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Abstract: After cancer and cardio-vascular disease, stroke is the third greatest cause of 

death worldwide. Given the limitations of the current imaging technologies used for stroke 

diagnosis, the need for portable non-invasive and less expensive diagnostic tools is crucial. 

Previous studies have suggested that electrical bioimpedance (EBI) measurements from the 

head might contain useful clinical information related to changes produced in the cerebral 

tissue after the onset of stroke. In this study, we recorded 720 EBI Spectroscopy (EBIS) 

measurements from two different head regions of 18 hemispheres of nine subjects. Three 

of these subjects had suffered a unilateral haemorrhagic stroke. A number of features based 

on structural and intrinsic frequency-dependent properties of the cerebral tissue were 

extracted. These features were then fed into a classification tree. The results show that a 

full classification of damaged and undamaged cerebral tissue was achieved after three 

hierarchical classification steps. Lastly, the performance of the classification tree was 

assessed using Leave-One-Out Cross Validation (LOO-CV). Despite the fact that the 

results of this study are limited to a small database, and the observations obtained must be 

verified further with a larger cohort of patients, these findings confirm that EBI 

measurements contain useful information for  assessing on the health of brain tissue after 

stroke and supports the hypothesis that classification features based on Cole parameters, 
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spectral information and the geometry of EBIS measurements are useful to differentiate 

between healthy and stroke damaged brain tissue. 
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1. Introduction 

Stroke is not only the third greatest cause of death worldwide [1] but also the cause of severe 

suffering to the surviving individuals with neurological deficits and a significant economic burden to 

society. The cost burden associated with post-stroke deficits has been estimated to be 65.5 billion USD 

for 2008 for the United States alone [2,3]. Stroke patients usually require the prompt intervention of 

clinical staff to prevent permanent lesions from developing. A time window of 3–4.5 h is usually 

required for certain treatments after the onset of stroke to maximise the treatment benefits and avoid 

permanent neurological impairment [4,5]. Every effort should be made to shorten the delay of the 

onset of therapy following stroke. Even a few minutes can make a difference. Adequate treatment 

within 90 min or less increases the probability of a favourable outcome for the patient [6]. However, 

many diagnostic tools, such as magnetic resonance imaging, X-ray or computer tomography are not 

accessible until patients reach a hospital, thus delaying the initiation of proper neural rescue therapies. 

Moreover, none of these medical imaging devices can be used for continuous bedside monitoring of 

the brain. Therefore, to enable early detection of stroke and maximise the treatment outcome for the 

patients, it is crucial to have access to new monitoring tools that allow bedside monitoring or that can 

be used in ambulances. 

Electrical bioimpedance (EBI) is a well-known, portable, affordable and non-invasive technology. 

Its use in various clinical activities and in physiological research has long been widespread [7–9]. 

Early applications of EBI used single-frequency measurements. Examples of these applications include 

impedance cardiography in 1940 [10] and lung function monitoring [11] in the 1970s. More recently, 

applications based on EBI Spectroscopy (EBIS) analysis have entered fields such as skin cancer 

detection [12] and nutritional status assessment in haemodialysis patients [13].  

Since the 1950s and 1960s, EBI studies of the brain have been used to study different pathologies, 

including spreading depression, seizure activity, asphyxia and the effects of cardiac arrest [14].  

Since this time, EBI research studies of the brain have been widespread, especially during the past  

20 years [15,16]. Since Holder foresaw the development of electrical bioimpedance-based neurological 

applications in 1988 [16], several bioimpedance research and clinical studies have been performed in 

the areas of brain ischemia [17–19], spreading depression [20,21], epilepsy [21–24], brain function 

monitoring [25], perinatal asphyxia [26–28], cerebral blood flow monitoring [29–31] and stroke [32–34].  

