applications of Ramo’s theorem generally ignore this consideration, rendering the 

expressions obtained not practically applicable. The current pulse shape and duration are directly 

dependent on the temporal variation of the injected charge domain position within the inter-electrode 

space, where the instantaneous velocity and acceleration can be changeable. More complications 

appear within the consideration of a kinetic equation, when the injected charge amount can vary due to 

carrier traps inside the inter-electrode space. 

In this work, the fixed area abrupt junctions with a plane-parallel geometry of electrodes are studied 

by considering the partial and over full-depletion regimes. The vectorial nature of the employed 

quantities of the surface charge domain, of the electric field and of the charge drift velocity is always 

kept in mind. The scalar relations are analyzed along the unite ortho-vector with proper signs ascribed 

to directions. To simplify the understanding of applied models, the single type of induced surface 

charge domain motion is initially considered. This simplification can be sufficient to model current 

transients due to highly absorbed photons or alpha-particles in Si detectors, while the generalization for 

a bipolar charge domain is also discussed. The specific features of the induced charge domain drift 
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currents (ICDC) are revealed within analysis of the simulated ICDC transients and highlighted in 

illustrations of the experimental characteristics, measured on Si pin diodes. 

2. Modelling of the Current Transients Induced by Injected Charge Drift 

2.1. Geometry, Circuit and Electric Field Distribution for Different Regimes 

The same electrical circuit as in Ramo’s theorem derivation, is considered: one electrode is 

grounded and the high potential is kept on the other one. These two electrodes are connected to the 

external voltage source in series with a load resistor to register a current transient within external 

circuit, as illustrated in Figure 1a. The circuit for detection of current transient i(t) routinely includes a 

load resistor and closed input of an oscilloscope type instrument. It is, as usual, assumed that the load 

resistor RL is properly chosen to get the recordable signal, and that a voltage drop on load resistor (iRL) 

for all the range of detected currents can be ignored, i.e., iRL << U. 

As usual, a quasi-neutral domain of excess carriers is initially generated in particle detectors. It is 

accepted the domains are flat surface vector quantities. These domains injected by light or ionizing 

radiation are characterized by the surface charge density and the direction (vector) of the surface 

normal. Thereby, these domains are directly represented by the electric field of the surface charge. The 

sign (polarity) of the injected charge and the direction of the drift velocity vector are also included. For 

the grounded circuit, the single-side surface charge (and field) is ascribed to the voltage source. The 

drifting domain is also considered as the one-side surface charge vector correlated with drift velocity 

vector direction. The surface charge electric field vectors are initially considered, like the first Poisson 

equation. Then, the scalar equations for an instantaneous field distribution are analyzed. By applying 

an external field source, the injected carriers (by light or ionizing radiation) can be separated into 

oppositely moving surface charge sub-domains qe and qh, which induce charges of opposite sign on 

electrodes. The positive charge on the grounded electrode induced by a drifting charge domain is 

moved by the external source (battery) to the electrode of the high potential and vice versa. The latter 

charge transfer current is actually measured within the external circuit as a signal of either the charge 

domain drift or the charge density change. A sketch of the instantaneous field components is presented 

in Figure 1. 

External voltage source U produces a positive surface charge  on the high potential electrode, 

which is positioned at the distance d from the grounded electrode. Specific for the junction type 

detectors, the mobile charges within an active volume of a device lead to varied depletion width w0 

dependent on the applied (reverse Ur) voltage on electrode. The grounded electrode is assumed to be 

located at the beginning of the coordinate system (x = 0). The complete neutralization of the depletion 

charge (e.g., eND
+
) in the n-base active layer is obtained through respective depletion (wp+) of the other 

layer (eNA
−
) of a junction: eND

+
w0 − eNA

-
wp + = 0. In the abrupt junction of a pin type diode, it is valid 

wp+ << w0. Therefore, the assumption of the grounded electrode location at x = 0 is valid with 

precision of wp+/w0 << 1. The injection of the electron domain, with surface charge density qe, into the 

active volume of a detector at the instantaneous position X0 causes a change of the charge on the high 

potential electrode, in the case of the over full-depletion regime.  
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Figure 1. (a) Sketch of circuit for analysis of ICDC transients. Symbols denote as follows: 

Xe, h is the instantaneous position of the drifting one-sided surface charge domain of the 

electrons (–qe) or holes (qh) (with normal vectors ne and nh), respectively; E1 = Eqh + Eσ + ENDX 

is the electric field caused by the superposition of the hole charge (qh) domain, the surface 

(of an area S) charge (+σ , with a normal vector nσ) on the high potential electrode and the 

local surface charge introduced to represent the electric field at x created by a bar (of a 

width (d−x)) of the bulk ion charge (with a normal vector neNDX); E2 = Eqe + Eσ + ENDX is 

the electric field caused by the superposition of the electron charge (–qe) domain, the 

surface charge (+σ) and the local surface charge of the ion bar; E3 = Eσ + ENDX is the 

superposition of field between the electron and hole domains and the surface charge of the 

ion bar; ve,h is the instantaneous velocity vector of a drift of the surface charge domain –qe 

or qh, respectively; d is the inter-electrode distance;  and 0 are the material and vacuum 

dielectric permittivity, respectively; k0 is the unit ortho-vector in the uni-directional 

coordinate system; ψh and ψe are the dimensionless, normalized positions of the drifting 

hole or electron domains, respectively; jσ is the current density; U is the external source of 

voltage; RL is the load resistor. The sketches are illustrated for the electric field 

instantaneous distribution due to the injected negative charge surface domain within a 

partially depleted (b) and fully depleted junction (c), respectively. w0 is the steady-state 

depletion width; wq(t) is the charge drift introduced depletion width. 

 



Sensors 2013, 13 12299 

 

 

For the partial depletion regime, this leads to changes of the depletion width wq, due to the mobile 

carriers in the electrically neutral region (ENR). As the electrodes are only connected to the external 

measurement circuit, the current induced by the moving charge –qe within the external circuit is 

determined by the surface charge d changes (being a full differential) in time: d/dt. To find these 

changes, the superposition of the induced fields should be considered.  

The junction based detectors contain rather complicated field distribution, and, thereby, need 

specific analysis. The instantaneous field distribution in n-type conductivity region of the p
+
n abrupt 

junction structure during the monopolar drift of a negative charge in partially and over-depleted base 

region is sketched in Figures 1b, c, respectively. 

2.2. Current Transient Induced by Charge Drift in Abrupt Junction  

The analysis can be easily applied to the consideration of the barrier capacitance changes for unit 

area Cb = 0/wq(t). The charge drift dependent depletion width wq(t) should then be introduced, due to 

the injected charge qe. The reverse biased steady-state depletion width w0 = [20(U + Ubi)/eNDef]
1/2

 

serves as an equivalent of the inter-electrode spacing d. Here, Ubi denotes the built-in potential barrier, 

and Ndef is the effective dopant density. Variations of surface charge  are equivalent to the changes of 

the surface charge at w0, induced by an additional depletion charge bar, as  ~ eNDef(wq(t) − w0). It can 

be proved that consideration of the time dependent changes of the system dynamic capacitance  

CSq (ascribed to a surface area unite) is equivalent to the analysis of the convection current. In 

semiconductor devices an important role is played by carrier capture and generation processes. Also, 

different regimes of the partial-depletion, of the full depletion and the over-depletion (depending on 

detector width and applied voltage) have their specific features. The mixed regimes of the electrode 

surface charge changes and of the depletion width variations are inherent for the applied voltage values 

close to the values UFD of the full depletion (FD). For clarity, these different regimes are separately 

analyzed below. 

