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Abstract: A novel method for the rapid determination of chrysin and galangin in Chinese 

propolis of poplar origin by means of visible and near infrared spectroscopy (Vis-NIR)  

was developed. Spectral data of 114 Chinese propolis samples were acquired in the  

325 to 1,075 nm wavelength range using a Vis-NIR spectroradiometer. The reference 

values of chrysin and galangin of the samples were determined by high performance liquid 

chromatography (HPLC). Partial least squares (PLS) models were established using the 

spectra analyzed by different preprocessing methods. The effective wavelengths were 

selected by successive projections algorithm (SPA) and employed as the inputs of PLS, 

back propagation-artificial neural networks (BP-ANN), multiple linear regression (MLR) 

and least square-support vector machine (LS-SVM) models. The best results were  

achieved by SPA-BP-ANN models established with the Savitzky-Golay smoothing (SG) 

preprocessed spectra, where the r and RMSEP were 0.9823 and 1.5239 for galangin 

determination and 0.9668 and 2.4841 for chrysin determination, respectively. The results 

show that Vis-NIR demosntrates powerful capability for the rapid determination of chrysin 

and galangin contents in Chinese propolis.  
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1. Introduction 

Propolis, also called bee glue, is a brownish, sticky resinous substance collected by honeybees from 

leaf buds and cracks in the bark of certain trees and plants. Propolis has a complex chemical composition 

and has been used widely in folk medicine for many years. It is reported that propolis has many biological 

and pharmacological characteristics, including antibacterial, anti-inflammatory, antiviral, antitumor, 

anticancer, and immunomodulatory effects [1]. There are over 150 constituents in propolis, including 

polyphenols, terpenoids, steroids and amino acids. Flavonoids, as one of the most important groups, can 

represent around 50% of the propolis contents, depending on the harvest region, since the characteristics 

of propolis are influenced by the local plant varieties and weather [2]. Chrysin and galangin as two of the 

main flavonoids in propiolis are generally analyzed using chromatographic methods according to the 

Chinese Pharmacopeia and the current standard of Ministry of Agriculture of China [3]. Generally, 

methods for determining chrysin and galangin in Chinese propolis include TLC, GC [4] and HPLC [5,6], 

that are helpful in identification and quantification of the various chemical constituents of propolis, but 

these methods are complex and time-consuming. Therefore, it is necessary to develop a rapid and 

effective quantitative analysis method for the quality determination of Chinese propolis.  

With the development of spectroscopic techniques and modern chemometrics, visible and near 

infrared (Vis-NIR) spectroscopy that is considered to be non-destructive, simple and rapid, has been 

widely applied in the research of agricultural, food, and natural products [7–10]. Especially, in recent 

years, there are many reports about the application of spectroscopy techniques in various aspects of 

research on traditional Chinese medicines (TCMs), such as geographical source identification, quality 

control, stability forecasting, etc. [11–14]. However, there are few studies evaluating the potential of 

Vis-NIR for quantitative analysis of chrysin and galangin in Chinese propolis. 

The objective of the study was thus to develop a new method to quantitatively and non-destructively 

determine the contents of chrysin and galangin in Chinese propolis by the Vis-NIR technique. For this 

purpose the performances of established prediction models using different chemometric methods were 

compared and evaluated. 

2. Materials and Methods 

2.1. Apparatus and Reagents 

ASD FieldSpec Pro FR (350–1,075 nm, Analytical Spectral Device, Boulder, CO, USA), Agilent 

1100 high performance liquid chromatograph (Agilent Technologies Inc., Santa Clara, CA, USA),  

KQ-100DB ultrasonic cleaner (Shanghai, China), Mettler Toledo AB204-S electronic balance  

(Zurich, Switzerland). 
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Chrysin and galangin were purchased from the National Institute for the Control of Pharmaceutical 

and Biological Products (Beijing, China). The HPLC-grade methanol and acetonitrile both were 

obtained from Tedia Scientific Inc. (Cincinnati, OH, USA). Phosphoric acid (analytical grade, P85%) 

was purchased from Zhejiang Chemicals Company (Zhejiang, China). All the other reagents  

were of analytical grade. Water used throughout the experiments was purified water provided by  

Wahaha Company (Zhejiang, China). 

