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Abstract: Non-contact human body measurement plays an important role in surveillance,
physical healthcare, on-line business and virtual fitting. Current methods for measuring
the human body without physical contact usually cannot handle humans wearing clothes,
which limits their applicability in public environments. In this paper, we propose an effective
solution that can measure accurate parameters of the human body with large-scale motion
from a Kinect sensor, assuming that the people are wearing clothes. Because motion can
drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis
to mine the information across the posture variations. Using this information, we recover
the human body, regardless of the effect of clothes, and measure the human body parameters
accurately. Experimental results show that our system can perform more accurate parameter
estimation on the human body than state-of-the-art methods.
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1. Introduction

Non-contact human body measurement plays an important role in surveillance, physical healthcare,
on-line business and virtual fitting. Usually, we must acquire human body models before biometric
measurements. Laser range scanners can provide human body reconstruction, which can be used for
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accurate biometric measurements. However, laser range scanners cost from $40,000 to $500,000 and
require people to wear tight clothing or almost no clothes. Therefore, laser range scanners cannot be
an everyday choice for human body measurement in the short term. Recently, marker-less multi-view
systems [1–4] have become more and more proficient at acquiring human body models because of
the efforts of researchers; however, these solutions always take too much space and are difficult to
set up. At the same time, commercially-produced multi-view systems do not have a considerable price
advantage. With an in-depth study on the accuracy of the Microsoft Kinect sensor [5], monocular systems
have become an appropriate choice. Weiss et al. [6] obtained four different views of depth maps and
RGBimages from the Kinect sensor, and estimated a consistent model from them. Their work provides
a simple, but effective, solution for home 3D body scans, but their solution cannot handle large-scale
motion and the condition of people wearing clothes. Thus, it is inconvenient to use their proposed
methods in a public environment. Cui et al. [7] estimated a model of good quality from 12 views of
depth maps and RGB images, but their solution also suffers from large-scale motion. Therefore, human
body measurement with large-scale motion is still an open problem.

When measuring the human body with large-scale motion, the first priority is recovering accurate pose
parameters. Recently, the technology of motion capture [8], especially monocular motion capture [9,10],
has seen rapid development. Shotton et al. [11] formulated 3D pose detection as a per-pixel classification
problem. This solution belongs to bottom-up technology in computer vision, and it can give a coarse
estimate of human motion without any initialization. Ganapathi et al. [12] derived an efficient filtering
algorithm for tracking human poses. Furthermore, Wei et al. [13] formulated the 3D pose tracking as
a maximum a posterior (MAP) problem. However, current technology in monocular human motion
capture often gives poor estimations of the motion of roll, which leads to inaccurate reconstruction of
human limbs and heads. One of the contributions of our work is extending current monocular motion
capture technology to acquire a more accurate SCAPEmodel [14] with large-scale motion.

In addition to the large-scale motion, the effect of clothes is another challenge for accurate body
measurement. The KinectAvatar [7] can partly capture the average geometry of clothing, but it cannot
measure accurate parameters of the human body under the clothes. DRAPE[15] is a good method for
animating realistic clothing on bodies. However, it does not give an inverse model to mitigate the effect
of the clothes when measuring the human body. Nils Hasler et al. [16] present a novel method for
estimating the body shape of dressed humans, but their method is based on a setup of synchronous
multiple RGB cameras in such a way that human interaction is required. Inspired by Non-Rigid Structure
from Motion (NRSfM) technology [17–20], we resort to the cue of large-scale motion over time. When
people wearing everyday clothes, e.g., T-shirts, shirts and spring blouses, conduct large-scale motion in
front of the sensor, some part of the clothes can be close to the human body. Based on this observation,
we collect all of the information over time and recover a model that is closest to the human body.

In this paper, we present a novel approach to measuring the human body with large-scale motion from
a single Kinect sensor, regardless of whether people wear clothes or not. In our approach, we combine
pose detection with pose tracking as a multi-layer filter to estimate accurate pose parameters from the
monocular Kinect sensor. Then, we estimate a consistent model of people who are engaged in large-scale
motion. Afterward, we mitigate the effect of clothes through space-time analysis, and we measure the
body parameters accurately from the human model.
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In summary, our contributions are: (1) A multi-layer framework for accurate human motion capture
in the monocular, noisy and low-resolution condition. The combination of pose detection, pose tracking
and failure detection achieves a fully automatic process of human motion estimation. (2) The application
of a space-time analysis to mitigate the effect of clothes, which makes it possible to apply our system
non-intrusively in public environments.