2.2.1. Current Transients of the Injected Charge Drift in Partially Depleted Detector  

This regime is partially discussed in [14]. Let’s consider a regime of the applied reverse voltages 

Ubi < U < UFD on the n-type conductivity layer at an assumption that the electron domain is injected 

nearby the metallurgic abrupt junction, and the strength of the electric field there is capable to separate 

the electron-hole pairs, with consequent extraction of holes into p
+
-type layer. This leads to a 

synchronous change of the depletion widths in the n- and p- type conductivity layers to keep the 

junction system electrically neutral behind the depletion w0,n and wp+ width boundaries. To simplify 

the analysis, an assumption of the asymmetric doping of n- and p-layers, i.e., the abrupt p-i-n junction 

is accepted, which enables ones to ignore a voltage drop on p
+
-layer. It is also assumed that the 

external metallic electrodes are in a rapid dynamic balance with neutral n- and p
+
- layer material. Thus, 

a rate of the processes within an n-layer region is the slowest one. The latter processes determine the 

current transient caused by a drift of the injected electron domain. 

Using the methodology described in [14], an instantaneous field distribution is obtained by 

integrating the first Poisson equation and by assuming an infinitesimally thin drifting domain of 

surface charge of density qe, as: 
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(1)  

Here, a vector of the electric field is directed towards the junction, while a surface charge domain of 

electrons can drift towards high potential electrode. To find a depletion width wq and, alternatively, 

E1(0), due to the injected charge qe domain and the external reverse bias voltage (Ur) source, the 

second Poisson integral should be taken, which leads to expressions: 
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Here, a common depletion boundary condition (E(wq) = 0) and a proper root of the quadratic 

equation are accepted;  denotes the carrier mobility. For the reverse biased junction, it is assumed as 

usual [15] that U = Ur−Ubi. Within a coordinate system at rest, the characteristic time parameters 

Mq,w0 and TOF,w0, are defined relative to a steady-state width w0, instead of d. Thereby, the 

characteristic time parameters Mq,w0 (time of the Maxwell relaxation of charge q, Mq) and TOF,w0 (time 

of flight, TOF) are expressed as: 
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These characteristic times, namely, their equality (Mq,w0 = TOF,w0), can be a measure for the validity 

of the electrostatic induction approach. These characteristic times implicate the response time of the 

extended (of distributed charge) electrode (TOF,w0) and of a drifting domain (Mq,w0). 

A steady-state depletion width w0 is expressed by a well-known formula derived within depletion 

approximation [15] as w0 = (20U/eND)
1/2

. Consequently, a barrier capacitance is obtained as: 
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where Cb0 = εε0/w0. It can be noticed that wq > w0, and, therefore, the barrier capacitance decreases due 

to the injected charge domain. 
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It can be inferred from Equations (1–6), that the regime of the surface charge domain drift within a 

partially depleted layer of a junction, can only be considered under a few restrictions on relations 

among values of the applied voltage, the doping and the injected charge density. A spatial range for wq 

variations is limited by a geometrical width d of a n-base layer (and consequently by the barrier 

capacitance decrease to its geometrical capacitance value), as: 
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For electrodes of surface unite area S = 1, this leads to the inequalities, written as: 
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Here, M,Ndef = 0/eeNDef is the material dielectric relaxation time within a space charge region. 

Inequality Equation (8) leads to a limitation:  
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of the injected surface charge which can be moved off by U < UFD. The current density is obtained by 

the analysis of the time dependent variations of a surface charge on electrode due to the extracted 

electrons, as: 
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The rearranged (by these differentiation procedures) expression of a module of the current density 

of the injected charge domain (ICD) drift can be represented as follows: 
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The obtained scalar form of the current density within a coordinate system at rest (w0) is very 

similar to that of the Ramo’s current expression. The main difference is an appearance of a coefficient 

K, dependent on the dimensionless position *
 = Xe/w0 of a drifting surface charge domain within w0, 

and it is composed of the characteristic times as: 
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The appearance of the coefficient K is a specific feature of the non-fixed position of the virtual 

electrode (wq), charge on which is varied by a changed depletion range of ions. Simultaneously, the 

possible drift length is also dependent on the rate of the formation of w0 and wq, i.e., on the 

characteristic time M,Ndef = 0/eNDef = 0/enENR of the stabilization of the transitional -thick layer 

(between the depletion and ENR layers) due to extraction of the mobile carriers nENR = NDef from ENR. 

This transitional  layer is related to the Debye screening length [15]. 
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The additional scalar equation (with properly accepted vector direction sign) for a velocity of the 

charge domain drift is now expressed as follows: 
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The rearranged equation into the dimensionless *
 = Xe/w0 form can be written as: 

]1[
1 **

0,

0,

,

*











wMq

wTOF

NdefMdt

d
 (14)  

with the adequate boundary conditions, as t=0 for *
= 0

*
 and t=tdr for *

= 1, respectively. This 

Equation (14) is the first-order ordinary non-linear equation, a solution of which is expressed as: 
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Extraction of the *
(t) function, by integrating Equation (15), might be complicated [16], and it can 

commonly be found by a numerical solution. These solutions *
(t) are only determined for an interval 

of the  values, evaluated by using condition [1 + (TOF,w0/Mq,w0)]
1/2

 −  > 0. The same difficulty 

appears in evaluation of drift time tdr, implemented by inserting the second boundary condition *
 = 1:  

 

(16)  

Then, the obtained *
(t) should be inserted into the right hand side of Equations (11) and (12). 

Actually, a direct numerical solution of Equation (14) might be preferable in order to simulate the 

current density transients. The initial component of a rise to the pulse vertex (jICD,F(t)) and the rearward 

relaxation component (jICD,R(t)) of a current pulse can also be modelled. Here, it is assumed for 

simplicity that the kinetic equation of motion Equation (14) is only slightly modified due to Mq,w0 

during qe injection. 

For Ne carriers located within a domain on its surface area Se, comprising a surface density  

qe = eNe/Se, the injected charge drift is assumed to be a uni-directional process. Therefore, to relate 

more adequately the characteristic times TOF,w0 and Mq,w0, the inequality Equation (9) could be 

rearranged as: 
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Thus, for the partially depleted junction, both components d
2
/Se < 1 and (1−U/UFD) < 1 should be 

small, and these conditions ensure that TOF,w0/Mq,w0 < 1. Actually, the correlated drift of the injected 

charge domain (as assumed for the Ramo’s regime) can only be implemented at TOF,w0/Mq,w0  1. 

Thereby, the exact Ramo’s regime is impossible for the partially depleted junction if K  1. 
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Generally, variation of an initial component jICD,F(t) as a function of time t within the current pulse 

evolution is described for the time interval 0  t  tdr as: 
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Equation (18) describes a component of the pulse with a decreasing current shape within the pulse 

vertex, Figure 2. 

Figure 2. (a) Normalized current density j × TOF,e/qe transients simulated without 

including of the external circuit impact (red solid curve) and under the impact of external 

circuit with RL = 10 Ω (dash-dotted blue curve). Solid black curve represents the barrier 

capacitance variations during charge drift. (b) The electric field redistribution within the 

partially and the over-depleted diode layer during the drift of the electron domain. 

