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Abstract: Due to their small size, low weight, low cost and low energy consumption, 

MEMS accelerometers have achieved great commercial success in recent decades. The aim 

of this research work is to identify a MEMS accelerometer structure for human body 

dynamics measurements. Photogrammetry was used in order to measure possible 

maximum accelerations of human body parts and the bandwidth of the digital acceleration 

signal. As the primary structure the capacitive accelerometer configuration is chosen in 

such a way that sensing part measures on all three axes as it is 3D accelerometer and 

sensitivity on each axis is equal. Hill climbing optimization was used to find the structure 

parameters. Proof-mass displacements were simulated for all the acceleration range that 

was given by the optimization problem constraints. The final model was constructed in 

Comsol Multiphysics. Eigenfrequencies were calculated and model’s response was found, 

when vibration stand displacement data was fed into the model as the base excitation law. 

Model output comparison with experimental data was conducted for all excitation 

frequencies used during the experiments. 
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1. Introduction 

A new technology usually begins with experimentation. Anything that is ever built must be 

designed first. This is immediately followed by modeling as one wants to know how well the device 

works before it is built so that expensive experimentation can be reduced. Modeling techniques and 

tools enable analysis of an existing design. The design itself is largely dependent on the experience, 

expertise and the creativity of the designer. Optimal synthesis techniques have the potential to reduce 

this reliance on the human designer by automatically generating designs matching user-specified 

requirements [1]. Microaccelerometer synthesis algoritms have been successfully applied to the 

automatic layout of surface-micromachined accelerometers [2]. A prerequisite for synthesis was a set 

of lumped-parameters models that adequately linked device behaviour with physical design variables. 

Optimal synthesis enabled exploration of the entire design space given specific user-specified 

constraints, as has been shown with the accelerometer example. Concepts of multidisciplinary design 

and optimization were introduced in [3] for overall and preliminary design of a microgyroscope. 

Optimization of the design of such a system requires a thorough understanding of the coupling effects 

of their working environments, their physical structural parameters, their electronic construction, and 

their fabrication processes. A tuning fork gyroscope was taken as an exemple to demonstrate the 

principle for optimizing the necessary multidisciplinary design procedures in designing MEMS. Tay et al. 

presented a single crystal silicon low-g open loop microaccelerometer designed and fabricated through 

a spreadsheet optimization methodology [4]. The paper begins with the theoretical formulation and 

analysis of the differential capacitive accelerometer. The effects of the electrostatic spring constant on 

the natural frequency and sensitivity of the accelerometer have been thoroughly discussed. The 

ratiometric error for this system has been optimized. A topology optimization-based approach is used in [5] 

for the design of micromachined force amplifiers in inertial sensor applications. Technological 

constraints require that the results of the topology optimization mechanisms should be converted to 

beam element models and subjected to a further size and shape optimization. The dependence of 

geometrical and mechanical parameters on the optimization is studied. Paper [6] deals with the 

possibility of vibration mode control of MEMS devices having large potential in various  

micro-sensor/actuator applications. The presented numerical analysis focuses on the first three flexural 

vibration modes and their influence on dynamic characteristics. Advantages and drawbacks deriving 

from the use of MEMS accelerometers for hand-arm and whole-body vibration measurements are 

evaluated in [7]. Metrological performances of different transducers are assessed through the 

identification of their frequency response function, linearity, floor noise and sensitivity to thermal and 

electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty 

with the single frequency calibration procedure. The temperature effect was negligible and the 

electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. 

The footstep vibration signals are measured in [8] by floor-mounted MEMS accelerometers deployed 

tangent to wall sides, for estimating the level of indoor physical activity. With growing concern about 

obesity in older adults and disabled people, this paper deals primarily with the estimation of energy 

expenditure in the human body. It also supports the localization of footstep sources, extraction of 

statistical parameters on daily living patterns, and identification of pathological gait patterns. Unlike 

other sensors such as cameras or microphones, MEMS accelerometer sensors can measure many 
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biomedical signatures without invoking personal privacy concerns. Accelerometers in [9] are 

commonly used in motion analysis systems to enable researchers to conduct studies outside of the 

traditional laboratory environment; however the available systems tend to be bulky and unsuitable for 

long-term studies. Therefore, a need exists for a physically robust, yet compact motion analysis system 

that can be easily worn for an extended time period without disrupting the person’s normal range of 

motion. The aim of this research work is to investigate the applicability of optimization techniques for 

identification of MEMS accelerometer structures for human body measurements, when any 

information available from the accelerometers’ producer is limited. The paper is organized as follows: 

Selection of accelerometer structure is made in Section 2, accelerometer model and its validation are 

presented in Section 3. Concluding remarks are provided in the final Section 4. 