2. Overview

In this paper, we present a system for measuring humans wearing clothes with large-scale motion.
At first, a video sequence of people acting in diverse poses is captured by a monocular Kinect sensor
(Figure 1a). Afterward, we recover the pose for every frame in the sequence following a fully automatic
multi-layer framework (Figure 1b). The multi-layer framework is composed of a pose-detection module,
a pose-tracking module (Section 3.1) and a failure-detection module (Section 3.2). For pose detection,
we use a method that is similar to [11]. In contrast to [11], we use the SCAPE model to construct
the synthetic training database. Our database has approximately 50,000 poses and body shapes of 300
different individuals. For the pose tracking, we extend the method proposed by Wei et al. [13] from
the cylinder-like model to the SCAPE model. Pose tracking, in which we adopt both the cue from the
RGB image and the silhouette constraint, provides accurate pose estimation for every frame, while pose
detection provides coarse pose estimation for the initialization of the first frame and recovery from the
failed pose tracking.

After the motion capture step, we estimate the models according to the depth maps for different
poses. Because we have recovered accurate pose parameters for every frame, we can transform all of
the models of the different poses into a standard pose, and then, a spatial-temporal average model can
be reconstructed (Section 4.2, Figure 1c). To mitigate the effect of clothes, a space-time analysis is
performed after the average model reconstruction (Section 4.3, Figure 1d). Then, we measure human
body parameters with less effect from the clothes.

Figure 1. Pipeline of our approach: (a) the input RGB images and depth maps from
Kinect; (b) different poses recovered for every frame; (c) the spatial-temporal average model
reconstructed across all the frames; (d) the model after mitigation of the clothes effect.

(a) (b) (c) (d)
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3. Motion Capture

In our overall framework, we solve human pose parameters and shape parameters separately. To do
so, we adopt the SCAPE model, which is a parametric method of modeling human bodies that factors the
complex non-rigid deformations induced by both pose and shape variation and is learned from a database
of several hundred laser scans. The database that we have used to train the SCAPE model is from [21]. In
this section, we will introduce our motion capture module based on the SCAPE model. We approximate
human-body geometry with 16 rigid parts (Figure 2), and we use 36 degrees of freedom (DoF) to describe
people’s different poses. Our motion capture step follows a multi-layer framework: the pose-detection
module provides coarse pose estimation for initialization, and the pose-tracking module reconstructs
human poses from successive frames. Because our pose-tracking module can fall into failure sometimes,
a failure-detection module is used to detect failed pose tracking, and we call the pose-detection module
to re-initialize the motion capture system.

Figure 2. (a) Template SCAPE model with 16 color-coded parts and (b),(c) SCAPE model
of different poses.

(a) (b) (c)

3.1. Preliminaries

In the following parts of this section, we will represent the pose parameters that are estimated for
the human body as q ∈ R36, where the first six degrees of freedom represent the absolute root position
and orientation, and the other degrees of freedom represent the relative joint rotations. These joints are
the neck (3 DoF), upper back (1 DoF), waist (2 DoF), left and right shoulder (3 DoF), elbow (2 DoF),
wrist (1 DoF), hip (3 DoF), knee (2 DoF) and ankle (1 DoF). Additionally, we denote C for the input
data, which consists of the depth maps,D, binary silhouette images, S, and RGB images,R. Because the
input depth maps are depth values on the 2D plane, we can project them onto the world coordinate with
the calibration parameters. We define a 3D point in the world coordinate as p. For notational brevity,
we define the 3D point observed by the sensor as p∗, and we define the 3D point generated based on the
pose parameters, q, as p(q).



Sensors 2013, 13 11366

3.2. Pose Tracking

The core of our pose-tracking module follows the model registration algorithm in which the pose
parameter, q ∈ R36, can be solved as a MAP problem [22]. Let Ci be the input data at the current frame,
i, which is composed of a depth map, Di, a binary silhouette image, Si, and an RGB image, Ri. In
addition, by denoting the previously reconstructed poses as Qm, the MAP problem can be formulated as:

argmax
q

Pr(C|q)︸ ︷︷ ︸
Likelihood

Pr(q|Qm)︸ ︷︷ ︸
Prior

(1)

We formulate the likelihood term and the prior term similar to Wei et al. [13]. However,
Wei et al. [13] use a cylinder-like model to track human motion, while we use the SCAPE model for
tracking. There is a large difference in the roll motion between these two models, e.g., when the arm
rotates about the longitudinal axis, there is no difference in the cylinder-like model, while the SCAPE
model shows a significant change. Obviously, the SCAPE model is closer to the motion truth than
the cylinder-like model. In our practice, we add the RGB image term to track the motion of the roll.
Additionally, because the SCAPE model has some details of the human body that are different from the
observed depth map, we formulate a robust silhouette term to handle those differences.