 

The rearward component (jICD,R(t)) (Figure 2) of the current pulse is determined by the processes of 

the system capacitance Cb,Sq restore to its steady-state value Cb,S0 = εε0/w0. At arrival of the drifting 

charge domain to the w0 location, the surface charge field qe/0 is equal to the electrostatic induction 

charge field determined by a depletion charge bar eND(wq−w0)/0. Therefore, the field qe/0 is 

completely screened being at w0, as the reverse voltage determined field of positively charged ions 

becomes zero at the point w0. Thus, from the time instant t = tdr, an interplay of carrier diffusion from 

electrically neutral region (ENR) and surface charge field qe/0 determines the reduction of the wq to 

the steady-state value w0. This process originates a current (relatively to a domain drift one) 

determined by narrowing of the depletion region, −carriers from the ENR drift into the opposite 

direction relative to the injected domain drift. This current represents the decreasing with time  

(t−tdr) component. 

This current component may be responsible for the appearance of the offset within a current 

transient, inherent for the partially depleted detector. Duration of this process is determined by a 

dielectric relaxation time of the material, namely, M,Ndef. This current flows until the instant tCw0 of the 
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barrier capacitance restore to its stationary value 0/w0. It is determined by the barrier capacitance 

charging current. Superposition of these currents leads to a current relaxation component expressed as: 
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applied for the time scale of tdr < t  tCw0. Here, Cw0 = Cb,S0S, including the surface area S of electrode.  

As a result, the current density within a pulsed ICD transient is expressed as follows: 
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The offset current relaxation to zero is additionally governed by the parameters of the external 

circuit. The relaxation component of the current pulse is determined by the relaxation processes within 

an RC chain consisting of the system capacitance Cb,Sq and a load resistor RL. These elements together 

with the value of the applied external voltage determine the amplitude as well as the shape of the 

current pulse, and duration of the jICD,F and jICD,R components. 

2.2.2. Current Transients in Fully Depleted Detector  

The surface charge on a metallic (or heavily doped layer) electrode changes together with the space 

charge bar width due to a moving surface charge domain, when external voltage U is equal to or 

exceeds the full depletion (UFD) value, U  UFD. This happens due to a lack of semiconductor material 

(supporting mobile carriers) width (relative to a partially depleted layer case) to withstand the action of 

the electric field due to the injected charge. The equilibrium carriers are extracted into the external 

electrode, if depletion covers completely the active layer width. 

Again, using the methodology described above, a field distribution for the negative drifting charge 

is obtained by taking the first Poisson equation: 
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 (21)  

and the second Poisson integral as: 
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or, alternatively, including the value of UFD = eNDefd
2
/20 , it can be re-arranged as: 
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The solution for a scalar surface charge density on the high potential electrode is expressed as either: 
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(27)  

The instantaneous field distribution can then be represented as follows: 
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It can be deduced from Equations (26 and 27) that similarly to the above considered structures, a 

capacitance of the system is decreased relative to its steady-state value, due to a drifting (Xe(t)) surface 

charge domain. It can be inferred a limitation for the charge density possible to move off: 
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This qe density also serves for evaluation of the relevant range of the positive capacitance CSNq 

values with qC = UCg = U0/d. 

A module of the current density, derived from Equations (26 and 27), in the case of the over  

full-depleted (OFD) junction, is again expressed as: 
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which formally represents the Ramo’s type current component.  

However, the considered situation for a fully-depleted junction is more complicated relative to those 

discussed above. The reason is a degenerated point wFD = d, Figure 2b. From one side, this is caused 

by the synchronous action of the capacitor-specific and the junction-inherent field distribution 

symmetries. As the junction determines a decreasing electric field shape, this field is exactly zero at 

the electrode (wFD  d, the full-depletion condition) and  does not change. Thus, any displacement 
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current component for wFD = d, which is caused by the changes of an electric field behind the drifting 

domain, immediately becomes equal (transferred into) to a conductivity (convection) current, due to 

annihilation of the surface charge domain at Xe = d. But the symmetry of a capacitor-inherent field 

implies that the displacement and convection currents, flowing within a capacitor in opposite 

directions, exactly compensate each other to keep the external voltage invariable. The displacement 

current in the over-depleted junction is obtained as: 
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This jdispl (Equation (31)) component is different (through an additional eNDefdXe/dt type term) from 

that jOFD derived by consideration of the changes of a surface charge on the electrode of the capacitor. 

Actually, the current (displacement and drift) components measured within external circuit cannot be 

separated, while the complete current is determined by the changes of charge on the external electrode.  

On the other hand, the displacement current (Equation (31)) eNDefdXe/dt and the conduction current 

en0dXe/dt components completely compensate each other: the displacement current is caused by a 

space charge bar eNDefed of ions, and the conduction current en0dXe/dt (Equation (31)) component, 

which appears due to a seeming extraction of equilibrium electrons n0 and by producing the surface 

charge en0d on electrode, contain the opposite signs in Equations (31). This peculiarity occurs, if the 

space charge bar (eNDefed) (either behind the injected surface charge domain (when Xe = 0) or in front of 

it (when Xe = d)) determines an appearance of the displacement current component to exactly 

compensate the conductivity current component en0d (to ensure invariance of external voltage U). 

Only for a singular set of boundary conditions U  UFD and Xe = 0 as well as Xe = d, the displacement 

current 0E/t is equal to E the material’s conductivity current, i.e., 0E/ t= E, where  

represents a conductivity of semiconductor material. 

Thus, the complete current within an external circuit is again determined by the displacement 

current due to the injected charge, as obtained in Equation (30). While the space charge bar induced 

displacement currents (within Equation (31)) are employed to exactly compensate the conductivity 

(convection) current component in a fully depleted junction layer. These peculiarities should be kept in 

mind when considering the field of velocities to express definitely the time dependent current changes 

within a current pulse. 

A dimensionless velocity field can be considered by using the accelerating electric field component 

for a geometric width d of the inter-electrode spacing as: 
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The coefficients in Equation (32) can easily be rearranged by using the characteristic times: 
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and their ratios. It can be noticed in Equation (32), that depending on the relations among values of the 

specific time parameters (Equations (33–35)), and to hold Equation (29) for qe limitation, three type 

solutions are obtained as: 
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(36)  

These equations (Equations (36)) describe the changes of a dimensionless position 0    1 with 

time in the interval of 0  t  tdr for these three (A, B and C) regimes. The corresponding evaluations 

of a drift time tdr are obtained by using the relevant boundary condition ((tdr) = 1) for Equations (36). 

These evaluations of a drift time are expressed as follows: 
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(37)  

These different regimes can be realized by varying the applied voltage U (through TOF), the doping 

NDef (M,Ndef) and the injected surface charge density qe (Mq). The first regime A (Equations (36 and 

37)) is attributed to a small charge drift. Here, the time dependent variations of the dimensionless 
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position (t) are similar to that of the partially depleted junction. These (t) contain a fast initial 

increase followed by a saturation character of the (t) changes when t approaches to tdr. The drift time 

is mainly determined by the injected charge dielectric relaxation time Mq, modified by a mismatch 

between Mq and M,Ndef. The second regime B can be associated with a correlated drift of the surface 

charge domain, when (t) increases linearly with t, characterized by the invariable tdr, which is directly 

determined by TOF. The third regime C is attributed to the large charge drift, when the injected charge 

is able to locally screen the depletion space charge of ions. Then, TOF  Mq < M,Ndef, and the 

correlated (Ramo’s type) drift of the injected rather large charge appears. The large injected charge 

determines the increasing drift velocity. Then, neither a drift velocity nor acceleration is constant. This 

leads to an exponentially rising (in time) current density during the charge domain drift time (0  t  tdr). 

For this regime, the injected charge density is only limited by values qe < qC  Cg(1 − UFD/U)U. The 

complete shielding of the external voltage created surface charge  appears if qe > qC  CgU. Only a 

diffusion of the injected carriers is then possible for qe > qC. 