A total of 114 samples of Chinese propolis of poplar origin used in this research were purchased 

from beekeepers in the Shandong, Jilin, Anhui, Zhejiang, Jiangsu, Jiangxi and Henan provinces of 

China. Each sample was dehydrated into a powder. Among the prepared samples, 76 samples were 

selected randomly to be used as the calibration set, and the remaining 38 samples were used as the 

prediction set. 

2.2. Spectra Measurements 

Each sample was put in a Petri dish and then scanned using a spectroradiometer working in the 

wavelength range of 325 to 1,075 nm. A white disk was used as the reference board. Spectra data were 

collected and processed using RS
2
 V4.02 software for Windows (Analytical Spectral Devices, Inc., 

Boulder, CO, USA). The probe of the spectroradiometer was fixed 100 mm above the surface of the 

sample with the field of view (FOV) of 25° and an angle of 45° away from the center of the sample 

container. Each sample was scanned 30 times, and the acquired spectra were averaged as the measured 

spectrum of this sample.  

2.3. Liquid Chromatographic Conditions 

Contents of chrysin and galangin were determined on an Agilent 1100 series HPLC system, which 

consists of a G1322A vacuum degasser, a G1311A quaternary pump, a G1329A autosampler, a 

G1314B programmable variable wavelength detector (VWD), and a G1316A Thermostatted Column 

Compartment. All analyses were performed by using a Diamonsil C18 column (250 × 4.6 mm, 5 µm) at 

30 °C. The detection wavelength was set at 268 nm. The mobile phase consisted of (A) methanol and 

(B) 0.15% aqueous phosphoric acid at a flow rate of 1 ml/min. Separations were performed by the 

following linear gradient: 64% A in 25 min, 75% A in 8 min. The injection volume was 10 µL. 

2.4. Pretreatment of Spectral Data 

Before the calibration process, the spectra of all samples were pretreated to reduce baseline 

variation, light scattering, and path length differences using several preprocessing algorithms, 

including Savitzky-Golay smoothing (SG), moving averages smoothing (MAS), standard normal 

variate transformation (SNV), multiplicative scattering correction (MSC), the first derivative (1st-Der), 

the second derivative (2nd-Der) and de-trending (De-trending). The details of these pretreatment 

methods could be found in the literature [15]. These methods were compared to choose the optimum 

preprocessing strategy. The pre-process and calculations were carried out using the Unscrambler 

X10.1 software (Camo Process AS, Oslo, Norway). 
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2.5. Data Analysis 

Partial least square (PLS) [16] was applied to develop the calibration models as well as a way to 

extract latent variables (LVs). PLS is performed to establish a regression model to perform the 

prediction of physiological concentrations [17]. The LVs are considered as new eigenvectors of the 

original spectra to reduce the dimensionality and compress the original spectral data. 

Multiple linear regression (MLR) is aimed to establish a direct, simple, and linear combination of 

independent variables (referring spectral wavelengths in this work, X) that corresponds as closely as 

possible to the dependent variable (referring a quality attribute, Y) [18,19]. The drawback of MLR is 

that the number of samples for MLR must be larger than the number of variables. In this study, 

effective wavelengths (EWs) were set as the independent variables of MLR, so that the number of 

input variables of the MLR model could be smaller than that of samples.  

A back propagation-artificial neural network (BP-ANN) as one of the most popular neural network 

topologies, was employed in this paper to establish the relationship between EWs and galangin/chrysin 

contents. In the calculation of BP-ANN, the EWs are introduced into the network as inputs via the 

nodes of the input layer. The input signals are then transferred from the input node to the output node 

via the hidden layer. The BP-ANN model is developed by adjusting the nodes of hidden layers and 

other parameters.  

