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Abstract: Elliptic curve cryptography (ECC) is one of the most promising public-key
techniques in terms of short key size and various crypto protocols. For this reason,
many studies on the implementation of ECC on resource-constrained devices within a
practical execution time have been conducted. To this end, we must focus on scalar
multiplication, which is the most expensive operation in ECC. A number of studies have
proposed pre-computation and advanced scalar multiplication using a non-adjacent form
(NAF) representation, and more sophisticated approaches have employed a width-w NAF
representation and a modified pre-computation table. In this paper, we propose a new
pre-computation method in which zero occurrences are much more frequent than in previous
methods. This method can be applied to ordinary group scalar multiplication, but it requires
large pre-computation table, so we combined the previous method with ours for practical
purposes. This novel structure establishes a new feature that adjusts speed performance
and table size finely, so we can customize the pre-computation table for our own purposes.
Finally, we can establish a customized look-up table for embedded microprocessors.
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1. Introduction

Elliptic curve cryptography (ECC) is a public-key cryptography based on the algebraic structure
of elliptic curves over finite fields [1–3]. The use of elliptic curves in cryptography was suggested
independently by Koblitz [4] and Miller [5] in 1985. The short key size and various crypto protocols are
available in ECC, which enable secure and robust communications. However, scalar multiplication,
which multiplies a secret scalar, k, with a point, P , on an elliptic curve, E(Fq), resulting in the
point, Q ∈ E(Fq), is too expensive to compute on embedded microprocessors. Various methods have
been presented to boost the scalar multiplication ability. In particular, for a fixed point, P , we can
take advantage of pre-computation tables for scalar multiplication, which were proposed in 1992 [6].
Using this method, the pre-computed points are immediately added to the results without explicit
computation. In 1994, a further advanced method was proposed by Lim and Lee [7]. This presented
a novel look-up table construction for flexible exponentiation. In 2005, Tsaur and Chou presented a
non-adjacent form (NAF) representation based on a fixed-base comb method using direct doubling [8,9].
This allows the table to be efficiently computed in the case of multiple doubling. In 2012, Mohamed et
al. presented a more sophisticated method using a width-w NAF representation and a different form of
pre-computation table [10].

In this paper, we propose an efficient method for fixed-point scalar multiplication, enhancing the
method of Mohamed et al. by constructing a novel look-up table structure. This structure generates
consecutive zero-sequences more frequently, so we can compute the scalar multiplication with a smaller
number of group addition operations. This characteristic is derived from observation of the w-NAF
behavior and test secret scalars, k, given by the Blum-Blum-Shub random number generator, which is
guaranteed by the National Institute of Standards and Technology (NIST) random number suite [11].
However, straight-forward implementation of our method does not show advantage, due to a large pre-
computation table, so we mixed the previous method with ours in various combinations to meet the
speed and size requirements. This novel structure has a new feature that can adjust size and speed more
accurately, and this is unavailable in the previous method. With this hybrid method, we can construct
various pre-computation tables for various purposes, such as the finely-tuned speed and size trade-off
model. This method can be implemented on modern microprocessors, such as the ATmega, MSP and
ARM series, which provide ROM more than at least 32 Kbytes. Furthermore, even an unknown point
is efficiently computable by exploiting the proposed method. The detailed explanations of the unknown
point are available in Appendix B. The following are the main contributions of this paper.

Our Contributions

• We found zero occurrence characteristic of NAFw representation. This feature is useful to
construct a pre-computation table with a high zero occurrence ratio.

• We presented a finely-tuned hybrid model, which can adjust size and speed performance more
accurately. This can establish a customized look-up table for embedded microprocessors, by
adjusting the program size or computation costs.
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• We applied this method to an unknown point and show high performance enhancement by 12.7%
compared to traditional NAFw representation.

The paper is organized as follows. In Section 2, we give an introduction to existing scalar
multiplication methods, including those mentioned above. In Section 3, we introduce our proposed
method, and in Section 4 we evaluate our proposal. Finally, we conclude our paper in Section 5.