Stroke can be categorised into two main groups, namely, ischemia and haemorrhagic, with 87% of 

cases being ischemic and the remainder haemorrhagic [35]. Ischemic stroke is caused by arterial 

embolism or thrombosis, with a lack of blood supply to the brain followed by oedema, whereas 

haemorrhage is caused by accumulation of blood due to rupture of a blood vessel forming a 

haematoma. Different authors have drawn attention to the changes imposed on the electrical properties 

of the brain after an incident of cerebrovascular damage and have shown that these changes are 
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detectable by means of electrical bioimpedance [16,32,36,37]. Both ischemia and haemorrhage will 

produce a change in the composition and structure of the cerebral tissue, and the electrical properties of 

the brain will change as a result [27,28,32,36–40].  

It has been demonstrated that the electrical properties of the cerebral tissue change after an 

occurrence of stroke and that these changes are detectable from EBIS measurements performed on 

both hemispheres [37]. It has been observed that the Cole parameters [41] obtained from these EBIS 

measurements contain information that could be used to detect brain damage. However, this 

information was not sufficient to fully distinguish healthy cerebral tissue from stroke-damaged tissue. 

Earlier studies have demonstrated the use of classification methods such as support vector machine 

(SVM) or multimodality classifier for detection of deteriorations in tissue or tissue characterization [42,43]. 

In this study, features extracted from EBIS measurements are fed into a relatively simple classification 

tree with the goal of separating healthy brain hemispheres from brain hemispheres with stroke damage. 

The authors believe the high explanatory power of classification tress make them an ideal choice for 

this study [44]. 

2. Materials and Methods  

2.1. Tetrapolar EBI Measurements and Spectrometer 

EBIS measurements were recorded using a SFB7 Spectrometer manufactured by Impedimed 

(Pinkenba, Queensland, Australia). Recordings were obtained in the frequency range of  

3.096–1,000 kHz using the four electrode technique [45] and a sinusoidal current with the RMS value of 

200 µA sweeping the frequency range over 256 logarithmically spaced frequency points. This will 

provide 256 complex EBI measurements from the frequency range. Two sets of EBIS measurements each 

containing 20 consecutive measurements were recorded from each hemisphere of all subjects. The first 

set includes measurements with the electrodes located close to the centre line of the head and the second 

set includes measurements with the electrodes located more laterally. 

The electrodes were placed according to the 10–20 electrode placement system (Figure 1). The 

central measurements were labelled as MCL or MCR to indicate the left or right hemisphere. The lateral 

measurements were labelled as MLL or MLR. All the recordings were performed using standard EEG 

silver electrodes dipped in Elefix electro-conductive paste. The details of electrode positioning are 

shown in Table 1. Prior to the application of the electrodes, the skin surface was prepared by cleaning 

the skin with alcohol and scrubbing gently with mild abrasive conductive cream. 

Figure 1. 10–20 electrode placements system for performing the Cerebral EBIS measurements. 
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Table 1. Electrode positions according to 10–20 electrode positioning system. 

 MLL MCL MCR MLR 

I
+
 Fp1 Fp1 Fp2 Fp2 

V
+
 F7 F3 F4 F8 

V
−
 T5 P3 P4 T6 

I
−
 O1 O1 O2 O2 

2.2. Measurements Subjects 

This study included a total of six volunteers and three patients who had suffered a unilateral stroke, 

i.e., only one brain hemisphere was damaged by the stroke, The healthy volunteers were all males  

aged 29–54. The ages of the patients ranged from 40–55. Two of the patients were female, one male.  

The stroke was present in the left hemisphere in two patients and in the right hemisphere in the other 

patient. The patients were in the initial phase of rehabilitation, 6–8 weeks after the stroke episode. 

Details of the stroke location and relevant lesion area are listed in Table 2. 

Table 2. Stroke location and size. 