3.2.1. RGB Image Term

Depth maps can hardly reveal the motion of roll, so we attempt to find cues from the RGB images. Let
Ri andDi be the observed RGB image and depth map for the current frame, and letRi−1 andDi−1 be the
observed RGB image and depth map for the last frame. First, we find and match the key points onRi and
Ri−1 using the ORBalgorithm [23]. Second, the matched key points are bound to the depth map of the
same frame. For building the correspondence between the RGB key points and depth points, we project
the depth map to the RGB image, and we find the nearest depth points to be the correspondence of the
RGB points. However, there could be some mismatched correspondence between the RGB image and
the depth map. To ensure the robustness of the RGB image term, we should remove the mismatches from
the correspondence set. In our practice, we adopt an effective method for removing the mismatches. We
simply calculate the distance of the pixels between the RGB key points and the depth points projected
onto the RGB image. When the distance is beyond a threshold, we can consider the correspondence
to be a mismatch, and we remove it from the correspondence set. Empirically, we set the threshold to
three pixels. After we build the correspondence between the RGB image and the depth map, we can build
the correspondence between successive depth maps according to the RGB matches. We define the points
on the current observed depth as p∗

rgb, and we define the points transformed from the observed depth of
the last frame by pose parameters, q, as prgb(q). Then, the RGB image term can be formulated as:

Ergb =
‖prgb(q)− p∗

rgb‖2

2σ2
rgb

(2)

Note that the RGB image term has the same form as the extra term in the MAP formula; we can
optimize this term in the same way that we optimize the extra term in Equation (4). When optimizing
the RGB image term, we should know the bones that the depth points belong to. Instead of binding a
depth point to its nearest SCAPE model point, we bind it to the nearest bone. In this way, we can flexibly
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perform the transformation on the depth points. Figure 3 shows the impact of our RGB image term: the
pose tracking without our RGB image term always gives a poor estimate of the roll motion of the limbs
and head, while the pose tracking with the RGB image term can give accurate results.

Figure 3. Impact of our RGB term: (a) shows the result without our RGB term; (b) shows
the result with our RGB term.

(a) (b)

3.2.2. Silhouette Term

Note that the details of the SCAPE model, especially the silhouette, might not match the observed
depth perfectly; we cannot evaluate the silhouette term in the same way as the depth image term. We
should find a robust way to build the correspondence explicitly or implicitly between the rendered and
the observed silhouette images. In our practice, we adopt the Coherent Point Drift (CPD) algorithm [24]
on the 2D image space to build the correspondence for the silhouette images. The CPD algorithm can
implicitly reject the mismatch that results from the details of the SCAPE model being different from the
observed depth. Then, the silhouette term can be formulated as:

Esilhouette =
‖Srender(p(q))− S‖2

2σ2
silhouette

(3)

where Srender represents the points on the silhouette image that are rendered from the SCAPE model,
p(q) represents the points on the depth map that are rendered from the SCAPE model with the pose
parameter, q, and S represents the points on the observed silhouette image. Figure 4 shows the impact
of our new silhouette term: the pose tracking module without our silhouette term always twists the limbs
of the SCAPE model improperly to match the details on the depth map, while the pose tracking with our
silhouette term can give appropriate results.
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Figure 4. Impact of our silhouette term: (a) shows the result without our silhouette term; (b)
shows the result with our silhouette term.

(a) (b)

3.2.3. Optimization

After adding the RGB image term and the silhouette term, we can describe the pose-tracking
problem as:

argmin
q
Edepth + Eextra + Esilhouette + Ergb + Eprior (4)

where:

Edepth =
‖Drender(x(q),q)−D‖2

2σ2
depth

(5)

Eextra =
‖p(q)− p∗‖2

2σ2
extra

(6)

Eprior =
‖qi − 2q̃i−1 + q̃i−2‖2

2σ2
s

(7)

