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Abstract: We propose a novel hybrid inertial sensors-based indoor pedestrian dead 

reckoning system, aided by computer vision-derived position measurements. In contrast to 

prior vision-based or vision-aided solutions, where environmental markers were used—either 

deployed in known positions or extracted directly from it—we use a shoe-fixed marker, 

which serves as positional reference to an opposite shoe-mounted camera during foot 

swing, making our system self-contained. Position measurements can be therefore more 

reliably fed to a complementary unscented Kalman filter, enhancing the accuracy of  

the estimated travelled path for 78%, compared to using solely zero velocities as  

pseudo-measurements. 

Keywords: indoor positioning; strapdown inertial navigation; pedestrian dead reckoning; 

marker tracking; unscented Kalman filter; unit quaternion space 

 

1. Introduction 

Indoor pedestrian positioning, a prominent example of where Global Navigation Satellite System 

(GNSS) solutions come up short in terms of performance [1], is a fast growing segment with great 

potential. This kind of positioning could prove itself to be as useful for the general public (e.g., 

context-aware applications in airports, shopping malls, libraries, museums, subways, etc.) as for 

professional users (e.g., helping firefighters and first responders to navigate in low visibility conditions). 

OPEN ACCESS 



Sensors 2013, 13 9837 

 

 

Various indoor pedestrian positioning methods have been proposed through the years. Most of the 

approaches rely either on a modified environment (e.g., radio beacons or fixed visual markers), or 

some a priori knowledge about it (e.g., radio fingerprinting). In emergency, life-critical scenarios, 

where time and reliability are of utmost importance, such solutions could be easily stretched beyond 

their limits. Beauregard [2] has listed a number of demanding, for many technologies prohibitive 

technical requirements in these worst case scenarios, and also pointed out the time-consuming 

deployment and calibration of UWB beacon-based positioning systems. Poor visibility and 

unfavorable lighting conditions can also render unreliable other substantially different approaches, 

such as a fiducials-free computer vision-based SLAM positioning system—possibly resulting even in 

completely false position estimation [3]. Rantakokko et al. [4] observed that a robust and accurate first 

responder positioning system for urban operations requires the use of a multi-sensor approach. 

2. Related Work 

With the help of modern self-contained inertial sensors the aforementioned shortcomings could be 

overcome to a certain degree at least. However, the hard to ignore issue of low cost Inertial 

Measurement Unit (IMU)-based personal navigation systems lays in the inaccuracy of their 

microelectromechanical system (MEMS)-type sensors. Even with theoretically perfect initial 

alignment, accurate position tracking can only be successfully performed for a few seconds using 

commercial grade inertial sensing alone [5], due to cubic-in-time positional error growth caused by 

angle rates and accelerations integration inherent to the Strapdown Inertial Navigation System 

(SDINS) algorithm. 

To limit the error growth characteristics of low-cost IMU-based pedestrian Inertial Navigation 

System (INS), also known as Pedestrian Dead Reckoning (PDR), an inherent property of the human 

gait has been widely exploited—the fact that cyclically one foot at a time stays still on the ground for a 

short period of time (stance phase) while the opposite one is moving (swing phase) [6]. By taking 

advantage of this property positional error growth can be decoupled from time, making it linearly 

proportional to the number of steps taken. Many approaches have been tried in this direction to date, 

differing by algorithms used, sensors choice and their placement. Foxlin’s [7] NavShoe concept 

represents a substantial upgrade to foot-mounted IMU-based PDRs by introducing the addition of zero 

velocity updates (ZUPT) as pseudo-measurements to an extended Kalman filter (EKF) during stance 

phase. Introducing ZUPTs as measurements into the EKF, instead of simply resetting velocity in the 

SDINS algorithm to zero, brings the substantial advantage of a retroactive correction of the state 

vector. More recently, the ZUPT approach was used by Alvarez et al. [8] in a waist-worn inertial 

personal navigation system that can be precise enough for some applications. 

Considerable research has been carried out recently in the hybrid indoor positioning field. Having in 

mind that most of the presented hybrid approaches are not self-contained or rely on environmental 

features [9] and that a lot of research has been done in heading estimation improvement for PDR, we 

sought to engage an innovative way to somehow enhance the original ZUPT approach, especially in 

difficult, typical first-responder scenarios. The result is our low-cost, proof-of-concept hybrid PDR 

depicted in Figure 1. Computer vision was chosen as the aiding modality because of its complementarity 

to inertial sensing as Corke et al. pointed out in [10], while the desire to simultaneously decrease the 
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dependence of the system on environmental features led us to think in the direction of a wearable 

marker. To the best of our knowledge, no general pedestrian navigation platform, that would allow a 

seamless blending of visual sensory information, is available at the moment. The modular multi-sensor 

pedestrian location and navigation platform with integrated data timestamping that Morrison et al. 

describe in [11] seems very close to this aim, but it does not support video input in its present iteration. 

Figure 1. Our proof-of-concept PDR.  

 

Our approach is similar to the one proposed by Do and Suh with their Gait Analysis System [12] for 

the fact that it uses a shoe-mounted IMU with a rigidly connected camera. The crucial difference 

comes in the placement of the visual marker. We opted for a shoe-fixed marker on the opposite foot, 

serving as a positional reference to the IMU-camera-compass (IMUCC) unit, mounted onto the other 

shoe. Using a self-attached visual marker as a positional reference for a combined IMUCC unit is a 

novel approach, since visual markers are usually pre-deployed into the environment. 