Patient Number Location Size 

i Putamen 6 × 3 cm 

ii Temporal Lobe 8.5 × 5.2 cm 

iii Tempoparietal Junction 4 × 4 cm 

A total of 720 EBIS measurements were recorded from all nine subjects. From these measurements, 

600 were recordings from 15 hemispheres with no stroke i.e., undamaged and the remaining 120 were 

EBIS recordings from the three hemispheres with stroke. The 600 undamaged recordings consist of 

480 EBIS recordings from twelve hemispheres of six healthy subjects and 120 measurements were 

from hemispheres of the patients with no stroke i.e., undamaged hemispheres. This study was conducted 

with the ethical approval of the regional ethical review board of Gothenburg. 

2.3. Cole Characterisation 

Experimentally obtained EBI measurements can be fitted with sufficient accuracy by the Cole 

Equation (1), introduced by Cole in 1940 [41]:  

             
     

       
   

 ≈ ZMeas(ω) (1) 

The Cole function consists of four parameters: R0, the DC resistance; R∞, the resistance at infinite 

frequency; α; and fc, the characteristic frequency [41,46]. In this study, all 720 EBIS measurements 

were fitted to the Cole model, and the Cole parameters were extracted for each measurement. 

However, EBI measurements are known to be sensitive to stray capacitances in parallel with the 

measurement load, shifting the intrinsic dispersion of the tissue under study towards the dispersion of 

the capacitors in parallel and producing a deviation in the recorded data [47,48].  

Seoane et al. have shown that the use of the real part of the admittance spectrum, i.e., the conductance, 

to fit the Cole function using non-linear least squares (NLLS) fitting [49] in MATLAB
®
 allows the Cole 
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parameters to be obtained free from capacitive leakage [50]. Therefore, as shown in [50], the value of the 

Cole parameters was estimated from the EBIS measurements based on NLLS fitting to the expression for 

the conductance Cole Equation (2) where Y0 and Y∞ are inverse of R0 and R∞, respectively: 
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2.4. Feature Set  

Three features based on the Cole parameters, on spectral information and on the geometry of the 

EBIS measurements were defined for classification purposes. Each of these features was designed to be 

obtained from a different frequency region of the spectrum, i.e., low, medium and high frequencies  

(see Table 3). To obtain the feature sets, the 720 measurements were first separated into two groups, 

namely, central and lateral, each consisting of 360 measurements.  

Table 3. Feature set. 

Feature 1 Feature 2 Feature 3 

     

     
 

     

     
 

   
     

   

   
        

 

The first two features were derived from Cole parameters R0 and R∞ as representatives of the high 

and low frequencies, respectively. These features were expressed as the ratio of central and lateral 

measurements inspired by the symmetry between brain hemispheres expected in a healthy subject. 

Earlier results reported suggest that these features will have a discriminative power around absolute 

value one [37]. The third feature was defined around the central frequency of the resistance and reactance 

spectra as the ratio of resistance to reactance at the characteristic frequency for the central and lateral 

measurements. This feature can be viewed as the phase of the impedance. In [51], it was proposed that 

this ratio is related to the ability of the volume fraction to track changes imposed on the tissue impedance. 

Therefore, this ratio is believed to contain useful information for monitoring a suspension of cells after 

changes are imposed on it due to the damaged mechanism, i.e., ischemic or haemorrhagic damage. 

Observing the Equation (3) for the electrical impedance of biological tissue as a shape factor usually 

related to length and area denoted by k and multiplied by its specific impedance z*(), known also as 

impedivity, Features 1 and 2 are primarily related to the shape factor, whereas Feature 3 targets the 

intrinsic frequency dependence: 

             
  

    

 

 

 (3) 

2.5. Classification Trees 

Reliable automatic decision making based on a set of simple questions is highly beneficial and greatly 

needed in medicine. In situations requiring a decision based on a large amount of input data, hierarchical 
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decision-making algorithms can reduce the complexity of the problem and produce an accurate decision. 