Least square-support vector machine (LS-SVM) is a modified algorithm based on the classical 

SVM and has been applied for spectral analysis [20]. It uses a set of least squares linear equations as 

loss functions instead of the quadratic programming to obtain the supported vectors, and is capable of 

dealing with linear and nonlinear multivariate calibration and solves multivariate calibration problems 

in a relatively fast way [21]. It is very important to select a proper kernel function and determine its 

optimal parameters for the construction of LS-SVM models. Radial basis function (RBF) is a simple 

Gaussian function that can simplify the complexity of the computation during the course of training 

LS-SVM models, so that RBF kernel was chosen for LS-SVM modeling in the study. It was found 

having more capability in prediction than other kernels [22]. The formula of RBF can be expressed as: 

[ ] (1)  

where K(x, xi) is the kernel function, xi is the input vector, αi is a Lagrange multiplier, while b is the 

bias term. The optimal parameter values of the regularization parameter (gam(γ)) and the RBF kernel 

function parameter (sig
2
(σ

2
)) were determined according to the smallest root-mean-square error of 

cross-validation (RMSECV) [23]. 

In this study, EWs were selected in order to reduce the input variables and improve the speed of 

model calibration. Successive projection algorithm (SPA) was used to identify EWs from the whole 

spectral range, where a variable group that contains a minimum of redundant information in  

the spectral matrix is chosen to minimize the colinearity of different variables, so that the input 

variables were simplified and the efficiency of modeling could be improved. SPA was performed by  

Matlab 7.10.0 software (The Mathworks, Inc., Natick, MA, USA). EWs selected by SPA were 

employed as the inputs of PLS, BP-ANN, MLR and LS-SVM to develop calibration models, and their 

performances were compared. The correlation coefficient (r) and root mean square error of prediction 
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(RMSEP) were applied to evaluate the performances of the established models. PLS and MLR  

were implemented by Unscrambler X10.1, and LS-SVM and BP-ANN were compiled by the  

Matlab 7.10.0 software. 

3. Results and Discussion 

3.1. Features of Vis-NIR Spectra and HPLC Analysis 

Figure 1 shows the original absorbance spectra and preprocessed spectra of 114 Chinese propolis 

samples. It was noticed that all spectra had similar profiles that were quite even throughout the whole 

wavelength range. The main difference of spectra was the different magnitudes of the spectral 

reflectance as shown in Figure 1, which might be caused by different contents of the internal attributes 

for the samples, including galangin and chrysin. The reference values of chrysin and galangin in 

Chinese propolis samples determined by HPLC are shown in Table 1. HPLC chromatograms of a 

typical propolis samples and standard solution are shown in Figure 2. 

Figure 1. (a) Original spectra of Chinese propolis. (b) Preprocessed spectra by moving 

averages smoothing (MAS). (c) Preprocessed spectra by Savitzky-Golay smoothing (SG). 

(d) Preprocessed spectra by De-trending. 
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Table 1. Chrysin and galangin in Chinese propolis determined by HPLC. 

Data Set Sample No. 
Galangin Chrysin 

Range(mg/g) Mean(mg/g) S.D. Range(mg/g) Mean(mg/g) S.D. 

Calibration 76 4.2–34.8 17.2 7.56 6.9-37.3 20.8 9.53 

Validation 38 4.2–32.6 17.2 7.53 7.5-34.7 20.8 9.59 

S.D.: Standard deviation. 

Figure 2. HPLC chromatograms of (a) standard solution and (b) propolis sample from 

Henan (1. chrysin; 2. galangin) 

 

3.2. PLS Analysis 

Different spectral pretreatment algorithms were executed on the raw Vis-NIR spectral data. The 

pretreated spectra were set as inputs to develop PLS models to determine the optimal pretreatment way. 

Results of the PLS models established using the raw and pretreated spectra are shown in Table 2. The 

best result was obtained based on De-trending process for the chrysin prediction, followed by SG 

process. The prediction result of De-trending model had a good correlation coefficient (r) of 0.9476 

and a small root mean square error of prediction (RMSEP) of 3.0172. On the other hand, the best PLS 

model (r = 0.9394 and RMSEP = 2.5733) was achieved by considering the raw spectra for  

galangin analysis, followed by MAS and SG process. The original/pretreated spectra shown the best 

performances were employed for further treatment. 
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Table 2. Results of PLS models with different data pretreatment methods. 