2. Selection of Accelerometer Structure 

The availability of a system capable of automatically classifying the physical activity performed by 

a human subject is extremely attractive for many applications in the field of healthcare monitoring and 

in developing advanced human-machine interfaces. The information on the human physical activity is 

valuable in the long-term assessment of biomechanical parameters and physiological variables. Serious 

estimation errors may occur when wearable sensor systems composed of motion sensors, such as 

accelerometers, are used without any regard to what the subject is actually doing [10]. 

In order to define digital acceleration signal characteristics and guidelines for the hardware 

selection and safe filtering thresholds to be used, body acceleration signals analysis must be performed 

in order to identify possible maximum accelerations and signal bandwidth. Such an analysis can only 

be performed with quantitative analysis methods such as photogrammetry, which allows precise and 

reliable measurements from images [11]. Cameras and markers are suggested for this analysis as the 

technique with least 3D space restrictions compared to radiography or magnetic resonance imaging. 

An experiment when the subject starts walking very slowly and gradually increases his speed to the 

level he can still cope with would completely cover the range of acceleration signals that can be 

produced during everyday physical activities considering acceleration signal bandwidth and amplitude. 

The results of human body acceleration signal analysis could suggest some guidelines for the 

accelerometer to be chosen. Vertical movement is a major component in everyday physical activities. 

Walking, running, sitting up and down among them are most common movements. Body locations, as 

defined in Figure 1, were tracked using six ProReflex MCU 500 Type 170 241 cameras with Qualisys 

Track Manager Software from Qualisys and utilizing Treadmill “Vision Fitness Premier” model T9450 

HRT. The ProReflex MCU uses a 680 × 500 pixel CCD image sensor. The use of CCD technology 

results in very low-noise data compared to a higher resolution CMOS sensor which has a considerably 

higher pixel noise levels. By using a patented sub-pixel interpolation algorithm, the effective 

resolution of the ProReflex MCU is 20,000 × 15,000 subpixels in a normal setup, in some cases 

enabling the ProReflex MCU to discern motions as small as 50 µm [12]. Experiments started with 

slow 0.8 km/h walking, was gradually increased to 13 km/h intensive running and decreased back to 

0.8 km/h. Speed was changed in increments/decrements of 0.1 km/h with a delay of 5 s. Three cycles 

were performed for each test subject. All motion data (direction x, y and z) was captured with data 

sampling rate of 500 Hz to keep raw data at the maximum resolution that was allowed by the 
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The differentiator filter was applied twice to obtain accelerations for every marker that was tracked. 

Maximum accelerations observed during experiments are given in Table 2. Ledoux and Hillstrom 

during their research [13] obtained that peak-to-peak accelerations in the tarsus area (talus) were up to 

6.75 g. This is similar to the measurements that were aqcuired during this research, however the scope 

of analyzed movement was not only walking but also running up to 13 km/h. Also the choise of data 

filtering might be the reason of different maximum values obtained as high frequencies are removed 

(or left). 

Table 2. Maximum accelerations observed in three directions. 

Position Max (|ax|), m/s2 Max (|ay|), m/s2 Max (|az|), m/s2 

Chest 15.879 38.277 35.708 
Back 22.437 38.587 18.750 

Biceps 23.812 19.476 39.375 
Hip 28.145 37.636 45.645 

Wrist 31.656 32.347 71.700 
Thigh 35.736 36.232 39.749 
Tarsus 66.873 24.016 56.383 

According to Qu et al. [14] typical body acceleration amplitude can range up to 12 g. As industrial 

accelerometers that are available through major electronic components dealers (Farnell, Digikey, etc.) 

have ranges ±2 g, ±4 g, ±6 g, ±8 g, ±16 g, due to limitations in availability of ±12 g accelerometers, 

±16 g acceleration data should be chosen.  

It is common for the MEMS accelerometer to have its sensing part fit into area of ~1 mm2 [10]. 