The current density ascribed to different regimes can be modelled by using the relevant expressions 

for (t), taken from Equations (32) and (36), in the drift velocity equation (Equation (32)). The current 

density is then expressed as: 
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(38)  

for the respective regimes A, B and C. 

The current density changes within a pulse vertex acquire a relaxation curve shape for the regime A, 

when screening of electrons (drifting charge domain) by ion charge within the depletion width 

prevails. For the correlated screening regime B, a square-wave shape current density pulse appears 

with a flat vertex. While for the correlated (Ramo’s type) drift regime C (TOF  Mq), the transient with 

increasing in time current density is inherent. 

The monopolar drift of holes can be expressed using methodology described above for the case of 

electrons drift. The positive charge qh drift is only possible towards the p
+
-layer. Then, the field for x < X0, 

which accelerates qh, is important for the consideration of the induction current. This yields: 
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The current density, for U = const, again acquires the Ramo’s-type expression: 
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The drift velocity field is described by a differential equation: 
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using the characteristic time parameters defined as: 
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Assuming the proper boundary conditions: 
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the solutions of the kinetic equation (Equation (41)) are expressed as follows: 
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(46)  

The monopolar drift time is then evaluated as: 
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(47)  

The current density of the hole drift is expressed (by inserting Equations (41) and (46) into 

Equation (30) (modified for holes drift)) as: 
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(48)  

In the case of the positive charge drift within n-base material, holes are always accelerated due to 

acting space charge field. The transient is then observed with the current density increasing with time. 

2.2.3. Impact of Ion Space Charge in Fully Depleted Detector  

The moving charge inside the over depleted space charge layer induces a displacement current 

component, which exactly compensates the conductivity current component, arisen due to a proximate 

contacting of the depleted layer with external electrode (outside layer). As can be inferred for the 

regime B (Equation (38)), characterized by the matched relaxation lifetimes Mq = M,Ndef, the space 
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charge eNDef over d accelerates a drift of the injected charge domain by the shortening of the drift time 

to the value tdr = TOF/[1 + (TOF/2M,Ndef)] < TOF, for 0 =0 (Equation (37)). 

However, for the regime A of the non-correlated relaxation times of the space charge eNDef and of 

the drifting qe/d one, existence of the space charge eNDef leads to a reduction of the effective value of 

the drifting charge:  

NdefMMq

NdefM

eefe

t
qq ,

,

,  for),exp( 


 . (49)  

Then, a surface density of the drifting charge qe,ef is instantaneously and locally shielded by the 

space charge of ions, due to the rapid local reaction of the sufficiently large density charge of ions. 

Then, an increase ~ exp[t/Mq] of the drift current density (Equation (38)) competes with a seeming 

reduction of the charge density qe ~ exp[−t/M, Ndef], caused by the ion space charge. The space charge 

of ions modifies the current density during qe drift by varying of length of the eNDefXe bar. 

The large injected charge is able to locally screen the depletion space charge of ions, for the  

regime C. Then, a drift of the injected domain proceeds similarly to that in a capacitor-type device. 

2.2.4. Bipolar Drift of Surface Charge in Junction Structure  

As usual in detectors, a quasi-neutral domain of the excess carriers is initially generated. Then, 

owing to a steady-state applied field, these carriers can be separated into the oppositely moving surface 

charge sub-domains qe and qh. These drifting sub-domains induce charges on the electrodes and 

determine a field in between of them (qe and qh), to hold the initial quasi-neutrality. A sketch of the 

field components is presented in Figure 1a. 

An instantaneous electric field distribution along the x axis (0 ≤ x ≤ d) for the bipolar drift can be 

represented as: 
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(50)  

A field discontinuity at the instantaneous location of surface charge domains is expressed as: 
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 (51)  

Then, the relation between the surface charge +σ on high potential electrode and the external 

voltage U is obtained by taking the second Poisson integral. The solution for a scalar surface charge 

density σ can be written as: 

heFDhheeFD CUUqq
d

UU  )()1()( 0 


  (52)  
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where the expressions are employed for a full depletion voltage UFD = eNDd
2
/20 and for the 

dimensionless positions e,h = Xe,h/d of the sub-domains. However, the full depletion voltage value 

may become variable in the case of carrier capture/emission due to a change of effective dopant 

density ND = NDef.  

It is worth to point out, that in the case of the bipolar drift, the charge  on the high potential 

electrode becomes dependent on the instantaneous location of both electron and hole separated 

domains (e, h). This leads to the appearance of the fields acting on electrons (E2) and holes (E1). 

Theses fields also depend on the instantaneous location of the drift counter-partners as: 
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(53)  

The induced charge current density, due to a bipolar drift, is expressed as follows: 
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(54)  

It can be noticed that, owing to ve = −vh, the scalar current density can be represented by a sum of 

Ramo’s-type components:  

)(
dt

d
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d
qj eh 

  (55)  

The bipolar drift velocities are correlated during the bipolar drift time b (within time b domain) as: 

 
(56)  

Here, the drift directions are included by accepting the relevant sign for the scalar velocity. There 

exist several situations of the pure bipolar and the mixed drift regimes. These regimes can be separated as: 
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The regime (Equation (57)) of the synchronous drift of both type carriers within the entire inter-

electrode gap can only be realized for a single definite point of the charge domain injection 0. While 

the mixed drift processes appear when the bipolar drift (within current pulse) changes to either the 

monopolar drift of the electron domain after holes reach a p
+
-layer or it becomes the monopolar drift of 

the hole domain after electrons reach the high potential electrode. These latter situations depend on the 

injection location 0 = 0h = 0e within n-base region of the junction and on the mobility of carriers. 

In the general case of the junction structure, the drift process in both layers of the junction should be 
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included. For instance, a drift of holes within n-base region should be extended into p
+
-layer of the 

abrupt junction to exactly account for the bipolar and monopolar regimes. 

Pure Bipolar Drift  

In the case of the pure bipolar drift regime (Equation (57)), a system of kinetic equations for the n-

base region and their solutions are expressed as follows: 
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These solutions should satisfy the boundary conditions: 
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(63) 

However, in the more precise approximation, the monopolar drift of holes within p
+
-region included 

by 0 = 0n + 0p+, should be analyzed. Therefore, in rigorous consideration, the pure bipolar drift can 

be assumed as an idealization. Nevertheless, for the case of tr,hp+ << tr,hn, the single layer 

approximation can be a relevant approach. 

Then, the inherent time b of the bipolar drift is obtained by integrating an expression for the drift 

velocity (using Equations (55, 57, 60 and 61)) as: 
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(64)  

Inserting these solutions (Equations (60, 61 and 64)) into Equation (55), the current density (in the 

case of the pure bipolar drift) is expressed as: 
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(65)  

Thus, the pure bipolar drift leads to an invariable current density with pulse duration of tP  0TOF,h, 

Equation (65), provided that carrier capture can be ignored. The dimensionless position of the charge 

injection always is 0  1. Therefore, the injected charge drift current pulse is even shorter than a time 

of flight of the counter-partners in bipolar drift, i.e., either tP < TOF,h or TOF,e(1−0).  