In the upper equations, Drender represents the depth map rendered from the SCAPE model, D
represents the observed depth map, p(q) represents the point on the SCAPE model, x(q) represents
the coordinate of the depth pixel on the depth image and p∗ represents the point from the observed
depth map. Instead of finding explicit correspondence using the traditional registration algorithm, we
register the SCAPE models to the observed depth on the 2D plane. We project the 3D SCAPE model
to the depth domain to render a hypothesized depth map, and we compare the rendered depth map with
the observed depth map. For the overlapping region, if the difference at the same pixel between the
rendered depth map and the observed depth map is no more than 6 cm, then we put this pixel into the
correspondence set for the depth term,Edepth, of our energy function. For the non-overlapping region, we
search the closest points as correspondence for the extra term, Eextra, of our energy function. To remove
the outliers from the extra term, we set a depth difference threshold of 6 cm for the correspondence
points. For the prior term, we assume that the current frame’s velocity of the pose parameters should be
close to the last frame’s; as a result, a sudden change in the velocity is penalized in our energy function.
Using the extended Lucas-Kanade algorithm [25], the above non-linear least square problem can be
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solved iteratively via linear system solvers. Performing a first-order Taylor expansion, we can obtain the
following equations on δq:

1

σdepth
(∇Drender

∂x

∂p
+
∂Drender

∂p
)
∂p

∂q
δq =

1

σdepth
(D −Drender) (8)

1

σsilhouette
∇Srender

∂x

∂p

∂p

∂q
δq =

1

σsilhouette
(S − Srender) (9)

1

σextra

∂p

∂q
δq =

1

σextra
(p∗ − p) (10)

1

σrgb

∂prgb(q)

∂q
δq =

1

σrgb
(p∗

rgb − p) (11)

1

σs
δq =

1

σs
(2q̃i−1 − q̃i−2 − qi) (12)

where the standard deviations, σdepth, σsilhouette, σextra, σrgb and σs, are used to control the weights for
each term and can be experimentally set to 1, 50, 0.3, 0.05 and 12.33.

Another problem in the optimization process is calculating the derivative, ∂p
∂q

. Directly calculating the
derivative from the SCAPE model is difficult and time-consuming. To simplify this procedure, we use
the rigid kinematics to approximate the derivative. The pose parameters, q = {tx, ty, tz, θ0ξ̂, θ1, ..., θn},
can be represented using the twist and exponential map parameterization [26,27]. Then, a point on the
model can be formulated as:

pi(q) = Tg(tx, ty, tz)
n∑

m=1

[ωmi

jm∏
j=0

Rg(θψm(j)ξ̂ψm(j))]pi (13)

In the upper equation, Tg(tx, ty, tz) represents the global transformation matrix, ωmi = 1, when
the vertex belongs to the bone, m, and ωmi = 0, when the vertex does not belong to the bone, m.
Furthermore, jm is the number of joints from the root to the bone, m, on the kinematic chain, and ψm(j)
maps the joint index to the global joint index. If we know the twist, θξ̂, and a point, x0, on the rotation
axis, then the rotation matrix in the global coordinate can be represented as:

Rg(θξ̂) =

(
eθξ̂ (I − eθξ̂)x0

0 1

)
(14)

Because the pose parameter, q, that we use here describes the small relative motion between two
successive frames, we can use the first-order Taylor expansion to approximate the exponential map:

eθξ̂ ≈ I + θξ̂ (15)

Then, the rotation matrix mapping in Equation (14) can be re-written as:

Rg(θξ̂) ≈

(
I + θξ̂ −θξ̂x0

0 1

)
(16)



Sensors 2013, 13 11370

Consider a vertex, pi, on the bone, m, and a joint, ψm(k), on the kinematic chain of bone m. Denote xk
0

as a point on the rotation axis of the joint, ψm(k), and let:
xki
yki
zki
1

 = {
jm∏

j=k+1

[Rg(θψm(j)ξ̂ψm(j))]pi} − xk
0 (17)

Rk
g =

k−1∏
j=1

[Rg(θψm(j)ξ̂ψm(j))] (18)

Then, the derivative can be represented as:

∂pi(q)

∂q
= Rk

g(1 : 3, 1 : 3)

 0 zki −yki
−zki 0 xki
yki −xki 0

 (19)

In the upper equation, Rk
g(1 : 3, 1 : 3) represents the left upper 3× 3 matrix in Rk

g .

3.3. Failure Detection

After the pose-tracking module, we build a failure-detection module to automatically detect failed
pose-tracking results. The failure-detection module judges a failed pose-tracking instance by using the
proportion of the unexplained area to the right matched area on the depth map. We project the model
rendered from the tracked pose parameters to the observed depth map, and we define the right matched
area as the overlapping area where the difference between the rendered pixel and the observed pixel is
no more than 6 cm. Additionally, we define the unexplained area as the following three cases:

• The pixels belong to the observed depth map, but do not belong to the rendered depth map;

• The pixels belong to the rendered depth map, but do not belong to the observed depth map;

• The pixels overlap where the difference between the observed map and the rendered map is more
than 6 cm.