We therefore propose a novel, self-contained machine vision-aided hybrid PDR aiming to improve 

foot trajectory estimation in an IMU-based PDR system with ZUPTs. The idea is to minimize foot 

trajectory error during the swing phase, particularly during slow or disturbed walking, when the swing 

phase, and thus the error integration time, may last longer. We achieve our goal by taking advantage of 

a novel visual marker-based setup, where traditional environmental markers are being replaced by a 

user-worn marker, fixed on the user’s shoe, while an IMUCC unit is placed on the opposite one. From 

the time it enters in the camera’s field of view, the marker’s pose with respect to the camera can be 

determined by means of an augmented reality (AR) machine vision algorithm and from then on it can 

serve as a positional reference to the IMU, since there is a fixed, known spatial relationship between 

the camera coordinate frame and the IMU coordinate frame. Position measurements can be therefore 

fed to a complementary unscented Kalman filter (UKF), operating in a unit quaternion space in 

feedback configuration. 

3. System Description 

In this section a description of the proposed algorithm will be given. Its schematic representation is 

shown in Figure 2. Emphasis will be put on aiding measurements and filtering algorithms, whereas the 
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SDINS navigation algorithm in quaternion approach will be treated in the Appendix section at the end 

of this article. 

Figure 2. Flowchart of the proposed algorithm. 

 

3.1. Coordinate Systems and Notation 

We make use of the following Cartesian, orthogonal coordinate reference systems (frames) 

throughout the article: 

 Inertial (i-frame) is the inertial frame, fixed with respect to the stars with the origin in the 

center of the Earth. All inertial measurements are done with respect to this frame.  

 Earth (e-frame) is the Earth centered and fixed frame. This frame is of limited use in our case, 

but of great importance using higher accuracy IMUs in long distance and high dynamics 

outdoor missions. 

 Local NED (n-frame) is the local level frame at the SDINS computed position, following the 

NED (north-east-down) notation. 

 Navigation (nav-frame) is the local level frame at the first SDINS computed position. In our 

case, using a low-cost IMU, not capable of Earth-rate sensing, in low dynamics conditions for 

short periods of time, we neglect Earth’s curvature and rotation, making possible to assume the 

alignment of the nav-frame and n-frame. We use the NED notation for this frame. Camera pose 

is being calculated with respect to this frame. 

 IMU (b-frame) is the coordinate frame of the body—in our case the frame of the IMU, which is 

attached to the shoe. All the inertial measurements are being measured in this frame. 
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 Camera (cam-frame) is the coordinate system of the camera, which is rigidly connected to the 

IMU unit. The z axis is pointing along the optical axis, starting from the optical center of the 

camera, its x axis perpendicular to the z axis to the right. 

 Reference Marker (mref-frame) is the coordinate system of the first recognized marker during 

the swing phase, which serves as a reference to the subsequent ARToolKitPlus measurements 

that occur later during the current swing phase. 

 Marker (m-frame) is the marker coordinate frame. It is fixed onto the user’s opposite shoe with 

the z axis pointing out from the marker and the x axis pointing perpendicular to the z axis to  

the left. 

 Platform (p-frame) is the SDINS software frame in which the transformed inertial quantities 

(accelerations and angular rates) are being solved. In the ideal case the p-frame and n-frame 

would be parallel, but because of the errors, inherent to inertial sensors, a discrepancy arise. 

The p-frame axes configuration copies that of the n-frame. 

All frames are right-handed, the third axes are thus defined with the first two. In this article 

superscript is used to denote the coordinate system in which a variable is represented. Bold text is used 

for vector and matrix variables. 

3.2. Visual Position Estimation Using a Shoe-Mounted Marker  

The main idea behind our approach was motivated by the fact that SDINS positional uncertainty 

grows cubically over time. Developing a method to somehow anchor subsequent foot position 

measurements during swing phase, when SDINS calculations keep losing accuracy, to a prior point in 

time, when accuracy was greater, was our goal. The use of a shoe-worn marker would allow us to 

perform positional measurements with accuracy that is substantially decoupled from time, similarly to 

using an outdoor operating GNSS receiver. The cubical position error growth of the inertial-only 

SDINS solution during the swing phase should therefore become limited to the sum of the positional 

error, which occurred up to the time of the reference marker image acquisition and the inherent 

ARToolKitPlus [13] positional measurement error. Using visual position estimation, an enhanced 

navigation solution is expected, when longer SDINS integration times occur (i.e., during slow walk), 

compared to a SDINS algorithm using only ZUPT pseudo-measurements. 

The coordinate systems transformations involved, leading to the actual positional measurement 

being fed to the UKF, can be thought of as a two-step process (Figure 3): 

1. When the marker is first recognized in an image during the swing phase, its 3D pose is calculated 

with the aid of the IMU frame calculated pose in the nav-frame, the known IMU-Camera lever 

arm and the current ARToolKitPlus measurement of the pose of the marker in the cam-frame. 

We call this resulting frame the reference marker coordinate frame (mref-frame). 

2. From now on the system’s computational workflow reverses with respect to the first step. The 

inverse of the ARToolkitPlus homogeneous matrix is used to perform the transform from the 

previously calculated mref-frame, expressed in the nav-frame, to the cam-frame and again the 

known IMU-Camera lever arm transformations are used at the end for calculating the actual 

homogeneous matrix, describing the pose of the IMU frame in the navigation frame. 
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Figure 3. Schematics of our two-step pose calculation process, yielding the IMU position 

in the navigation frame as the final result. If m denotes the moment when the marker is first 

seen during the current swing phase, then mref-frame is being defined at time step k = m, 

while successive b-frames are being calculated at time steps k > m, when the marker is 

being detected in the acquired video frames. 