2. Related Work

In this section, we explore scalar multiplication, which is one of the most expensive operations of
elliptic curve cryptography. As shown in Algorithm 1, the inputs of the double-and-add algorithm are
a random number, k, and a point, P , on an elliptic curve, E, defined over field, Fq, the output of this
algorithm is another point, Q, on the same curve. Assuming the scalar, k, is 15, the binary representation
of k is denoted by 0b1111; the hamming weights of k are four. Algorithm 1 requires three point doublings
and four point additions, since the complexity of elliptic curve operations highly depends on the number
of set or hamming weights, and the addition process can only be executed when the current scanned bit
is non-zero. In order to further reduce hamming weights of the scalar, a number of encoding methods
are proposed in succession, such as the work in our paper. Generally speaking, our method reduces the
number of hamming weight by taking advantage of a pre-computing look-up table, especially for the
fixed-base point case. In the following subsection, we introduce fixed-base methods in detail.

Algorithm 1. Double-and-add method using left-to-right binary
method.
Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq).

Output: kP .
1. Q←∞.

2. For i from t− 1 down to 0 do
2.1 Q← 2Q.

2.2 If ki = 1, then Q← Q+ P.

3. Return(Q)

2.1. (Fixed-Base) Scalar Multiplication Method

To describe scalar multiplication, we assume that #E(Fq) = nh, where n is prime and h is small
(so n ≈ q), P and Q have order, n, and multipliers, such as k, are randomly selected integers from
the interval, [1, n − 1]. The binary representation of k is denoted by (kt−1, . . . , k2, k1, k0)2, where
t ≈ m = dlog2qe. If the point, P , is fixed and storage is available, point multiplication is accelerated by
the exploiting pre-computation table. Our work is centered here to reduce hamming weight in the case
of fixed-base.
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2.1.1. Non-Adjacent Form

If P is given by P = (x, y) ∈ E(Fq),−P is represented as−P = (x,−y). Therefore, the subtraction
of points on an elliptic curve can be executed using addition. This motivates the use of a signed digit
representation, k =

∑l=1
i=0 ki2

i, where ki ∈ {0,±1}, and a particularly useful signed digit representation
is the NAF [2].

2.1.2. Window Method

The window method efficiently reduces the running time of scalar multiplication, using extra memory
for pre-computation by window size. Thus, scalar multiplication time can be decreased by a window
method that processes w digits of k at a time.

2.1.3. Zero Occurrence Evaluation

Tables 1 and 2 show the relation of neighbor bit settings under w-NAF. We can find the w-NAF
characteristic that, if a certain bit is set or reset, after the window size, the value of that bit has a high
probability of being similar to the previous setting. For this reason, grouping the index by window size
can obtain a setting with the same values. Finally, our structure efficiently separates zero and non-zero
values by gathering the same values.

To improve its performance, the window method can be combined with NAF in a technique known as
width-w NAF. NAFw(k) can be computed using Algorithm 2, where k mods 2w denotes the integer, u,
satisfying u ≡ k(mod 2w) and −2w−1 ≤ u < 2w−1. The digits of NAFw(k) are obtained by repeatedly
dividing k by two, giving remainders, r, in [−2w−1, 2w−1 − 1]. If k is odd and the remainder, r = k

mod 2w, is chosen, then (k − r)/2 will be divisible by 2w−1, ensuring that the next w − 1 digits are
zero. Using NAFw(k), the integer, k, is computed by window width, (w), from the left- to right-most
bit, following Algorithm 3.

Algorithm 2. Computing the width-w NAF of a positive integer.
Input: Window width w, positive integer k.
Output: NAFw(k).
1. i← 0.

2. While k ≥ 1 do
2.1 If k is odd, then: ki ← k mods 2w, k ← k − ki

2.2 Else: ki ← 0.

2.3 k ← k/2, i← i+ 1

3. Return(ki−1, ki−2, . . . , k1, k0)
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Table 1. Relation of neighbor bit set in w-non-adjacent form (NAF) representation; we tested
all cases for evaluation, so occurrence means number of cases.