Classification trees are hierarchical decision-making solutions that are well suited for the classification of 

categorical dependent variables. These solution methods offer a high degree of flexibility and exploratory 

power. Among other advantages of classification trees compared with other classification methods is 

their inherently non-parametric nature, which means they can be used regardless of the data distribution, 

whether normally distributed or skewed. In addition, classification trees have an inherent straightforward 

logic that is easily interpretable by a non-statistician or clinician. [52]. In a classification tree based on 

the attributes of a set of instances whose classes are already known, a mapping is performed from  

the attribute values to the classes, and the classification tree is essentially the formalisation of this  

mapping [44]. Each attribute/feature with the potential for classifying a data set will occupy a node of the 

tree, partitioning the data set into two subgroups, each placed on a leaf of the tree. This process continues 

until the tree is fully grown. Additionally, the convenient graphical display of classification trees is of 

substantial value in studying the performance of each individual attribute/feature more effectively.  

In this study, three thresholds based on the features and symmetries were introduced hierarchically 

and placed at three nodes of a tree. Binary answers to the thresholds at each node were then used to 

separate the data into two new sub-classes, each placed on the leaves of the tree. The thresholds applied 

to Features 1 and 2 are essentially related to the geometry and shape factor of the EBI recordings 

derived from Cole parameters R0 and R , with an absolute value of approximately 1 according to the 

results stated in [37]. The threshold applied to Feature 3 was obtained experimentally.  

2.6. Leave-One-Out Cross-Tree Validation 

If the number of subjects is small, the measurements cannot be separated into two well-distributed 

groups of training and test data, as this split may produce an undesirable outcome and misleading 

results. In any case, other alternatives remain for evaluating the performance of the method in scenarios 

such as the current scenario.  

At a higher computational cost, the Leave-One-Out (LOO) cross-validation technique [53] may be 

applied to provide useful values. In the application of the LOO method to an experiment i.e., stroke 

detection with N examples i.e., nine subjects in the case of this study, N iterations are performed with  

N−1 examples used for training and 1 for testing. In each iteration i, the error Ei and the final classification 

error are calculated using Equation (4). Note that Ei is calculated as the percentage of misclassified 

measurements out of all measurements performed on one subject and a total of 40 measurements per 

subject (20 measurements per hemisphere) are provided, from each measurement three features  

are extracted: 

  
 

 
   

 

   
 (4) 

3. Results 

3.1. Cole Parameters 

Cole parameters were extracted for all central and lateral measurements. The mean value and 

standard deviation of the Cole parameters for central and lateral measurements of both damaged and 
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undamaged hemispheres are shown separately in Figure 2. Figure 2 shows that the distribution of the 

Cole parameter values exhibit a high variance. One reason for this high variance is the high variance 

among patients in the magnitude of the impedance recordings. It is also evident that comparing the 

Cole parameters individually for central and lateral measurements is not an effective procedure for 

distinguishing between healthy and damaged cerebral tissue. 

Figure 2. Mean and standard deviation of Cole parameters from all the EBIS measurements. 

 

3.2. Feature Maps 

The three features introduced in this study are plotted in a pairwise manner in two-dimensional 

feature maps, Figure 3. Figure 3 shows that feature Maps (a) and (b) can distinguish to a certain extent 

between healthy and damaged cerebral tissue but that a full classification is not possible based on 

either of these feature maps. However, a hierarchical decision-making classifier based on these 

features can fully separate stroke cases from healthy cases. 

Figure 3. Feature maps for all the possible two-by-two combinations of the three features, 

plotted as two-dimensional maps. 
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3.3. Classification Tree  

The three features introduced earlier are situated at three different nodes of a classification tree with 

the following three thresholds: 0.9 for Feature 1, 1.10 for Feature 2 and 0.4 for Feature 3. The first and 

second thresholds are related to Cole parameters R0 and R∞ respectively as explained earlier they were 

expected to have values around 1 however the exact values were determined after the observation of 

feature maps in Figure 3. The third threshold was entirely selected by observation of feature maps.  