 

The visual marker-based relative 3D positional measurement architecture that we are using relies on 

the well-known ARToolKitPlus AR framework, which is based on the pose estimation algorithm 

developed by Schweighofer and Pinz [14]. Before an image can be efficiently used as a measurement, 

the camera unit has to be calibrated to compensate for optical distortions caused by the lens. With the 

aid of the Camera Calibration Toolbox for MATLAB [15] and a printed checkerboard pattern we have 

determined the intrinsic parameters of the camera-lens combination and rectified the images before 

they were fed to the ARToolKitPlus for image processing. 

A common characteristic of optical tracking AR systems with fiducial markers are their viewing 

angle W-shaped rotation error functions [16,17]. With this in mind we tried to mount the marker in a 

way that it would remain outside of lower accuracy regions throughout the whole swing phase, 

because not only position, but the whole pose information (i.e., including orientation) was used later in 

calculations. When fixing the marker onto the shoe, we therefore rotated the marker for a few degrees 
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towards the camera around its yaw axis and slightly increased its pitch, compared to a marker facing 

directly into the walking direction.  

Our camera is rigidly connected to the IMU. Using the calibration algorithm developed by  

Hol et al. [18], high quality estimates of the relative orientation between the camera frame and the 

IMU frame could be determined. However, we chose to follow a more straightforward, yet effective 

approach: to a first approximation, in our paper we assume that the camera axes are either completely 

parallel or perpendicular to the IMU axes. Translation offsets between the center of the IMU and the 

sensor of the camera were accurately measured with the aid of a Vernier caliper. Knowing both 

rotational and translational relationships between the b-frame and cam-frame, homogeneous matrix 

transforms needed to convert back and forth between the two coordinate systems can be determined. 

3.3. Data Synchronization 

Having three separate measurement data streams of mutually dependent quantities, one for visual 

marker pose measurements, one for inertial measurements and one for magnetic compass heading 

measurements, gives rise to the data synchronization issue. The most accurate and straightforward 

solution in our case would be to use a hardware-based time synchronization mechanism for the three 

streams, similarly to [18]. Not having such a system at hand, we opted for a more Ad-Hoc approach 

since all computations are made off-line. We logged inertial serial data sentences at 156 Hz, video 

frames were taken at a fixed rate of 15 Hz and magnetic compass readings at 20 Hz. While recording 

all data streams (inertial, video and compass) simultaneously we completed a quick rotation of the 

combined IMUCC unit, making sure the marker does not leave the camera’s field of view during the 

move. We then applied our SDINS algorithm to the recorded inertial data, extracted the computed 

IMU orientations and transformed them into camera Roll-Pitch-Yaw (RPY) orientations. Since visual 

marker trackers give the most accurate rotation estimation results for roll rotation (around the z axis of 

the cam-frame) [17], we had accomplished the time-synchronization procedure with regard to this 

rotation. For synchronizing the compass data stream we took advantage of the roll readings in the 

compass output sentences. At this point we had three different data streams representing the same 

quantity (IMUCC unit roll), one lagging another for an unknown amount of time. We then had to 

resample the data sets to the same frequency—we chose to resample the less-frequently sampled 

camera orientation and compass roll data streams to the same frequency as the IMU data to prevent 

precision reduction of the final synchronization result. We used quadratic instead of linear 

interpolation to achieve a slightly smoother resampled curve. The final step of the data synchronization 

procedure was to determine the lag among data streams by comparing the derivatives of the orientation 

curves extracted from all three modalities. 

3.4. Filtering Algorithms 

3.4.1. The Error State Vector 

Complementary filtering involves system error estimation through system error modeling. 

Therefore, the states used in our complementary filter architecture are SDINS velocity and position 

errors in the n-frame and quaternion attitude error between the p-frame and n-frame. All states used in 
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a Kalman filter are considered to be white-noise driven signals. Any time-correlated driving noise 

should be properly shaped. In most cases, a first-order Gauss-Markov process model is accurate 

enough for modeling such errors. The state vector is then augmented with additional states to 

accommodate these additional colored noise states. To use this approach is particularly important in 

long lasting missions using sensors with non-negligible sensor drift, where the filter is augmented with 

accelerometer and gyro bias states. However, because the noise power spectral density (PSD) curve of 

the IMU outputs showed negligible drifts for the duration of our proof-of-concept experiments, we 

considered accelerometer and gyro biases as zero mean white noises in our article for simplicity and 

clarity reasons. 

Therefore, considering velocity, position and attitude as the main quantities of interest in a 

navigation solution and sensor biases as time uncorrelated states, we can define the following error 

state vector for our complementary UKF: 
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As it can be observed above, the filter error state vector is composed of a translational part  

( n
v  and nav

r ) and a rotational part (
n

pq ). Representing the rotational part of the filter with 

quaternions means that common vector space UKF cannot be used for propagating the whole state 

vector in time, because of the unit quaternion departure from the unit sphere due to the addition and 

multiplication operation in the weighted mean procedure. We therefore chose to combine two separate 

versions of unscented transform (UT) operating on a common state vector for error state propagation, a 

translational UT in vector space for velocity and position error propagation, and a rotational UT in unit 

quaternion space for attitude error states propagation. 

3.4.2. Translational UKF in Vector Space 

The unscented Kalman filter constitutes an alternative to the extended Kalman filter, which is a 

suboptimal implementation of the recursive Bayesian estimation framework applied to Gaussian 

random variables [19]. Developed for nonlinear process and measurement models in estimation and 

control problems, it is based on the principle that it is easier to approximate a Gaussian distribution 

than it is to approximate an arbitrary nonlinear function, making cumbersome Jacobian or Hessian 

calculations, which are the base for derivative-based filters like it is the EKF, superfluous. In the UKF, 

sample points (also called sigma points) are propagated through a nonlinear system, but, unlike in 

particle filters, a minimal set of sample points is deterministically chosen to capture the posterior mean 

and covariance of a random variable up to the 2nd order. 