 

 



Sensors 2013, 13 12313 

 

 

Bipolar Drift During Hole Drift Time 

In the case of the hole drift time tr,h is the shortest one among the characteristic times, a bipolar 

 (bB =tr,h) drift (Equation (58)) is described by a system of the kinetic equations and their solutions, 

which can be presented as follows: 
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These solutions should satisfy the boundary conditions: 
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(69) 

Here, e
*0

 serves as the start position for a drift of the electron domain, just during an instant of 

disappearing of the domain of holes at the grounded electrode. The time bB of the initial bipolar drift 

is obtained by integrating the expression for the drift velocity (using Equations (66–69 and 55)), as: 
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(70)  

Here, the step-like change of field and current density would have obtained for an instant of hole 

arrival to the grounded electrode. To validate the charge, charge momentum, and energy conservation, 

the coordinate transform should be performed, to stitch the solutions obtained in the moving (bB time 

domain) coordinate system to that obtained (Equation (30)) for the system of coordinates at rest. This 

transform should include the charge induction on the electrodes, the drift velocity conservation and the 

coordinate relations, which can be represented as: 
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(72) 
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(74)  

These transforms relate the “new” +
 coordinate in the system at rest with that  (within bipolar 

drift time domain) moving one for the proceeded monopolar drift analysis, after the charge induction 
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procedure is accounted for, and velocities are matched. Then the prolonged monopolar drift velocity of 

electrons (for the case when Mq,e < M,Ndef) is expressed as: 
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(75)  

Here, Re1 and Re2 are the lifetime ratios, which can be dependent on the voltage drop sharing; v0,e,mon 

is the initial velocity of the monopolar electron drift, which is obtained using relations of velocity 

vectors and their directions for bipolar drift and for the re-calibrated monopolar drift as: 
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This gives a coincidence of v0,e,mon and vbipe
*0

 values at the position e
*0

 of an electron domain. 

Expressions for the function ψ(t) and monopolar drift time are obtained by integrating (Equation (75)) 

expression with the initial and boundary conditions: 
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These solutions are given as: 
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(80)  

The entire duration tP of the current pulse contains the both phases: 

monebBPt ,   (81)  

of the bipolar (bB) and the monopolar (e, mon) drift of electrons. Inserting these solutions  

(Equations (66–70)) into Equation (55) for the monopolar drift of electrons with e
*0

 as an initial 

position, the current density (in the case of the mixed regime (Equation 58)) is expressed as: 
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The current transient (for the analyzed case of Mq,e < M,Ndef) has a decreasing current component 

within the initial phase (during a bipolar drift) and an increasing one within the rearward component of 

the transient due to a drift of the electron domain which screens the space charge. For the case when 

Mq,e = M,Ndef, the electrons drift with the constant initial velocity v0,e,mon due to a compensation of the 

drifting charge and the space charge fields. For the case of Mq,e > M,Ndef, the electrons drift with a 

decreasing velocity, as the large space charge of ions (relative to a drifting charge) screens the  

drifting charge. 

Bipolar Drift During Drift Time of Electrons 

In the case the electron drift time tr,e is the shortest one among the characteristic times, a bipolar 

(bC = tr,e) drift is followed by a monopolar drift of holes towards p
+
 layer of the junction. After 

performing analogous (as described in previous section) coordinate transformations and solving drift 

velocity equations for the bipolar (during drift time of electrons (Equation 59)) and prolonged 

monopolar drift of holes, the current density is expressed as:  
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with the entire duration tP of the current pulse: 

monhbCPt ,   (84)  

which consists of the components of the bipolar drift time: 

)1(
2

1
)

11
()1()

11
(

2
1

)1(

1

,

,

,,

,00,

,,,

,

,0
,,






e
eMq

eTOF

h

e

NdefMeMq

eTOFeTOF

NdefMeMqNdefM

eTOF

eTOF
etrCb



















 

(85)  

and the monopolar drift time: 
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(86)  

Here, h
*0

 denotes the initial domain position within the monopolar drift of holes; v0,h,mon is the 

initial velocity of the monopolar hole drift which is obtained using the relations of velocity vectors and 

their directions for the bipolar drift and for the re-calibrated monopolar drift as: 



Sensors 2013, 13 12316 

 

 

bip
h

bbiphbbipe
h

monh vvvv 



 0*,,,,0*,,0 |


 . (87)  

In the case of the proceeded hole monopolar drift within n-base material (after the phase of the 

bipolar drift is finished), holes are always accelerated due to the acting space charge field. The hole 

drift with an increasing velocity determines an inherent shape of the increasing current density within a 

transient, during the monopolar drift phase. 

3. The Impact of Carrier Trapping and Generation  

3.1. The Impact of Carrier Trapping  

The injected charge current can also be changed by carrier trapping and generation. The surface 

charge density dependence on time for the simple traps can be expressed as: 

)./exp()( 0 Cee tqtq   (88)  

Introducing a trapping dependent dielectric relaxation time as:  
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the time dependent changes of the charge on the high potential electrode are described as:  
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Here, the time dependent quantities of NDef(t) and qe(t) should be employed. Capture of the injected 

excess carriers, as usual, leads to a synchronous filling of empty donor and acceptor type traps those 

determine the overall charge neutrality and effective doping NDef. Then, the current density within a 

pulse, at assumption that NDef(t)= NDef0exp(−t/C), is expressed as: 
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This equation should be properly matched with the drift kinetic equation: 
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The latter equation can only be solved numerically, although the general solution [17] can be 

expressed through complicated integrals [16]. 

A few aspects of the impact of carrier trapping on the injected charge transients for a partially 

depleted junction layer have been mentioned in [14,18]. Evaluation of other parameters (e.g., tdr) of the 

transients determined by the injected charge drift and trapping becomes even more complicated, and it 

can be implemented only by the numerical methods. For prevailing of trapping processes, no 

articulated features of the detector response ascribed to the injected domain drift can be separated, and 

only the relaxation-type shape followed the charge domain injection peak can be observable within a 

current transient. 
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No drift exists (/t  0) and, consequently, Ramo’s current component disappears, if a trapping 

lifetime of the induced charge qe0 domain is the shortest one within a set of characteristic relaxation 

parameters. Then, equation (Equation (91)) for current density can be simplified as: 
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which describes the induction current, - due to the local changes of the injected qe(t) charge density.  

3.2. Generation Current Component  

Carrier trapping, associated with a drifting surface charge domain, may determine the immediate 

(during time significantly shorter than other characteristic time parameters) and local changes of the 

effective charge. A decrease of NDef due to a filling of the charged donor-type traps is equivalent to a 

local charge generation. Thus a simplified approach for evaluation of the generation current can be 

considered. Then, carrier trapping and generation can be analyzed synchronously by rearranging 

Equation (88) as: 
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Here, m0 denotes the initial carrier density on filled traps or the density of the neutralized donor-

type traps, e is the elementary charge, and g,ef is an effective generation lifetime. At these simplified 

assumptions, Equation (94) can further be rearranged as:  
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with the additional designations as:  
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This simplified approach enables one to include into consideration the local charge generation. 

Unfortunately, the solutions can be obtained only by numerical analysis.  

The discussed above simplified analysis of the components of carrier drift, trapping and thermal 

release enables one to make the rough estimations of the impact of different components. However, the 

rigorous consideration of processes should be based on the causality principle. The current changes can 

only appear during or after injection of qe. Therefore all the relations for the electric fields and charges 

caused by qe, obtained within the electrostatic approach, and containing the time dependent qe(t) 

components should appear as the convolution integrals, for instance, as:  
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This specification leads to the integral-differential equations. These equations can only be analyzed 

numerically. Then, the above presented simplified models can be employed for the initial and 

qualitative prediction of the numerical solutions. 

4. The Role of Carrier Diffusion 

The drift velocity is varied through the electrostatic interaction of injected charge qe and surface 

charge  on electrode, due to external voltage source. The initial zero drift velocity actually appears 

when the detector signals are caused by the secondary electron-hole pairs generated by the energetic 

elementary particles (high energy photons, hadrons, etc.). Then, a neutral domain with an equal density 

of electrons and holes in pairs is locally generated. The external field is able to separate and move 

these counter-partners towards opposite directions if the density of these carriers is less than qC, i.e., 

for qe < qC = CgU.  