When the proportion is more than 15%, we consider this pose tracking result to be a failed pose tracking.

4. Body Measurement

In this section, first, we use the first five frames to initialize a rough shape parameter for the SCAPE
model. Although the initial shape parameter cannot be very accurate, it can be a baseline for the
subsequent steps. Afterward, for each frame, a SCAPE model is optimized using the depth map at that
time. Then, we transform all of these models into the template pose (the T-pose in Figure 2a) using the
inverse Linear Blending Skinning (LBS) model. We weigh every vertex in these models of the template
pose according to the z-direction error property of the Kinect and whether the vertex is in front of the
sensor when the model it belongs to is in its original pose. A spatial-temporal average template model
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can be recovered through all of the frames that we captured. Based on the spatial-temporal model, we
use the cue from time-space analysis to mitigate the effect of the clothes. Lastly, accurate human body
parameters can be measured from this reconstructed model.

4.1. Shape Parameter Initialization

Before accurately reconstructing the human model, we must estimate a rough shape parameter as
the baseline. In addition, the shape parameter can be used in initializing a SCAPE model to track the
human motion. In our system, we use the first five frames of the sequence to solve the shape parameter.
The process of generating a SCAPE model can be described as a problem of minimizing the objective
function as [14]:

EH(Y ) =
∑
k

∑
j=2,3

‖Rk(Uβ + µ)kQv̂j,k − (yj,k − y1,k)‖2 (20)

where Rk represents the rotation matrix for the triangle, k, on the SCAPE mesh, β represents the shape
parameter, U and µ represent the pre-learned shape constants of the SCAPE model, Q represents the
deformation matrix rendered from the relative rotation, yj,k, y1,k represent the vertices on the target
model and v̂j,k represents the differential vertices on the template model. Here, v̂j,k can be calculated
using the difference between a certain point and the start point on the same triangular face.

When we estimate the shape parameter, the pose parameter can be seen as a constant vector.
Therefore, the process of generating the SCAPE model can be reformulated as:

Y = Aβ (21)

where A is a matrix that is generated from the original template model and the constant pose parameter.
As a partial completion problem, we can formulate the estimation of shape parameter β as:

argmin
β
‖SAβ − C‖2 (22)

where S is a matrix to select the points in the correspondence from the SCAPE model and C is the
matrix of correspondence in the observed depth map. In our motion capture framework, we use the
Coherent Point Drift (CPD) algorithm [24] to establish the correspondence between the SCAPE model
and the observed depth map. However, because the SCAPE model is an over-fitting model of the shape
parameter, if we solve Equation (22) directly, it could lead to an abnormal model (Figure 5). To address
this issue, we account for the consistency of the shape parameters:

argmin
β

(‖SAβ − C‖2 + w‖β − βaverage‖2) (23)

In the upper equation, βaverage is a shape parameter we derive from a regularized shape model. Here,
w is a factor of damp, and it can be decided through a synthetic-analytic procedure. First, we select a
shape parameter from our database and adopt this parameter to generate a virtual depth map. Second,
because we have already had the result of the shape parameter, we can inversely calculate the weight
parameter. Of course, we should calculate the weight under the different conditions of human shapes.
Thus, we use a least-squares solution to calculate the final weight parameter from multiple simulations.
In the following section of the experiment, we set the weight parameter to 0.00015.
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Figure 5. Necessity of our constraint of consistency: (a),(b) show the results with the
constraint of consistency and (c),(d) show the results without the constraint of consistency.

(a) (b)

(c) (d)

4.2. Spatial-Temporal Average Model Reconstruction

Because the Kinect sensor captures a partial view of an object, every frame from it can provide us
with only 2.5D information. To recover the complete 3D information, we should synthesize the 2.5D
information from different views along the time axis. At every frame, we attach the 2.5D information to
the SCAPE model using the uniform Laplacian Coordinate [28]:

argmin
v

(‖Lv − Lv∗‖2 + w‖Sv − C‖2) (24)

In the upper equation, v are the result vertices from the deformation, v∗ are the original vertices
on the baseline SCAPE model, L represents the uniform Laplacian matrix, S is a matrix to select the
correspondence from the point set, v, and C is the correspondence from the depth map. As in Section 4.1,
we establish this correspondence using the CPD algorithm. Usually, to capture the details from the depth,
the factor of the weight, w, is set to no less than one. However, in our application, we want to avoid the
interference of noise to obtain a more accurate measurement; thus, we set w to 0.25.