A complementary filter operates on the navigation errors in the error state space, recursively 

estimating them, making it possible to correct navigation states in the total state space SDINS. We 

have not employed any small angle assumption in the development of the algorithm. A complementary 
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UKF in a unit quaternion space was developed for the rotational (unit quaternion) part of the state 

vector propagation, while a vector space complementary UKF was used for the Euclidean vector space 

part of the state vector. Hereafter in this chapter we will describe the fundamental algorithm of  

the latter.  

Considering the following discrete-time process governed by the nonlinear stochastic  

difference equation: 

xk = f(xk − 1,k) + wk − 1 (2) 

with measurements zk: 

zk = h(xk,k) + vk (3) 

          being the state vector,           the measurement vector, f the nonlinear system 

dynamic model, h the observation model, wk and vk the process and measurement zero mean Gaussian 

noises with covariances given by Qk − 1 and Rk, respectively, an UKF tries to estimate the state vector 

xk by the following procedure: given an n × n covariance matrix Pk a set of 2n + 1 sigma vectors χi,k 

can be generated and column-wise concatenated to form the matrix χk − 1 of size n × (2n + 1): 
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where       is the distribution mean at time step k − 1 and γ is a composite scaling parameter. From 

Equation (4) one can observe that process noise Qk is added to Pk before the sigma points (vectors) are 

projected ahead in time. Sigma vectors χi,k − 1 are then propagated through the nonlinear function f to 

get the posterior sigma point vectors: 
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where n is the number of sigma points and Wi are the corresponding weights given by the equations 

developed in [20]. By propagating the χi,k sigma vectors through the measurement model h: 

 kkiki ,,, χhγ  , (i = 1, ... , 2n + 1) (8) 

we get the i-th column γi,k of the matrix γk. The predicted observation vector    
  and its predicted 

output covariance   
  

 are determined by applying weighted sample mean and weighted covariance 

computation as above for    
  and   

  respectively. 
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3.4.3. Rotational UKF in a Unit Quaternion Space 

In contrast to vector quantities, rotations lie on a nonlinear manifold and quaternions, used in our 

system to represent them, are constrained to a unit radius hypersphere in a four-dimensional Euclidean 

space (a 3-sphere). This is the reason why quaternions are not closed for addition and scalar 

multiplication (operations that constitute the core of the weighted sum calculations in an UKF) and 

consequently why using unscented filtering directly with a unit quaternion attitude parametrization 

generally yields a non-unit quaternion estimate [21]. 

The original vector space UKF algorithm has thus to be modified accordingly to ensure that during 

the weighted sum of the unscented transform, the quaternion does not depart from the unit sphere. This 

was achieved with the help of the rotation vector attitude representation for sigma point rotation vector 

generation, followed by a quaternion-based weighted mean computation based on the quaternion 

distance metric formulated in [22] (Figure 4). A more in-depth description of the rotational filter 

algorithm is given below. 

Figure 4. Schematic diagram of the rotational part of the UKF filter. 

 

We chose to treat the quaternion noise         
  (the equivalent to wk − 1 in the vector space UKF, 

where the superscript + denotes the post-update process noise estimate when gyro bias error is being 

considered) as a rotation vector, because this way the transformed sigma points are more narrowly 

scattered around the current estimate compared to the alternative noise representation as a vector part 

of the quaternion [23]: 
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where 
111,   kkki QP  denotes the i-th column three-component noise vector and           

  is the 

resulting error quaternion. As can be seen we choose to apply process noise (with covariance Qk − 1) 

before the process model. To avoid using addition and multiplication in the quaternion unit sphere 

domain, we use quaternion multiplication in sigma point generation instead, multiplying the quaternion 

error by the current quaternion estimate        
 : 
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where 
q         is the resulting transformed i-th quaternion sigma point. Using both the quaternion error 

and the quaternion error inverse to construct the set of sigma point quaternions, we ensure an evenly 

distributed set of points, lying on the unit sphere around the current quaternion estimate: 
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where       
 

 denotes the set of sigma points for the rotational part of the error state vector. 

Dealing with a combined translation-rotational UKF, we would like to emphasize that (2n + 1) 

sigma points have to be generated for the combined filter, meaning that using the rotation vector 

representation for rotational sigma point generation, 19 sigma points have to be generated (n = 9). This 

set of transformed quaternions is then propagated forward in time through the rotational part of the 

process model 
q
f yielding the new set 

q  : 
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where i denotes the i-th column of the respective sigma point set. No additional noise is being 

considered in the equation above, since process noise is embedded into the sigma points already and is 

thus represented in the sigma points distribution. 

The predicted mean quaternion part    
  of the error state vector (

q   
 ) is then determined as the 

barycentric mean with renormalization: 
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The associated predicted rotational covariance 
q  

  is computed by first finding the distance Λi 

between the single sigma quaternion and the predicted mean quaternion: 
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Each quaternion distance Λi,k is then converted to the equivalent distance rotation vector ki,ξ with 

the following equation: 
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where     
  denotes the three component imaginary part of the quaternion distance Λi,k and the distance 

rotation vector norm ki ,  is given by: 
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where     
  denotes the real part of the quaternion distance Λi,k. Finally, the predicted covariance   
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calculated with: 
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Propagating the quaternion sigma points through the measurement model: 
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 kki
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and applying weighted sample mean and weighted covariance computation, the predicted quaternion 

observation    
  

 and predicted output covariance   
   

 are obtained, respectively.  