In the partially depleted junction layer, for U  UFD, the current (ascribed to the injected charge 

drift) varies due to the temporal changes in wq(t), and it really contains a pair separation Xe-h(t) = Xe−Xh 

length. The charge separation process induces the change of the depletion width wq (an increase, 

relatively to its steady-state value w0,n&p+) in both layers of the junction, i.e., wq,n and wq,p+. The 

extracted excess holes are located at p
+
-side producing the same value of the surface field. Thus, the 

overall charge balance wp + N
-
A,p+ = wnN

+
D,n together with qh,p + X0,p+ = qe,nX0,n is maintained in a 

diode for the moderate density of the injected charge domain. In the heavily doped layer, the 

characteristic times, e.g., dielectric relaxation times, are significantly shorter than those in the resistive 

layer. Therefore, current transient pulse duration is mainly determined by the longer processes within 

more resistive layer. This motivates an approach of a separate consideration of electron drift within a 

base region of the reverse biased diode detector, where a charge separation process is assumed to be 

sufficiently short, and a drift starts after extraction of counter-partners (separation of pairs) process is finished.  

In the general case of the local injection of excess carrier pairs, separation of counter-partners 

depends on their densities. The external source induced charge  on electrode can be completely 

shielded by the large injected charge qe within a Debye screening length during the dielectric 

relaxation on metallic electrode, which is extremely short. The space charge of ions is also screened 

during Mq, which is then the shortest one among the characteristic times, in the case of qe >> eNDefd 

and (qe/0)d > U. The external source is able to react by changing , till the system capacitance is  

CSq > 0. However, the large injected charge qe nearby the grounded electrode (X0  0) is able to create 

an internal field and a voltage drop (qe/0)d, which reduces the dynamic capacitance of the system to 

CSq = 0. Then, the external voltage source is completely blocked in supporting of . As a result, no 

separation of the electron-hole cloud (into domains of electrons and holes) appears. Thereby, 

relaxation of the injected quasi-neutral domain happens completely by carrier diffusion process. 

The reason is the excess carrier diffusion and appearance of the diffusion induced inner field [19] as: 
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This field is proportional to the excess carrier density gradients. For the locally generated domain of 

the nearly infinitesimal width (for instance in tracking of hadron path) within significantly wider inter-

electrode gap of detector, diffusion due to a sharp gradient (which is also proportional to the carrier 

density) induces an inner electric field which balances a further widening of the domain. Strength of 

this field can be sufficient to compensate partially or fully the applied external field (surface charge ) 

in the case of low applied voltage and the rather high densities of the injected carriers. Then, carrier 

diffusion and drift leads to the outspread of the domain. Such a process is characterized by the 

ambipolar diffusion coefficient Da. In thin detectors with small applied dc voltage, a width of the 

outspread domain can approach the geometrical dimensions of the inter-electrode layer, even when it is 

formed by the strongly absorbed radiation. The same situation can be realized by the photo-injection of 

excess carrier into a rather thick detector using the homogenously absorbed light. Then, the injected 

domain sweeps the inter-electrode spacing. The external electric field acts as the accelerating factor for 

the surface recombination sd/D (of velocity s, related to sd/D = d/LD by Debye screening length LD). 

This problem is very similar to the excess carrier ambipolar diffusion moderated carrier recombination 

on surfaces. Then, action of the external field and carrier drift can be included into the properly modified 

surface recombination velocity s. Solution of this problem is well-known [20–23], and it leads to a 

transient of conductivity current due to the carriers arrived to the electrode and extracted to its surface. 

Time variations of the excess carrier density in this domain (averaged over the geometrical thickness d 

of inter-electrode space) is expressed through a sum of the space mode m components as:  


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The space frequencies () of these decay modes are described by the solution of the transcendental 

equations of type: 
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Here, s1 = LD,h/TOF,LD,h and s2 = LD,e/TOF,LD,e denote the surface recombination velocities ascribed 

to the electric field caused extraction of carriers towards the front and rear (surfaces) electrodes (with 

relevant Debye lengths LD,h, LD,e), respectively. These (Equation (102)) solutions with roots found 

from Equation (103) predict a two-componential, the relaxation type current transient. Such a transient 

contains the initial non-exponential relaxation component. The asymptotic decay component is 

characterized by the time parameter D = 1/1
2
D of the main decay mode, representing the effective 

time of the domain dissipation,— due to diffusion over the entire inter-electrode spacing. 

5. Current Transient Changes Determined by a Signal Recording Circuit 

A signal registration circuit (namely, load resistor) inevitably transforms the current transient shape. 

This appears due to the voltage sharing and the consequent change of a voltage drop on detector 

depending on current value within the circuit. In more general case, the transients are described by the 

solutions of the differential equation with variable coefficients, derived as: 
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This leads to a differential equation: 
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which should be solved by using the initial conditions: 
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for the ascending component of a transient, and: 
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(110) 

for the relaxation stage of the transient, respectively. 

The changes of a system dynamic capacitance determine the initial delay and the final stage 

(relaxation) components within the simulated transient. These components are inevitable within the 

charge drift current transients, recorded in experiments. Also, these components should be included 

into the evaluation of the charge collection efficiency. Depending on the geometrical capacitance (Cg) 

and load resistance (RL) values, the current pulses are significantly modified. 

6. Discussion 

The simplified models [23,24], based on Ramo’s expression for the drift current, are attractive as 

they provide a simple analytical description of the detector signals. However, the analytical 

expressions can only be obtained for the simplest approximations. The analytical form of the correlated 

drift (Ramo’s-type) current for the junction type detectors is only applicable for a primary estimation 

of a transient shape. Different regimes in the formation of the pulsed response of detectors can appear 

in a real measurement. The time-dependent variations of the current transients may be determined by 

the injected charge dissipation through the domain drift, dielectric relaxation (due to media 

polarization effects), through carrier capture and thermal release processes in the traps containing 

material, via ambipolar diffusion processes. Several specific aspects of these phenomena have been 

discussed above. 

6.1. Limitations of Models  

Adaptability of the simplified models presented above is additionally limited by several factors. A 

principal limitation leads to the threshold values of the acquired drift velocity that should be 

significantly less than those of the electric field (light) propagation velocity in the material under 

consideration, to ensure the validity of the electrostatic approach. This condition excludes the 

possibility to detect the primary charged particles (moving with relativistic velocities) within the  
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inter-electrode spacing. Thus, the secondary particle (the electron-hole pairs with a zero initial drift 

velocity at the injection point) induced currents should be calibrated to the primary particle impact. 

The specific feature of the prevailing drift current caused by the monopolar charge domain is the 

increase of the drift current with time within the vertex of a current pulse. To separate the neutral 

domain (locally generated) into the drifting charge sub-domains, the sensitivity threshold for the 

applied voltage appears. This limitation leads to a condition of the elevated values of bias voltage, at 

least U > Ubi for the partially depleted semiconductor detectors. An enhancement of the external 

voltage may lead to the carrier velocity saturation, which complicates the analysis of the drift velocity 

field: vdr(Xe). Values of the highest external voltages are also restricted by the necessity to exclude 

repeated and non-linear drift processes, —such as the photo-electric gain moderated by carrier trapping 

and the avalanche processes of the impact ionization or Pool-Frenkel effect.  