Quality Pretreatment 
Number of 

Latent Variables 

Calibration Validation Prediction 

r RMSEC r RMSEV r RMSEP 

Galangin None 7 0.9437 2.4835 0.9152 3.0366 0.9394 2.5733 

 MAS 7 0.9427 2.5053 0.9146 3.0440 0.9370 2.6183 

 SG 7 0.9425 2.5092 0.9142 3.0520 0.9360 2.6366 

 Normalize 10 0.9751 1.6662 0.9155 3.0547 0.9054 3.1586 

 SNV 10 0.9721 1.7608 0.9191 2.9810 0.9057 3.1548 

 MSC 9 0.9674 1.8995 0.9175 2.9985 0.9071 3.1286 

 1-Der 6 0.9559 2.2049 0.9190 2.9638 0.9307 2.7945 

 2-Der 2 0.9269 2.8177 0.8408 4.0652 0.8212 4.2476 

 De-trending 9 0.9644 1.9853 0.8936 3.3770 0.9232 2.9015 

Chrysin None 11 0.9877 1.1416 0.9549 2.8303 0.9288 3.6754 

 MAS 11 0.9737 1.5342 0.9235 2.6527 0.9282 3.7202 

 SG 11 0.9789 1.9397 0.9473 3.0715 0.9474 3.0385 

 SNV 5 0.9797 1.9001 0.9393 3.2831 0.9456 3.1314 

 MSC 10 0.9228 3.6547 0.8918 4.2966 0.9111 3.9628 

 1-Der 8 0.9764 2.0466 0.9388 3.3112 0.9398 3.2202 

 2-Der 7 0.9793 1.9198 0.8127 5.5377 0.7643 6.1602 

 De-trending 8 0.9722 2.2222 0.9326 3.4352 0.9476 3.0172 

3.3. EWs Extracted by SPA 

SPA was applied to select EWs based on the spectral data processed by raw spectra for galangin, 

De-trending and SG for chrysin, respectively. These preprocessing methods achieved good prediction 

performance in PLS models for galangin or chrysin prediction. In addition, the original spectral data 

were also applied for a comparison. Maximum number of EWs extracted by SPA was set at 30.  

After the process of leave-one-out cross validation, the extracted EWs based on the original and 

pretreated spectra are shown in Table 3. The EWs were arranged according to the importance. Higher 

ranking indicates the EW is more important for the prediction of chrysin and galangin in Chinese propolis. 

Table 3. Selected effective wavelengths (EWs) by SPA. 

Quality Pretreatment No. Selected EWs/nm 

Galangin raw 8 973, 932, 997, 714, 447, 992, 1000, 646 

 MAS 13 456, 929, 487, 598, 543, 887, 434, 839, 694, 998, 1,000, 407, 409 

 SG 14 931, 456, 486, 600, 542, 886, 698, 995, 434, 839, 994, 997, 998, 412 

Chrysin raw 5 999, 406, 400, 421, 463 

 De-trending 9 681, 572, 424, 962, 929, 970, 545, 938, 400 

 

 

SG 

 
19 

574, 636, 772, 527, 720,849, 443, 886, 430, 460,976, 543, 968, 494, 

986, 997, 998, 424 ,409 

3.4. Model Calibration 

In order to establish quantitative models for the determination of chrysin and galangin in Chinese 

propolis, EWs selected by SPA were employed as inputs of PLS, LS-SVM, MLR and BP-ANN 
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methods, resulting in establishing SPA-PLS, SPA-LS-SVM, SPA-MLR, SPA-BP-ANN models, 

respectively (Table 4). In the establishment of SPA-LS-SVM model, the values of two parameters  

of gam(γ) and sig
2
(σ

2
) were determined by a two-step grid search method with leave-one-out  

cross-validation. The search region of γ, σ
2
 was set as 10

−3
–10

8
. BP-ANN model was constructed with 

three layers, and the number of nodes in the hidden layer was set as nine. The least learning rate was 

set as 0.6, and the goal error was set to 1.0 × 10
−5

. The networks were trained by gradient descend 

method and the minimum gradient was set as 1.0 × 10
−10

. The biggest epochs was set as 1,000.  