When we obtain the optimized models at every frame, we transform them into template pose using
the inverse LBSmodel. Then, we weigh every vertex in these models to obtain a spatial-temporal average
model. To decide the weight function here, the property of the Kinect z-direction error should be
understood. In real applications, we find that the z-direction measurement error of a Kinect sensor
increases when the regularized dot product of the vertex normal and sensor projection normal decreases
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(Figure 6). To best relieve the effect of this measurement error, we use a Gaussian function to re-weigh
the vertex in front of the Kinect sensor:

G(n) = e−
(n−1)2

2σ2 (25)

In the upper equation, n is the regularized dot product of the vertex normal and sensor projection
normal, i.e., n is the cosine of the angle between the sensor projection direction and the vertex normal
direction. To ensure that n = 0 is the 3σ point of our weight function, we set the standard deviation,
σ, to 1

3
. To allow for more information from the points that are not in front of the sensor, we stop

decreasing the weight function when n ≤ 0. Instead, we set the weight to a constant when n ≤ 0. The
constant is selected as 0.01, which is the approximation to the 3σ point of the Gaussian weight function.
To summarize, the upper process of synthesizing optimized models on the time axis can be described as:

vaverage(j) =
1∑N
t=1w

j
t

N∑
t=1

wjtvt(j) (26)

where:

wjt =

0.01 if vertex j is not in front of the sensor at time t

G(njt) if vertex j is in front of the sensor at time t
(27)

In the upper equation, njt is the regularized dot product of the vertex normal and the sensor
projection normal.

Figure 6. The relationship between z-direction relative measurement error and the
regularized dot product of the vertex normal and sensor projection normal.



Sensors 2013, 13 11374

4.3. Mitigation of the Effect of Clothes

Imagine the following situations: when a person extends his body, his clothes tend to be far away
from his body; in contrast, when a person huddles up, his clothes tend to be close to his body.
The spatial-temporal average model that we obtain in Section 4.2 from multiple poses is equivalent
to the intermediate state between the above two situations. To mitigate the effect of clothes on the
spatial-temporal average model, we conduct a space-time analysis for every point across the frames in
which the point is in front of the Kinect sensor. For a specific point on the spatial-temporal average
model (the blue rectangle in Figure 7), first, we pick all of its corresponding locations across the frames
in which it is in front of the sensor (the pink, green and purple points in Figure 7). Second, we calculate
the drifted vectors of these points from the original point (the red star in Figure 7) on the template model
initialized in Section 4.1. To avoid the interference of the outliers that have relatively large errors in
direction, instead of only finding a point with the drifted vector that has the least length (the green point
in Figure 7), we select the point that not only has a relatively short drifted vector from the original point,
but also has a drifted direction that is close to the spatial-temporal average point’s drifted direction, as
the best candidate (the pink point in Figure 7). In conclusion, we select a point across the frames as the
best candidate for the mitigation of the effect of clothes using the following objective function:

argmin
p

[‖p− porigin‖ − w<(paver − porigin),
(p− porigin)

‖p− porigin‖
>] (28)

In the upper equation, p is one of the locations of a specific point across the frames, paver is the same
point on the spatial-temporal average model, porigin is the same point on the model after shape parameter
initialization, < , > represents the dot product of two vectors and w is a trade-off factor between the
least length and the direction constraint. Empirically, we set it to 0.1. Because of the occlusion, not every
point can have an optimized location for the mitigation of the effect of clothes after the above-described
process. We use the uniform Laplacian Coordinate [28] to obtain a consistent model:

argmin
v

(‖Lv − Lvaver‖2 + ‖Sv − C‖2) (29)

where v is the output vertices of the model, vaver is the input vertices of the spatial-temporal average
model, S is the select matrix to select vertices that have an optimized location from the total vertices
and C is a matrix that is composed of the optimized locations for the mitigation of the effect of clothes.
Figure 8 shows the result of the mitigation of clothes compared with the related RGB images. More
detailed results of this step and a numerical comparison of the accuracy between the spatial-temporal
average model and the model after the mitigation of the clothes effect can be seen in Section 5.
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Figure 7. Time-space analysis to mitigate the effect of clothes: the red star represents a point
on the model after shape parameter initialization (baseline). The blue rectangle represents
the same point on the spatial-temporal average model. The pink, green and purple points are
the same points on the optimized models of the T-pose across the frames. As described in
Equation (28), the pink point is the best candidate for clothes effect mitigation.