6.2. Limitations in the Evaluation Precision of the Depletion Layer Boundary 

In the analysis of the junction type detectors, the parabolic approach has been employed, which 

relates the applied voltage and the width of the depleted region, and it is routinely exploited in device 

physics [15,25]. This approach enables one to simplify the expressions for the electric field 

description, as discussed in [15]. But this approach limits the precision in evaluation of the 

characteristic widths of w0, wq and wFD. In the steady-state case, the Debye screening length LD can be 

a measure for the evaluation of the precision in the estimation of w0. Thus, the transition layer [15] 

width, expressed as: 

2/12/10 )
2
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 U
eN Def

 , (111)  

depends on a voltage drop U, ascribed to this transition layer, and on the effective doping of a 

material. Thereby, for the large resistivity material, a relative inaccuracy (/w0) of the determination 

of the effective widths w0,q,FD   can be unacceptable in the range of small reverse bias voltages. 

Traps and their filling processes can also be a reason for the instantaneous and local changes of the 

effective doping. Thereby, the resolution limit in time scale is expressed through the relaxation times as: 

2

,
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UTOF

NdefM   (112)  

with TOF, U = 2
/eU. The latter condition is determined by a necessity to stabilize the geometrical 

boundary by the balance of the local fields of carrier diffusion and drift. 

The transitional layers are actually inherent to the boundaries between the metallic electrodes and 

dielectric or external heavy doped layers of junctions. Owing to a short dielectric relaxation in the 

heavy doped layers, the semiconductor junction is preferential relative to a dielectric in between  

of electrodes. 

6.3. The Impact of the Injected Charge Density 

In the Ramo’s derivation of the charge drift current, it was clearly proved the reciprocity principle: 

the reversibility and equality of the mutual action and reaction of the charged electrode and drifting 

charge. This is based on the conservation of the charge ( induced electro-statically on the electrode 
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plane by a drifting injected charge q = ), charge momentum qd/dt (qvdr) and the electrostatic 

energy (q =  U). Here,  is the surface equi-potential surrounding the drifting charge. The main 

equation for the current density (for instance, considering the motion of the electron domain) can be 

directly obtained by using the electrostatic energy balance q = −(U). Here, δ means a change in 

the electrostatic energy due to a variation of the surface charge (δσ) on the electrode, which should be 

balanced by a change in the energy of the moving charge qe. In the latter balance, qe is assumed to be 

invariable, and these energy changes are ascribed to the changes of the potential δΦ(Xe), —during 

charge drift. The temporal changes of the surface charge on the electrode gives current density variations 

dependent on time (for a fixed external voltage), and this current density is generally expressed as  

j(t) = d/dt = −(qe/U)(d/dXe)(dXe/dt). Accepting the general electrostatic relation  

E= –gradΦ = neqe/0 = Eq and assuming that instantaneous Eq(e) = qee/εε0, for its scalar 

representation, the expression for the current density is rearranged as j(t) = d/dt = 

qe(d
2
/U)(qe/d0)[d(Xe/d)/dt] = qe(TOF,e/M,q)[d(Xe/d)/dt]. Thereby, the just derived current density (on 

the basis of electrostatic energy conservation in the case of our consideration) is consistent with 

Ramo’s derivation (also made on the basis of energy conservation) if TOF,e/M,q = 1. On the other hand, 

the equality of TOF,e and M,q is consistent with electrostatic induction approach. Using the scalar values of 

the field within the inter-electrode space as Eσ = U/d and divEq  Eq(q) = qe/εε0d, for the injected 

charge field Eq (over a geometrical width d), and a balance of electric fields and  

Eσ = U/d = divEq  Eq(q) = qe/εε0d, one gets a weighting field WE = divEq/E = d
−1

. This result 

validates the equal action and re-action of the surface ( and q) charges and leads to the equality of the 

response times Mq,e = TOF,e. Actually, the equality of the response times Mq,e= TOF,e is ensured due to 

correlated changes of the acting voltage which is varied with (t). To find the drift velocity field 

vdr(Xe) = dXe/dt, the problem should be solved by consideration of the fields and charges in details. 

As it has been demonstrated above, the drift velocity vdr is a function of the instantaneous charge 

domain position and the characteristic times: TOF,e, M,q and M,Ndef. It can be proved that the current 

density j(t) = 90U
2
/8d

3
 obeys Mott-Gurney’s law [26,27], for vdr(Xe = d/2) = [(U/d) + (qe/20)]. 

Therefore, all the applied voltage U drops within the gap between the high potential electrode and the 

qe domain, during the initial phase of a drift process. The drifting domain additionally acts as a voltage 

sharing element (divider) with the parabolic-like characteristic of U2 = (1−2
)U. As a consequence, 

the drifting charge coordinate (t) ~ exp(t/Mq) increases exponentially with the drift time t, leading to 

a variable drift velocity vdr ~ d(t)/dt) ~ (d/Mq)exp(t/Mq) and the acceleration a(t) ~ (d/Mq
2
)exp(t/Mq), 

to hold the processes (of drift, voltage sharing, and the induced amount of charge) correlated in time. 

In the case of the pure bipolar domain, the correlated drift of qe and qh sub-domains is equivalent to a 

widening of the quasi-neutral e-h domain. 

In real detectors, the prevailing regime is the detection and collection of a small drifting charge, 

where τMq,e/τTOF,e >> 1. Unfortunately, this regime can only be approximately considered within the 

one-dimensional approach. The reason is a slow dielectric relaxation (τMq,e/τTOF,e > 1) of a small 

drifting charge qe. Due to the small qe, the charge domain surface becomes corrugated under the action 

of the electrode charge (at boundaries of the detector electrode of finite surface area S) and the charge 

density gradients within the surface plane of a drifting domain. To stabilize the gradients (or the 

oblique action of  surface segments), the drifting charge should vary its position in all three spatial 

dimensions. Thus, the lateral fields should be taken into account, —the charge of dangling bonds on 
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perpendicular boundaries acting as the surface recombination sinks can be a reason for such fields. On 

the basis of the Lagrange variational principle, it can be understood that charge movements within both 

the electrode and the domain planes should be correlated, to react most rapidly on each others changes. 

Then, energy conservation can only be considered by an analysis of the three dimensional charge drift 

and diffusion problem. This leads to the appearance of charges and their neutralization currents on the 

perpendicular (to an inter-electrode drift direction) boundary planes of the base region of the junction 

type detector. The small drifting charge qe is able to terminate the electric field of the electrode’s equal 

to its amount. Therefore, a small drifting charge acts as a linear voltage divider within the  

inter-electrode gap, and, consequently, the I-V characteristic obeys Ohm’s law. Then, due to the charge 

drift, the acting voltage is different from that applied on electrode U, and it changes under the variation 

of the charge position. The small charge drift current density is less (in comparison with the regime of 

the large charge drift) due to the less effective voltage Uef, acting on the injected charge, qe. This leads 

to the increased TOF,e (t). The approximation models for Uef should be applied to cover the entire range 

of the injected charge values. Namely, for an electron domain the ratio Re1 = Mq,e/TOF,e and  

Re2 =Mq,e/M,Ndef should be replaced by Ref,e1 = (Mq,e/TOF,e)(Uef,e/(U + UFD)) and  

Ref,e2 = (Mq,e/M,Ndef)(Uef,e/(U + UFD)) (which modifies the voltage) using the approximation  

Uef,e = 1.225qed(e
*0

)
1/2

/0. Here, e
*0

 is the dimensionless location of a drifting domain at the end of 

a bipolar drift. While, for a hole domain drift, these are Ref,h1 = (Mq,h/TOF,h)(Uef,h/(U − UFD)) and  

Ref,h2 = (Mq,h/M,Ndef)(Uef,h/(U − UFD)) (which modifies the voltage) using the approximation  

UC,ef,h = 1.995qhd(h
*0

)
1/3

/0. These approximations can be understood by an equal redistribution 

between degrees of freedom for the three-dimensional motion, if Re,h  1. The applicability of the Uef 

approximation models has been verified by their relevance to stitch together the one-dimensional 

solutions of the bipolar and the monopolar drift, thereby matching the synchronous conservation of the 

charge, charge momentum and current density continuity. This enables one to get continuous current 

density variations within the simulated vertex of the charge drift current pulse. 