Table 4. Prediction results of considering different pretreatments and calibration methods 

based on spectroscopy technique for galangin and chrysin analysis. 

Quality Model Pretreatment LV/EW/(γ, σ
2
) 

Prediction 

Rp RMSEP 

Galangin SPA-PLS Raw 5/8/- 0.8823 3.6368 

 MAS 10/13/- 0.9389 2.6105 

 SG 10/14/- 0.9387 2.5683 

SPA-LS-SVM Raw -/8/(4.62 × 103,0.0042) 0.4000 6.9668 

 MAS -/13/(0.4796,0.0308) 0.4708 7.1444 

 SG -/14/(0.0858, 4.62 × 103) 0.7016 7.3476 

SPA-MLR Raw -/8/- 0.8736 3.8170 

 MAS -/13/- 0.9294 2.7915 

 SG -/14/- 0.9505 2.3154 

SPA-BP-ANN Raw -/8/- 0.9269 3.0468 

 MAS -/13/- 0.9739 1.7263 

 SG -/14/- 0.9823 1.5239 

Chrysin 

 

SPA-PLS Raw 4/5/- 0.6686 7.0933 

De-trending 7/9/- 0.8951 4.4475 

S.G 11/19/- 0.8743 5.1252 

SPA-LS-SVM Raw -/5/(2.66×103,0.0074) 0.2867 9.1218 

De-trending -/9/(0.0022,5.8750) 0.8450 9.3474 

S.G -/19/(0.0667,1.59×103) 0.6769 9.3138 

SPA-MLR 

 

Raw -/5/- 0.6774 6.9974 

De-trending -/9/- 0.8919 4.5041 

S.G -/19/- 0.8900 4.7457 

SPA-BP-ANN Raw -/5/- 0.9355 3.3515 

De-trending -/9/- 0.9597 2.8953 

S.G -/19/- 0.9668 2.4841 

As shown in Table 4, the optimal prediction performance for the galangin determination was 

achieved by SPA-BP-ANN model (processed by SG) with r of 0.9823 and RMSEP of 1.5239, and 

SPA-BP-ANN model (processed by SG) was found to be the best one for the chrysin determination, in 

which r was 0.9668 and RMSEP was 2.4841. The scatter plots of SPA-BP-ANN models for samples in 

the prediction set in both galangin and chrysin analysis are shown in Figure 3.  
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Figure 3. Prediction results of (a) galangin and (b) chrysin by SPA-BP-ANN models (SG) 

for samples in the prediction set. 

 

 

As the SPA-BP-ANN model outperformed the SPA-PLS, SPA-MLR and SPA-LS-SVM models, it 

might indicate that there was a nonlinear relationship between the spectral data and the dependent 

variable (galangin or chrysin). Therefore, BP-ANN models could perform better prediction by taking 

useful nonlinear information in the selected EWs, while PLS and MLR models only have the ability to 

quantify the information in the spectral data to the dependent variable in linear ways. 

4. Conclusions 

In this study, the use of Vis-NIR spectroscopy combined with the reference HPLC method to 

determine chrysin and galangin contents in Chinese propolis was evaluated. Different pretreatment and 

modeling methods were compared. In specific, De-trending were determined as the optimal 

preprocessing method for chrysin, and raw data was the best for galangin. EWs extracted by SPA were 

proved to be informative inputs for developing models. The best prediction performance with r of 

0.9823 and RMSEP of 1.5239 was achieved by the SPA-BP-ANN model for galangin, while  
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SPA-BP-ANN model also had a better performance for chrysin with r of 0.9668 and RMSEP of 2.4841. 

The results indicate the feasibility of using Vis-NIR spectroscopy with a BP-ANN model chemometrics 

method based on EWs identified by SPA as inputs to measure chrysin and galangin in Chinese 

propolis rapidly and quantitatively. In the future, more samples and varieties of propolis should be 

considered to establish a more stable model for industrial application. In general, a high precision 

detection of chrysin and galangin was attained by the HPLC method, however, the method was 

complex and time-consuming. Rapid, nondestructive and efficient determination of chrysin and 

galangin was achieved by Vis-NIR spectroscopy, although the precision and adaptability still need to 

be further improved. 
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