Figure 8. Results for the mitigation of the clothes: the green domains are the models
projected on the RGB images. (a) shows the result of a person with relatively tight clothes;
(b) shows the result of a person with more loose clothes than (a).

(a) (b)

4.4. Automatic Measurement

For measuring the arm length, neck-hip length and leg length, we specify the indices of the start and
end points according to the bone segment in advance, and the system can automatically measure these
parameters from an obtained model. For measuring the chest girth, waist girth and hip girth, we specify
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the indices of a circle of points around a corresponding location according to the standard definition
in advance; afterward, our system constructs a convex hull from these points during runtime, and the
parameters can be measured from the girth of the convex hull automatically by our system (Figure 9b).
Figure 9a shows all of the human body parameters that our system measures.

Figure 9. Automatic Measurement: (a) the human body parameters measured in our system;
(b) we measure the circumference parameters using the girth of the convex hull (red curve)
instead of the geodesic distance (blue curve), as we do in daily life.

(a) (b)

5. Results and Discussion

In our experiments, we have tested a total of 55 sequences of video. There are 25 men and 10
women tested in our experiments (some people were tested more than once). The people measured in
our experiments are 20 to 45 years old, their weights range from 40 kg to 88 kg and their heights range
from 1.55 m to 1.90 m. Figure 10 shows some results of our motion capture module, and Figure 11 shows
some results of our model reconstruction. The statistics of the mean, the median and the minimum and
the maximum of the error of our proposed method can be seen in Figure 12. Specifically, without the
pose recovery from failed pose tracking, the inaccuracy of the pose estimation affects the body parameter
measurements to a large degree. Failed poses often lead to increased outliers in the subsequent procedure,
which results in an increase in the average relative error of the body measurements from 2.62% to 25.8%.
For this reason, we introduce a failure detection module to detect failed poses and to recover the system
from failed pose estimation automatically. Table 1 shows the average computational time statistics for
our system.
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Figure 10. Results of the motion capture module: Column 1 shows the RGB images.
Column 2 shows our results in the front view. Column 3 shows different viewpoints of
column 2.
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Figure 11. Results of the model reconstruction: Row 1 shows the RGB images. Row 2
shows the results of average models. Row 3 shows the results after mitigating the clothes
effect. Row 4 shows a different viewpoint of row 3.

In the remaining part of this section, we will compare our method with the state-of-art methods [6,7].
We also compare our results after mitigation of the effect of clothes to the results before mitigation of the
effect of clothes. These comparisons can explicitly show the superiority and effectiveness of our method
in measuring the human body.

As a result, our proposed method can accurately measure the body parameters of dressed humans
with large-scale motions. In other words, our proposed method can be easily applied in public situations,
such as shopping malls, police stations and hospitals. Additionally, because the total price of our system
is approximately $150, it can be widely used in home situations.
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Figure 12. The statistics for the error of the proposed method.

Table 1. Average computational time statistics for our system: the running time statistics
were gathered from testing our implementation on a dual core 2.33 GHz Intel processor.

Procedure Time Consuming
Pose Recovery 6.32 s per frame
Shape Parameter Recovery 55.2 s
Weighed-Average Model Recovery 5.45 s per frame
Mitigation of the Effect of Clothes 7.94 s per frame

5.1. Quantitative Comparison with Home 3D Body Scans [6]

First, we compare our method to [6] for measuring almost naked people. In our experiment, we
measure 25 different almost naked people to calculate the average error values, and we compare them to
the reported results from [6], as shown in Table 2.

Table 2. Comparison of the accuracy of almost bare human measurement with home 3D
body scans [6].

Arm Length Chest Girth Neck to Hip Distance Hip Girth Thigh Girth
Error of [6] (cm) 2.6 1.5 2.3 3.5 1.7

Error of ours (cm) 1.7 1.6 2.6 1.9 1.3

As can be seen in Table 2, although our method provides better results in most entries, there is no
obvious superiority under the conditions of an almost naked body and no large-scale motion. To show
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our method’s advantage, we compare our solution to the proposed method [6] for measuring people with
relatively tight clothes. A comparison of average errors can be seen in Table 3 (the result of Weiss et al.’s
proposed method comes from our implementation of [6]). Obviously, the method from [6] does not have
as high a capacity for handling people wearing clothes as our system has. Their system cannot mitigate
the effect of clothes.

Table 3. Comparison of the accuracy of measuring a human wearing clothes with home 3D
body scans [6].