Thus the first model requirement is that sensing element must fit into area of 1–1.3 mm2. It is also 

common to use silicon as the primary material in the manufacturing process [15]. The manufacturing 

process also defines that the sensing part must be developed as a 2D structure. However, operation 

requirements specify that the sensing part should measure on all three axes as it is a 3D accelerometer 

and sensitivity on each axis must be equal, that’s why the lumped models for the main components of 

the proof-mass support were not be chosen. According to the values of the observed acceleration 

magnitudes and resulting guidelines the accelerometer that is to be identified should have a measuring 

range of ±16 g. The total non-linearity from the sensing element, electronics and from other sources 

should not be more than 1% of full scale output (FSO). The accelerometer should have a bandwidth 

(±3 dB) of >100 Hz and the cross-axis sensitivity should be limited to a maximum of 1% of FSO. The 

accelerometers bias stability and hysteresis values are specified as 0.15% of FSO each. Finally the 

accelerometer should have a response time of less than 1 ms and it should perform over a temperature 

range of −20 to 80 °C. The configuration of the capacitive accelerometer should be chosen in such a 

way, that the proof-mass should be free from squeeze damping effects and supported in vacuum on all 

four sides by shaped beams, that permit for a proof-mass piston-like movement and remain parallel to 

electrodes at all accelerations as well. Also any geometrical change in the beam length due to 

temperature variation limits the proof-mass to in-plane rotation only and it does not experience any out 

of plane bending. This configuration reduces the overall accelerometer chip size thereby improving the 

per wafer yield and also reduces the non-linearity associated with support structures. The most 

favorable beam configurations for this purpose are L-shaped cantilever beams (Figure 2). According to 
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Error function can be defined as: 

),(),(),( tiatiutie m −=   (3)

Here I = 1,2,3 and defines axis x, y and z accordingly; ),( tium — acceleration that is showed by the 

model at the moment t. Here it is assumed that dynamic excitation is governed by a(i,t) = sin(2πft), 

where f is excitation frequency. 

Optimization problem that is to be solved in respect of accelerometer beam cross section height and 

mass density of proof-mass material: 

2

2

0

)2(sin(
),,,(min dt

ftd
htium

t

πρ −
≥

  (4)

where ),,,( ρhtium —acceleration of proof-mass at the moment t with accelerometer beam cross section 

height h and mass density of proof-mass material ρ ; f—excitation frequency. 

Defined optimization problem has following constraints: 
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These constraints come both from requirements described earlier as well as real world conditions: 

• ]20;0(∈f : frequency is limited for example to 20 Hz; 

• jihAjuhAiu ≠= ),,,,(),,,( ρρ : is the axis sensitivity requirement; 

• 0),,,( ≠ρhAiu : a constraint to avoid the zero displacement condition where formally axis equal 

sensitivity requirement would be met; 

• )160;0()0;160( ∪−∈A : maximum acceleration levels are limited to 160 m/s2 in both directions on 

any axis because it’s common for industrial accelerometers to have measurement range of ±16 g; 

• )10;0( 4−∈h : beam cross section height constraint that corresponds to real world  

manufacturing process; 
• )10;0( 4∈ρ : mass density of proof-mass material constraint. 

The width w of cross section of accelerometers beam is explicitly set to be 4 µm as such dimension 

is used for mechanical springs in the accelerometers design [15]. Taking into consideration the origin 

of the problem it is possible to solve the problem for only one value of A. All other values would give 

the same result because the requirement for equality in sensitivity across all axes is set throughout all 

accelerometers operation range. Thus A is set to 10 m/s2. 

The problem in Equation (4) is redefined as: 

2

2

0
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  (6)
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The given results show that the model fits the experimental data quite well. Although relative errors 

go a little over 9% of the acceleration amplitude, absolute errors does not exceed 0.12 m/s2. This 

shows that the model is valid and stable throughout the bandwidth of 20 Hz. 

4. Conclusions 

An accelerometer model was identified and validated. Silicon was used for L-shaped beams, copper 

for proof-mass. Overall top size was 1.23 mm2. L-shaped beam cross section size was 4 × 8.25 µm, 

proof mass size was 100 × 100 × 100 µm. It was shown that the model has first resonant frequencies 

(over 2,200 Hz) far from the bandwidth of interest (20 Hz). The model achieves equal sensitivity in all 

directions. Displacement in the x direction differed by 0.090% from displacement in the z direction 

and by 0.006% from displacement in the y direction when an acceleration of 10 m/s2 was applied to 

the accelerometer. Displacement in the y direction differed by 0.092% from displacement in the z 

direction. Validation of the model showed that in a frequency range up to 20 Hz modeled accelerations 

were up to 10% different from measured values with the absolute error being less than 0.12 m/s2. 
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