3.4.4. Measurement Modes 

Since we are using three different measurement modalities, namely ZUPT, visual position 

measurement (ARTK) and heading measurement (Figure 2), our system has to deal with three distinct 

measurement modes, each with a different observation matrix H. In the ZUPT pseudo-measurement 

mode (we make use of the “pseudo” prefix throughout the article because these observations are not 

actual measurements, but the assumed zero velocities) the observation matrix selects the velocity 

states, in the ARTK position measurement the H matrix selects the three position states, while in the 

case of a heading measurement the four orientation quaternion states are selected from the filter error 

state vector, which are consequently converted to a rotation vector during the UKF sigma points 

calculations. This back and forth conversion between the nine and ten states is required because of the 

covariance computation within the rotational part of the filter [24]. 

The measurement switching module sets the ARTK measurement mode each time the marker is 

recognized in the image and a position measurement is therefore available, while an effective and 

straightforward gyro signals thresholding technique similar to Foxlin’s approach in [7] is used to 

enable the ZUPT pseudo-measurement mode. Foxlin’s one-heading-measurement-per-step approach 

was used for heading measurement update—we performed it once per step to limit the effects of the 

colored environmental magnetic noise, at the time of the first ZUPT pseudo-measurement in the 

detected stance phase, because at that time the compass measurement should have been stabilized 

already. In the measurement update stage of the filter ZUPT mode was set to higher priority than the 

ARTK mode, because of the lower uncertainty of its pseudo-measurements, while the time update-only 

stage was performed during the swing phase without any external observations, to update the states 

error covariance in the UKF due to inertial sensor errors. 

Dealing with complementary filter architecture, we have to stress the fact that the measurements zk 

involved in the update stage of the filter are actually difference quantities δzk, i.e., errors between the 

measurements and the respective estimated total states. Since linear velocities belong to the Euclidean 

vector space, arithmetic subtraction can be performed to get the actual measurement k

v
z  fed to the 

filter when performing in the ZUPT pseudo-measurement mode: 

 )(
ˆ

SDINSk

ZUPT

k

ZUPT

k

v
xHzz  (19) 

where 
ZUPT

zk is the zero velocity pseudo-measurement at time step k, 
ZUPT

Hk is the ZUPT observation 

matrix and           
  is the predicted total state vector of the SDINS algorithm at time step k, which is 

the SDINS total state vector, corrected by the values calculated in the time update stage of the 

complementary UKF. With zero pseudo-measurements 
ZUPT

zk the equation above can be rewritten as: 

 )(
ˆ

SDINSk

ZUPT

k

v
xHz  (20) 

In heading measurement mode we are dealing with rotation measurements represented by unit 

quaternions, which are not mathematically closed for subtraction. We thus opted for the following 
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quaternion multiplication approach to get the heading error measurement to be fed to the UKF in a 

complementary configuration. Heading was first extracted from the SDINS attitude quaternion   
 
 by 

converting it to the rotation matrix notation, then subtracted from the compass heading measurement 

and the result converted to a difference rotation quaternion k

q
z , which represents the measured 

difference rotation quaternion to be fed to the UKF: 

1

)( )ˆ(   k

Heading

SDINSk

qHeading

k

q
zxHz  (21) 

where 
Heading

zk is the combined measurement attitude, composed by the predicted SDINS pitch and roll 

and the compass corrected heading measurement, 
Heading

Hk is the heading observation matrix and k

q
z  

is the rotational heading error between the current estimated heading and the heading, observed by the 

magnetic compass.  

It has to be noted that heading measurements are presented as attitude measurements to the UKF in 

the heading measurement mode, therefore the generally nonlinear measurement transfer model h is 

represented by a linear matrix transform 
Heading

H, which directly mirrors the measurements to the 

respective quaternion attitude states. Consequently, distance vectors ki,ξ  belonging to the quaternion 

sigma point set 
q
χi,k, belong to the propagated set 

q
γi,k as well. We take advantage of this property in the 

cross correlation matrix calculations below. 

In the ARTK measurement mode the difference k

r
z  between the IMU’s ARTK measured position 

and the SDINS estimated position of the IMU sensor is being fed to the UKF: 

 )(
ˆ

SDINSk

ARTK

k

ARTK

k

r
xHzz  (22) 

where 
ARTK

zk is the positional measurement at time step k, 
ARTK

Hk is the ARTK observation matrix and 

          
  is the same as described for the ZUPT measurement mode above. 

Regarding the ARTK measurement mode, a few words need to be devoted to its triggering. First of 

all, only pose measurements with high confidence are taken into account in the UKF, since frames 

(measurements) with lower ARToolkitPlus confidence tended to produce poor 3D cube overlays 

(Figure 5a), which meant 3D marker pose estimations were inaccurately determined for some reason. 

Since low confidence ARToolKitPlus measurements occurred rarely, simply discarding those 

measurements proved to be an effective strategy to cope with this phenomenon. Secondly, ARTK 

measurement mode has to be triggered only when the marker-equipped foot is stationary on the floor 

to allow precise 3D pose measurement of the reference marker coordinate frame and also of all 

successive camera coordinate frames during the swing phase of the IMUCC-equipped foot. However, 

marker pose measurements are often available during the stance phase, just before heading and 

subsequent ZUPT measurement mode triggering occur (Figure 5b). To effectively reject these 

inadequate measurements, velocity thresholding was implemented, i.e., if the calculated velocity of the 

IMUCC unit fell below a certain value, then the ARTK triggering signal was not passed through to 

enable the ARTK measurement mode in the UKF. To allow ARTK positional measurements during 

midair interrupted swings, when the foot would almost hover over the floor, some other kind of 

triggering strategy has to be employed, e.g., SDINS height triggering or using a shoe with an 

integrated ground contact sole switch. 
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Figure 5. Typical rejected ARTooKitPlus measurements. (a) 3D cube overlay of a low 

confidence ARTooKitPlus marker pose estimation—notice the imperfect 3D cube overlay 

on the right edge of the marker. (b) A typical moving marker image during stance phase of 

the IMUCC-equipped foot with an otherwise perfectly determined marker pose. 