Arm Length Chest Girth Neck to Hip Distance Hip Girth Thigh Girth
Error of [6] (cm) 2.0 8.5 2.3 6.3 4.7

Error of ours (cm) 1.2 2.2 2.4 2.1 1.5

5.2. Quantitative Comparison with KinectAvatar [7]

Cui et al. [7] presents a method that can capture the details of human bodies. They capture people
with small-scale motion from no less than 12 views. For every view, they capture 30 ∼ 40 chunks.
However, because their motion capture is limited to a small-scale motion, they cannot perform the best
measurement on the human body statistically. A comparison between their method and ours can be seen
in Figure 13.

Figure 13. Comparison of the accuracy of measuring a human wearing clothes
with KinectAvatar [7].

In Table 3 and Figure 13, our proposed method provides slightly worse results only in the entry of the
neck-hip length. The reason is that, in our setting, people can perform large-scale motion in front of the
sensor, while in Cui et al.’s and Weiss et al.’s methods, people were limited to a relatively constant pose.
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5.3. The Effectiveness of the Mitigation of Clothes Effect

Before evaluating our method’s effectiveness, a parameter for measuring the tightness of the clothes
should be defined. Of course, for different parts of the human body, the tightness of the same clothes
could be different. Thus, we should evaluate the tightness of different parts of the clothes separately.
Here, we use the variance of a human body parameter in different poses to evaluate the tightness of the
clothes at the location related to the parameter:

σ2
looseness =

1

N

N∑
i=1

(
li − µ
µ

)2 (30)

In the upper equation, li is the value of a certain human parameter in the ith pose, and µ represents
the mean of this human parameter across all of the frames. For every li, we divide it by µ to eliminate
the effect of different human shapes.

We measure the relative errors of the chest girth and waist girth from the spatial-temporal average
model and the model after the mitigation of the clothes effect, in different situations of tightness, as
illustrated in Figure 14. When the looseness of the clothes is relatively small, the difference in the
relative error between the average model and the model after the mitigation of the clothes effect is not
large, and for some parameters, the accuracy of the average model is even better than the model after the
mitigation of the clothes effect. However, with the increase of the looseness of the clothes, the relative
error of the average model increases rapidly, while the relative error of the model after the mitigation of
the clothes effect increases slowly.

Figure 14. Comparison of the model after the mitigation of the clothes effect with the
spatial-temporal average model.

(a) Chest Girth



Sensors 2013, 13 11382

Figure 14. Cont.

(b) Waist Girth

6. Conclusions

In this paper, we present a novel approach that can measure the human body in clothes with large-scale
motion accurately. The key contribution of our paper is to mine the cue from different poses in the
temporal domain and the information from the spatial depth map to mitigate the effect of the clothes.
Additionally, our reconstruction of the average model provides a robust estimate of the deformation
direction from the original model to the model that is closest to a real human body. Another contribution
of our paper is extending a motion capture framework from the cylinder-like model to the SCAPE model
by using cues from the RGB images and the silhouette. Quantitative evaluations show that our solution
for measuring parameters of the human body is more accurate than the present methods. Additionally,
a comparison to the average model with large-scale motion shows that our method of mitigating the
clothes effect is effective.

In the future, we will attempt to follow the core idea of Non-Rigid Structure from Motion and find a
solution for measuring people with large-scale motion by using only an RGB camera.
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2012; pp. 41–48.

5. Khoshelham, K.; Elberink, S.O. Accuracy and resolution of Kinect depth data for indoor mapping
applications. Sensors 2012, 12, 1437–1454.

6. Weiss, A.; Hirshberg, D.; Black, M.J. Home 3D Body Scans from Noisy Image and Range Data.
In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain,
8–11 November 2011; pp. 1951–1958.
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28. Desbrun, M.; Meyer, M.; Schröder, P.; Barr, A.H. Implicit Fairing of Irregular Meshes using
Diffusion and Curvature Flow. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999; pp. 317–324.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Overview
	Motion Capture
	Preliminaries
	Pose Tracking
	RGB Image Term
	Silhouette Term
	Optimization

	Failure Detection

	Body Measurement
	Shape Parameter Initialization
	Spatial-Temporal Average Model Reconstruction
	Mitigation of the Effect of Clothes
	Automatic Measurement

	Results and Discussion
	Quantitative Comparison with Home 3D Body Scans weiss2011home
	Quantitative Comparison with KinectAvatar cui2013kinectavatar
	The Effectiveness of the Mitigation of Clothes Effect

	Conclusions