6.4. Correlation with Experimental Results 

As mentioned above, a vast variety of possible pulsed current transients, composed of drift, 

diffusion and displacement current components exists depending on the detector design and different 

external factors, such as the injected charge quantity, applied voltages, presence of traps, etc. 

The simulated specific transient shapes associated with different regimes of the injected charge drift 

are illustrated in Figures 3 and 4. These simulations have been performed by using the above presented 

models and keeping nearly the same charge drift conditions, while varying external voltage to 

implement the partial or full depletion regimes. The described analytical solutions enable ones to get 

the continuous curves of the drifting charge velocity and of current density as a function of a domain 

position and of time. These illustrations demonstrate that current density transients, containing a rather 

flat pulse vertex, can be found in experiments implemented for the small injected charge density by 

using a small load resistance. However, only the largest current components can be resolved due to a 

weak signal. The double peak containing current transient shape should be observed as usual in the 

case of the relative large charge drift, Ramo’s type, regime. Thereby, depending on the applied load 
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resistor and voltage, a vast variety of current transient shapes can be obtained in modelling of  

detector responses. 

Variations of current transients due to the injected charge drift, observed in experiments, are 

illustrated in Figures 5. These variations are demonstrated as a function of the injected charge density, 

in Figure 5a. These transients were recorded on the non-irradiated CERN standard pad-detectors, made 

of pure Si of 2 k cm resistivity p
+
nn

+
 structures. The reverse bias voltage was kept fixed with the 

rather moderate values U < UFD. The surface domain was injected by strongly absorbed light laser 

pulse of 400 ps duration. Density of the injected domain of electrons, initially located nearby a 

junction boundary, was varied by changing intensity of excitation laser beam. The laser pulse was 

sufficiently shorter than RC  1 ns of the measurement system. The pulsed current was detected on 50 

 load resistor and registered by a 1 GHz band real time digital oscilloscope. 

Figure 3. Transients of the normalized current density j × TOF,e/qe simulated for the large 

(a) and small (b) monopolar charge drift, simulated using different values of the carrier 

capture lifetime C. Solid curves are calculated using the analytical expressions, while the 

intermittent curves are obtained including the RC of a signal recording circuit. 

 

Figure 4. Transients of the normalized current density j× TOF,e/qe simulated for the bipolar 

charge drift during hole (a) and electron (b) drift times for various regimes, dependent on 

the densities of the drifting charge and of the space charge of ions. Solid curves are 

calculated using the derived above analytical expressions, while the dotted curves are 

obtained including the RC of a signal recording circuit. 
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The transients, —characteristic to the pulse durations controlled by the ambipolar diffusion lifetime, 

are illustrated in Figure 5a using a logarithmic time scale. Here, the pulse duration is varied in the time 

scale from a few of nanosecond, —that is inherent for the electrons drift time in the base region, to a 

few microsecond of the diffusion time. It can be easily noticed that current increases with time within a 

vertex of a pulse for the smallest injected charge densities, as predicted by models described. The 

current pulse has nearly exponential relaxation component, after domain reaches the rear electrode. 

Duration of the pulse vertex, measured between the initial (which is on the left in this scale) and 

rearward kinks within current transient is well correlated with electron drift time in d = 300 m thick 

Si layer, using e  1,220 cm
2
/Vs value of the electron mobility. The enhancement of the injected 

charge density, proportional to the nex0 injected carrier concentration, leads to the increasing delay (of 

the rear kink in current transient) and to an increase of the current (proportional to qe), approaching to 

the ambipolar diffusion lifetime D = d
2
/

2
Da, ascribed to the main decay mode. The extracted value of 

the Da  15 cm
2
/s using the measured D time is in good agreement with parameters ascribed to a 

rather pure Si material. 

Figure 5. (a) Variation of current transients, registered in Si pad-detector biased with a 

fixed reverse voltage of value U  UFD, as a function of the injected charge density.  

(b) The current transients, ascribed to the charge domain injected by a laser pulse, as a 

function of 25 MeV neutron irradiation fluence, evaluated from the exposure time of the in 

situ experiment. 

 

Variation of current transients measured at extremely small excitation densities (close to those 

possible to detect at a threshold sensitivity of the measurement system equipped with proper current 

amplifier) is illustrated in Figure 5b. These transients were recorded during 25 MeV neutron irradiation 

when density of radiation induced traps varied with neutrons fluence. The electrical (Ur = 150V) and 

optical (nex0) parameters were carefully controlled to be fixed within measurements. The sample was 

kept in air just behind the neutron beam cone, while other experiment details are published in [14,28]. 

Evolution of the current transients is illustrated in Figure 5b, where currents had been controlled 

starting from that registered in the non-irradiated diode up to exposure duration for which the collected 

irradiation fluence reaches value of > 10
14

 n/cm
2
. The transient waveform inherent to the drift 

dominated current (curve 1 in Figure 5b) is observed in the non-irradiated diode, which is coincident 

with modelled transient shape. The radiation introduced traps determine a rapid reduction of carrier 



Sensors 2013, 13 12326 

 

 

lifetime and an enhancement of carrier capture and generation current components. The transient of the 

carrier capture dominated current contains the single peak, and the relaxation-type curve occurs  

(curve 4 in Figure 5b). In the range of the intermediate exposure time (curves 2 and 3 in Figure 5b), the 

current pulse duration sustains values of the electron drift time within a diode base. The double peak 

and rising pulse vertex shapes alternate during increase of fluence. Applying of the smallest possible 

densities of the surface charge was sufficient to hide the inhomogeneities of the photo-generated 

domain. This evolution of current transients can be explained by the competition of carrier 

capture/generation and drift currents. For the largest irradiation fluence, the carrier trapping process 

becomes dominant, while a drift current component is completely competed, and the relaxation-type 

current pulse is only observed.  

7. Summary 

The models of the formation of the injected charge pulsed currents have been developed concerning 

the junction-type detectors. The partial and full depletion regimes have been analyzed. It has been 

shown, that, in junction detector, the drift time for the rather small density of the injected charge is 

shortened relatively to that of the capacitor-like detectors when a proper frame of reference (for 

comparison) is accepted and the characteristic relaxation times are matched. The description of the 

current pulse shape for the large injected charge drift in a finite area detector is coincident with that 

derived for the correlated drift (Ramo’s-type) expressions. However, the induced currents obtained for 

the regimes of the small injected charge and of partial depletion lead to deviations from the Ramo’s 

expressions. The analysis of the drift velocity field revealed the current increase within a vertex of the 

current pulse, for the monopolar drift regime. It has been shown, that presence of carrier traps 

considerably modifies the shape of the current transients. For the extremely large density of the 

injected charge q > CgU, the ambipolar diffusion of the injected carriers may become dominant in 

formation of the injected charge current pulse. It has been illustrated, that synchronous action of carrier 

drift, trapping, generation and diffusion lead to a vast variety of possible current pulse waveforms. 

Experimental illustrations of the current waveform variations obtained for both the rather small and the 

large charge density of the photo-injected domains are presented, based on study of Si detectors. 
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