  

(a) (b) 

3.4.5. Kalman Gain and Measurement Update Equations 

The UKF gain Kk is obtained with: 

1)(  inn

k

xy

kk PPK  (23) 

where   
   , given the measurement (observation) noise covariance R, is the innovation covariance   

   : 

RPP  yy

k

inn

k  (24) 

and   
  

 is the cross correlation matrix, calculated as weighted cross correlation between the posterior 

sigma point vectors χi,k and the predicted observation sigma vectors γi,k: 

  Tkkikki

n

i

c

i

xy

k W 



 yγxχP ˆˆ
,,

2

0

)(  (25) 

The cross correlation matrix   
   

 for the rotational part of the filter cannot be calculated using 

quaternion subtraction. Hence, the rotation vector is used as the distance measure again: 

T

kiki

n

i

c

i

qxy

k W ,,

2

0

)(
ξξP 



  (26) 

We can define the error state vector     
   and covariance   

  as: 

)ˆ(ˆ   kkk

n

k yzKx  (27) 

T

k

inn

kkkk KPKPP    (28) 

where zk is the new observation at time step k. In the ARTK measurement mode the error measurement 

quaternion and the predicted error measurement quaternion are first converted to the rotation vector 

notation, before being subtracted in (zk −    
  . Thereafter, the last three states of the error state vector 

 kx̂  have to be reconverted to the quaternion notation, resulting in the error state  n

kx̂  composed of 

the upper vector part  n

k

v
x̂  (velocity and position error states) and the lower rotational part n

k

q
x̂ . 
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Since we are dealing with a complementary filter architecture, SDINS states have to be updated by 

the error state vector  kx̂ . We refresh the SDINS states after a measurement update stage occurs, as 

described below, leaving the error states of the complementary filter in a zero error state: 

 Tn 0,0,0v ,  Tn 0,0,0r ,  Tn

p 0,0,0,1q  (29) 

We accomplish the update for the predicted vector part 


)(
ˆ

SDINSk

v
x  of the SDINS state vector with: 

  n

k

vn

SDINSk

vn

SDINSk

v
xxx ˆˆˆ

)()(  (30) 

while the predicted rotational part 
q          

  of the SDINS state vector is being updated by the 

measurement with: 

  )()(
ˆˆˆ

SDINSk

q

k

q

SDINSk

q
xxx  (31) 

4. Experimental Results  

The following hardware is used in our proof-of-concept PDR system: 

 low-cost Analog Devices ADIS 16354AMLZ IMU 

 3-axis tilt-compensated magnetic compass Ocean Server OS-5000  

 grayscale video camera The Imaging Source DMK 41 AF02 with a Computar 3.5–8 mm  

1:1.4 1/3" CS lens 

All data preprocessing and computations are performed offline with main algorithms running in 

MATLAB Simulink environment. Experiments were conducted to evaluate the methods we proposed. 

The intrinsic parameters of the camera-lens combination and the turn-on biases of the inertial sensors 

were determined as described in Sections 3.1 and 3.2, respectively. MATLAB Simulink was used to 

perform offline computations. 

Accelerometer and gyro triads error covariance matrices (cov( ) and cov( ), respectively) were 

determined by logging several minutes of IMU data, while leaving the IMUCC unit at rest: 

3

0.3586 0.0050 0.0301

cov( ) 10 0.0050 0.4013 0.0617

0.0301 0.0617 0.4442



 
 

   
 
  

0.0054 0.0004 0.0002

cov( ) 0.0004 0.0051 0.0002

0.0002 0.0002 0.0051

 
 

 
 
  

ε  (32) 

Since visual marker pose estimation accuracy is proportional to the marker physical size, we opted 

for a relatively big (79.3 mm wide), but still feasible marker, for our proof-of-concept PDR system.  

The following parameters were used in our experimental setup: 

0.01 I 
ZUPT

R  

0.1Heading I R  

0.05ARTK I R  

(33) 

where RZUPT, RHeading and RARTK denote the ZUPT, heading and ARTK measurement noises, 

respectively. These specific values were chosen to reflect the actual accuracy of the singular attribute, 

while avoiding possible numerical instabilities. 
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4.1. Preliminary Experiment with Marker Fixed on the Floor 

Not having a 3D position measurement device at hand, we first decided to check the behaviour of 

our system by executing a round trip sequence (i.e., always returning to the starting point) of 

movements—left, right, up and backward—with the IMU-camera unit in hand, while having the 

marker in a fixed, tilted position on the floor (Figure 6a). The expected result was a smooth (due to the 

high rate SDINS calculations) and drift-free (due to the drift-free visual measurements) positional 

trajectory. We focus here on the positional part of the navigation solution since user position is of 

greater importance than velocity and orientation in a pedestrian navigation system. Figure 6b shows 

the results of this 11 seconds-lasting experiment. The upper graph depicts the results of the  

SDINS-only solution, the graph in the middle shows the final result, obtained with our UKF visual 

sensor fusion technique, while the graph at the bottom represents the positional ARToolKitPlus 

measurements expressed in the reference navigation frame with the IMU-camera offsets taken into 

account. As it can be observed from the graphs, x position coordinate (yellow curve) drifted for almost 

3 m, while y position coordinate (violet) drifted for approximately 0.5 m in the SDINS-only graph due 

to inaccurate gravity vector subtraction—compared to the other two graphs, which are drift-free. 