Form Set Being set Occurrence Prob (%)

2NAF
1st

3rd 16 67
4th 8 33

2nd
3rd 0 0
4th 8 100

3NAF

1st
4th 128 36
5th 128 36
6th 96 28

2nd
4th 0 0
5th 64 50
6th 64 50

3rd
4th 0 0
5th 0 0
6th 32 100

4NAF

1st

5th 262,144 53
6th 131,072 27
7th 65,536 13
8th 32,768 7

2nd

5th 0 0
6th 131,072 57
7th 65,536 29
8th 32,768 14

3rd

5th 0 0
6th 0 0
7th 65,536 67
8th 32,768 33

4th

5th 0 0
6th 0 0
7th 0 0
8th 32,768 100
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Table 2. Relation of neighbor bit reset in w-NAF representation; we tested all cases for
evaluation, so occurrence means number of cases.

Form Reset Being reset Occurrence Prob (%)

2NAF
1st

3rd 24 55
4th 20 45

2nd
3rd 24 40
4th 36 60

3NAF

1st
4th 448 35
5th 416 33
6th 400 32

2nd
4th 576 32
5th 608 34
6th 624 34

3rd
4th 704 34
5th 672 32
6th 720 34

4NAF

1st

5th 491,520 30
6th 376,832 22
7th 385,024 23
8th 421,888 25

2nd

5th 491,520 20
6th 638,976 26
7th 647,168 26
8th 684,032 28

3rd

5th 622,592 22
6th 638,976 22
7th 778,240 27
8th 815,104 29

4th

5th 688,128 23
6th 704,512 23
7th 778,240 25
8th 880,640 29
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Algorithm 3. Window NAF method for point multiplication.
Input: Window width w, positive integer k, P ∈ E(Fq).

Output: kP .
1. Use Algorithm 2 to compute w-NAF(k) =

∑l−1
i=0 ki2

i,

2. Compute Pi = iP for i ∈ {1, 3, 5, . . . , 2w−1 − 1}.
3. Q←∞.

4. For i from l − 1 down to 0 do
4.1 Q← 2Q.

4.2 If ki 6= 0, then
4.2.1 If ki > 0 then Q← Q+ Pki .
4.2.2 Else Q← Q− Pki .
5. Return(Q).

2.1.4. Lim and Lee’s Method

Let R be an n-bit exponent, for which we want to compute gR and divide the exponent, R, into h

blocks, Ri, for 0 ≤ i ≤ h − 1, of size a = dn
h
e. We can subdivide each Ri into v smaller blocks, Ri,j ,

of size, b = da
v
e, for 0 ≤ j ≤ v − 1, as follows: Ri = Ri,v−1, . . . , Ri,1, Ri,0 =

∑v−1
j=0 Ri,j2

jb. Let g0 = g

and define gi as gi = g2
a

i−1 for 0 < i < h. Then, we can express gR as:

gR =
h−1∏
i=0

gRi
i =

v−1∏
j=0

h−1∏
i=0

(g2
jb

i )Ri,j (1)

Let Ri = ei,a−1, . . . , ei,1, ei,0 be the binary representation of Ri(0 ≤ i < h). Then, Ri,j(0 ≤ j < v)

is represented in binary as Ri,j = ei,jb+b−1, . . . , ei,jb+k, . . . ei,jb+1, ei,jb. Therefore, Expression (2) can be
rewritten as follows:

gR =
b−1∏
k=0

(
v−1∏
j=0

h−1∏
i=0

g
2j

b
ei,jb+k

i

)2k

(2)

The following values are pre-computed and stored for all 1 ≤ i < 2h and 0 ≤ j < v. The index, i, is
equal to the decimal value of eh−1, . . . , e1, e0.:

G[0][i] = g
eh−1

h−1 , g
eh−2

h−2 , . . . , g
e1
1 , ge00 , G[j][i] = (G[j − 1][i])2

b

= (G[0][i])2
jb (3)

Using the pre-computed values of Equation (3), the expression can be rewritten as Equation (4), where
Ij,k = eh−1,bj+k, . . . , e1,bj+k, e0,bj+k(0 ≤ j < b). This corresponds to the k-th bit column of the j-th
block column. The computation of gR using Equation (4) is described in Algorithm 4.