The results are shown on the leaves of the tree. The application of these thresholds yields a perfect 

classification of healthy and damaged cerebral tissue (see Figure 4).  

Figure 4. Classification tree. At each node, a threshold based on the features is applied, 

and the results are represented on the leaves of the tree. 

 

At the first node, the first threshold is set to 1.01 for Feature 2 with the expectation of classifying a 

cluster of healthy subjects. With the application of this threshold, 79% of the healthy cases are correctly 

classified, leaving 21% of the healthy cases and 100% of the damage cases for further evaluation. 

Applying the second threshold with the value 0.4 for Feature 3, 1/3 of the damage cases are successfully 

separated, leaving 28.6% of all the measurements (63 healthy cases and 40 damage cases) for further 

evaluation. At the last node, the third and final threshold is then applied to Feature 1, with a value of 0.9. 

The result of this evaluation is that all 63 healthy cases are classified correctly in node 6, and all  

40 remaining damaged cases are also correctly classified in node 5.  
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3.4. Classifier Performance 

After a total of nine iterations implementing the LOO-CV test, not a single measurement was 

misclassified. In each iteration, all the data from the test set were separated perfectly into the healthy 

and damaged categories based on a classification tree customised with the values from the other  

eight data sets. 

4. Discussion 

Several previous studies have demonstrated the ability of electrical bioimpedance measurements at 

a single frequency of 50 kHz to detect haematoma and oedema as the principal indicators of stroke [33,34]. 

Although this approach is highly informative, EBIS measurements, in contrast to single-frequency  

EBI recordings, cover a wide range of frequencies from low to high, facilitating a more comprehensive 

study of all components within the tissue. Several previous studies have shown that EBIS measurements 

contain useful information on tissue characteristics and structure, thus providing features suitable for 

an automated classification of healthy/damaged tissue and, in particular, cerebral tissue [37,46,54].  

It is known that impedance data are closely related to the geometry of the effective conductive volume 

and dielectric properties of the conductive tissue. For this reason, applying known geometrical 

information embedded in the EBIS recordings may produce more successful classification results [37]. 

In this study, we combined spectral information, i.e., Cole parameters, with the measurement 

geometry to produce features that were well suited for classification. These features were then fed to  

a classification tree, and a perfect classification of healthy and damaged tissue was achieved after  

three steps. Due to the small size of the data set, which includes only three cases and six controls,  

the possibility that the results are due to chance cannot be excluded with a high degree of confidence. 

Moreover, the performance resulting from automatising the tree could not be evaluated. However, the 

results strengthen the hypothesis that cerebral EBIS can be useful in stroke detection and diagnosis. 

Given a sufficient number of subjects, the data set could be divided into two groups. The tree could be 

fully grown using the first data set. The performance of the classifier could then be tested with the 

second group. Lastly, pruning could be used to improve the accuracy of the classification tree [44]. 

Note, however, that the purpose of this manuscript is to claim that transencephalic EBIS measurements 

contain information on brain tissue state. This information is potentially useful for building a non-invasive 

monitoring device for the early detection of stroke damage.  

5. Conclusions/Outlook  

Three features were identified based on Cole parameters and geometry-related EBIS information. 

These were then fed into a simple classification tree that successfully separated healthy from  

stroke-damaged brain hemispheres. Although the available data were insufficient to perform a 

substantial evaluation of the performance of the classification approach or to apply other non-parametric 

automatic classification approaches, the results indicate that bioimpedance spectroscopy of head 

measurements provides useful information that might enable the development of a monitoring device 

to screen brain damage.  
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A larger data set including several patients should be obtained to verify the findings of this  

study and to allow the investigations to be extended to other classification modalities. Currently, 

transcephalic measurements of electrical bioimpedance are being performed on stroke patients  

at the Neurology ward at Karolinska Hospital. Accordingly, it is expected that these results will be 

verified in the near future with a larger cohort of patients.  
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