Figure 6. (a) Our first experimental setup. The IMU-Camera unit facing the fixed marker 

on the floor with arrows showing the directions of the movements completed, which 

coincide with the navigation frame axes in this case. The colors of the arrows and the 

imprinted signs are consistent with the curves, plotted on the graphs on the right.  

(b) Simulation results of the preliminary experiment. 

  

(a) (b) 
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4.2. Slow Walking Experiment 

Having checked that the system improves the SDINS-only solution when being used for prolonged 

periods, we wanted to try it in a real slow walking scenario, to assess the amount of positional error 

correction during slow paced pedestrian navigation. This second experiment was performed walking 

slowly down the corridor of our lab, travelling with the IMUCC-equipped foot for 14.09 m in 44 s. 

After having preprocessed all the data, ZUPT triggering parameters were set by trial and error: 

szyx /8   

samplesTZUPT 47  
(34) 

where ∆ωx, ∆ωv and ∆ωz are angular rate thresholds and TZUPT is the time threshold after which the 

ZUPT mode is turned on, if all three angular rates remain under their respective thresholds. We did not 

need to use acceleration data to accomplish effective ZUPT mode triggering. 

Figure 7 shows the positional graph of our hybrid PDR system with ARTK measurement mode 

enabled, calculated for the center of the IMU frame in the navigation frame. Fifteen steps done with 

the IMUCC-equipped foot can be recognized in the upper graph. The x and y position coordinates have 

a 90° clockwise rotated “V”-letter shape due to the IMUCC significant initial yaw in our experiment, 

imposed by the desired facing direction of the camera. The z coordinates are negative due to the NED 

convention employed for the nav-frame. ARTK position measurements were fed to the UKF at the 

moments, represented by blue spikes in the graph below in Figure 7. The final calculated point in 3D 

space is 14.15 m distant from the starting point, resulting in a 6 cm (0.43%) travelled distance error. 

Figure 8 shows the reconstructed experimental slow walk in a 2D top view representation. 

Figure 7. ARToolKitPlus-corrected positional navigation solution. The edgier red, green 

and dark blue curves are ARToolKitPlus measurements being fed to the UKF at the 

moments, represented by the blue spikes in the graph beneath. 
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Figure 8. 2D top view graph of the reconstructed experimental slow walk. The path started 

at the entrance to our Lab and following the wall finished at the other end of the corridor. 

 

We repeated the calculations on the earlier acquired experimental data with ARTK measurement 

mode disabled, without altering all the remaining parameters, to be able to compare our proposed 

solution to a state-of-the-art PDR. A comparison of both positional graphs showed a reduction in 

ZUPT position corrections in the ARTK-enabled graph (Figure 9). 

Figure 9. Close-ups of the two positional graphs obtained with the slow walking experimental 

data with ARTK mode disabled (upper graph) and ARTK mode enabled (lower graph). 

Sensible reduction in ZUPT-induced position correction is indicated by the arrows. 

 

The upper graph in Figure 10 shows the IMU-frame orientation during the slow walking experiment, 

while the graph below in Figure 10 depicts the rotational corrections, made by the rotational part of the 

UKF. Velocity error values, observed for each step at the beginning of the stance phase, just before 

ZUPT triggering occur, are presented in Table 1. Significant improvement in velocity norm error reduction 

(25% by comparing the means) is evident from Table 2, where corresponding statistical data is shown. 
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Figure 10. IMU frame orientation during the slow walking experiment, converted to Euler 

angles (above). Rotational corrections, made by the complementary UKF, converted to 

Euler angles (below). 

 

Table 1. IMU velocity vector norm error just before ZUPT triggering occurred, for each 

step of the slow walking experiment. 

Step # 
Velocity Vector Norm Error (m/s) 

with ARTK Disabled 

Velocity Vector Norm Error (m/s) 

with ARTK Enabled 

1 0.1144 0.0294 

2 0.0872 0.0892 

3 0.0980 0.0608 

4 0.0325 0.0769 

5 0.1293 0.0642 

6 0.0736 0.0283 

7 0.0533 0.0442 

8 0.0713 0.0623 

9 0.0914 0.0747 

10 0.0793 0.0670 

11 0.1030 0.0826 

12 0.0463 0.0195 

13 0.0617 0.0725 

14 0.0294 0.0270 

15 0.0604 0.0533 

Table 2. Mean value, standard deviation and maximum value of data, presented in Table 1. 

 ARTK Disabled ARTK Enabled 

Mean of velocity vector norm error (m/s) 0.0754 0.0568 

Standard deviation of velocity vector norm error (m/s) 0.0291 0.0222 

Minimum value of velocity vector norm error (m/s) 0.0294 0.0195 

Maximum value of velocity vector norm error (m/s) 0.1293 0.0892 

The final calculated point in 3D space for the ARTK-disabled SDINS system, therefore aided by 

ZUPT and compass measurements only, is 14.36 m distant from the starting point, resulting in a 27 cm 
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(1.92%) travelled distance error. Comparing it to the 6 cm error with ARTK mode enabled, an 78% 

increase in accuracy can be observed in our slow walking experiment with our proposed hybrid  

PDR system. 

5. Discussion 

A significant improvement (25%) in velocity estimation has been observed during the experiments 

through beginning-of-stance-phase data analysis (Figure 9), where smaller ZUPT position corrections 

were observed in the ARTK-enabled graph, which meant greater velocity vector accuracy was 

achieved during vision-aided navigation. The improvement in velocity vector estimation is the result of 

a more efficient gravity vector subtraction, i.e., better IMU-frame orientation estimation made possible 

by ARTK visual position measurements through the correlations developed in the UKF error states 

covariance matrix. The operational correctness of the rotational part of the filter can be observed also 

through the last two graphs on Figure 6b, where a great improvement in curve smoothness can be 

noted in the UKF graph compared to the sole ARToolKitPlus measurements, due to the IMU high 

sample rate and proper orientation states correction performed by the rotational part of the UKF. 

We would like to stress the fact that navigation accuracy improvement is expected to be inversely 

proportional to the pace of the user and that we have chosen to test our system in a slow pace walk 

because it would represent a plausible, real-use scenario in which a substantial improvement in 

navigation accuracy would arise. Conversely, in a normal or fast pace walking, less or even no 

improvement is expected, due to the shorter SDINS integration time during swing phase. Moreover, 

using the same visual setup, image blurring would also occur due to the higher camera travel speed, 

making marker pose estimation less accurate. The mentioned effects of walking speed on accuracy 

improvement could therefore constitute the subject of further experimental investigation. 

Besides walking speed, there is another limitation of our system—the fact that our visual aiding 

algorithm is based on the assumption of a stationary marker during stance phase of the marker-equipped 

foot. In fact, any movement of the marker would compromise the visual pose measurement of the 

marker and consequently the calculated pose of the camera. By examining the video acquired during 

our experimental walking, we could confirm that we succeeded in achieving no visible marker motion 

during the experiments in our controlled laboratory environment. However, if intended to be brought 

to practical use, the system should incorporate some kind of marker movement detection or limitation 

at least. 

6. Conclusions 

A proof-of-concept hybrid, inertial sensors-based indoor PDR system, aided by a novel position 

measurement technique, relying on a shoe-attached marker, has been proposed in this paper. Using a 

visual marker in this novel way was expected to enhance the navigation solution of an inertial-only 

PDR, while retaining independence from environmental markers or features, making the proposed 

approach potentially interesting, especially for first responders’ tasks. However, additional sensors 

could be added to our system in cases when other sensory modalities would be available. 

Since a comparison to other indoor pedestrian navigation systems, relying on external aids (e.g., 

environmental markers, radio fingerprinting, etc.) or environmental assumptions (straight walls, flat 
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floor, ramps, etc.) would not be fair, we compared our system to an inertial PDR aided by ZUPT 

pseudo-measurements only, where an 78% reduction in error of calculated travelled distance has been 

shown during an indoor slow walking scenario in the experimental section, while a positioning 

improvement of 2.7 m was achieved in the axis with major positional error after just 11 s during the 

preliminary experiment using a marker placed on the floor. All the improvements have been achieved 

despite no modifications to the environment were made, no a priori knowledge about the environment 

was presupposed and with the only assumption being that about the marker being stationary during the 

stance phase of the marker-equipped foot. 

Being proof-of-concept, our proposed hybrid PDR cannot be directly used in practice. However, in 

this paper we have shown that if brought to real-time operation and to a practically acceptable size and 

weight, the use of a hybrid PDR, aided by visual positional measurements, relying on a shoe-worn 

marker, can represent a viable solution for improving indoor PDR navigation for first responders in the 

first place. 
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Appendix: SDINS in Quaternion Approach 

The SDINS is the main navigation algorithm in our system, based on IMU outputs. The SDINS 

algorithm takes IMU-measured accelerations (specific forces)  zyx

b aaa ,,a  and angular rates 

 zyx

b

rb  ,,ω  in the b-frame with respect to the i-frame and outputs the navigation data (velocity 

v
p
, position r

p
 and attitude  )(),(),(),()( 3210 tqtqtqtqtp

b q ) in the p-frame, given the initial velocity, 

position and attitude. For attitude representation different parametrization options exist—Euler angles, 

DCM (Direction Cosine Matrix), modified Rodrigues parameters, quaternions and rotation vectors. We 

have chosen the quaternion approach since it is stated to be computationally effective and avoids 

singularity problems [25]. We define the SDINS equations in continuous total state space as: 









































p

b

n

b

p

pbp

b

p

b

nav

p

v

qΩ

gaqC

q

r

v

2

1

)(







 (A.1) 

where g
p
 is the known gravitational acceleration vector in the platform frame,     

 
  is the 

transformation matrix defined as: 
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and   
  the angular rate matrix: 
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In Equation (A.1) we intentionally ignored the Coriolis and Earth curvature effect part 
nn

en

n

ie v )2(  in velocity computation since we use a consumer grade IMU in low dynamics 

conditions over limited distances making these effects drop below the IMU noise level. 

Before using the IMU a
b
 and    

  measurements, raw accelerometer and gyro data have to undergo 

some preprocessing to assess the turn-on biases. We used mean raw accelerometer data, collected 

during a stationary stage to calculate roll and pitch and perform leveling—determining the direction 

cosine matrix DCM
init

, describing the initial IMU attitude with respect to the navigation frame through 

gravity acceleration vector rotation: 
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DCM  (A.4) 

where θ denotes the pitch (around y axis rotation) and φ the roll (around x axis rotation) of the 

stationary initial IMU pose. Knowing that the accelerometer mean output     represents bias corrupted 

true acceleration F
b
: 
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)0(ˆ bbb  FF  (A.5) 

we can calculate the bias vector of the accelerometers       by subtracting the known true 

acceleration (the gravity vector g, expressed in the b-frame with the help of the DCM
init

) from the 

mean accelerometers outputs: 

gDCMF
initbb  ˆ)0(  (A.6) 

Generally, Earth rate is used to derive gyros’ turn-on biases, but using a low-cost category IMU this 

term can be ignored and applying simple mean removal leads to turn-on bias-free data, which can be 

directly used for navigation. 
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