gR =
b−1∏
k=0

(
v−1∏
j=0

G[j][Ij,k]

)2k

(4)
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Algorithm 4. Lim and Lee’s method for exponentiation.
Input: Exponent R, g(Fixed element of Zn)
Output: gR.
1. u =

∏
ki=h g

mib
i

2. v = u

3. For w = h− 1 to 1 by −1
3.1 u = u×

∏
ki = wgmib

i

3.2 v = v × u

4. Return(v).

2.1.5. Tsaur and Chou’s Method

Let k be an l-bit scalar represented in NAF, and we describe the table in two-dimensional form.
Divide k into h× v blocks from top-to-bottom and, then, from right-to-left, where h = d l

a
e. k can then

be rewritten as Equation (5).

k = ca−1, ca−2, . . . , c1, c0 =
a−1∑
l=0

cl2
lh. (5)

From right-to-left, the h× a blocks are then divided into h× v blocks, each of size, b = da
v
e.

Let P0 = P and Pj = 2hbPj−1 = 2jhbP for 0 < j < v. Therefore, we can rewrite kP as Equation (6),
where cjb+t = eh−1,jb+t, . . . e1,jb+t, e0,jb+t is the NAF representation.

kP = ca−1, ca−2, . . . , c1, c0P

=
a−1∑
l=0

cl2
lhP =

b−1∑
t=0

2th

(
v−1∑
j=0

cjb+t2
jhbP

)
.

(6)

Suppose that the following values described in expression (7) are pre-computed and stored for

all 1 ≤ s ≤
∑dh

2
e

i=1 2
h−2i+1 and 0 ≤ j ≤ v − 1, where Ij,t is the decimal representation of

eh−1,jb+t, . . . , e1,jb+t, e0,jb+t.

G[0][s] = eh−12
h−1P + eh−22

h−2P + . . .+ e0P,G[j][s] = 2hb(G[j − 1][s]) = 2jhbG[0][s] (7)

Using expression (7), kP can be rewritten as in Equation (8).

kP =
b−1∑
t=0

2th

(
v−1∑
j=0

G[j][Ij,t]

)
(8)
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Algorithm 5. Tsaur and Chou’s method for scalar multiplication.
Input: Positive integers k, P ∈ E(Fq).

Output: Q = kP .
1. R =∞
2. For k = b− 1 to 0 by -1 do
2.1 If h = 1, then
2.1.1 R = 2R.

2.2 Else
2.2.1 Compute R = 2hR using Algorithm 6.
2.3 For j = v − 1 to 0 by −1 do
2.3.1 If (eh−1,bj+k, . . . , e0,bj+k)NAF > 0 then
2.3.1.1 R = R +G[j][Ij,k]

2.3.2 Else if (eh−1,bj+k, . . . , e0,bj+k)NAF < 0 then
2.3.2.1 I ′j,k = −(eh−1,bj+k, . . . , e1,bj+k, e0,bj+k)NAF

2.3.2.2 R = R−G[j][I ′j,k]

3. Return R

Algorithm 6. Sakai and Sakurai’s method for direct doubling.
Input: A positive integer r such that k = 2r and P ∈ E(Fq).

Output: k = 2rP .
1. A1 = x1, B1 = 3x2

1 + a, C1 = −y1.
2. For i = 2 to r.

2.1 Ai = B2
i−1 − 8Ai−1C

2
i−1.

2.2 Bi = 3A2
i + 16i−1a(

∏i−1
j=1Cj)

4.

2.2 Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1).

3. Compute Dr = 12ArC
2
r −B2

r .

4. Compute x2r =
B2

r−8ArC2
r

(2r
∏r

i=1 Ci)2
.

5. Compute y2r =
8C4

r−BrDr

(2r
∏r

i=1 Ci)3
.

6. Return x2r , y2r
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Algorithm 7. Mohamed, Hashim and Hutter’s method for scalar multiplication.
Input: Positive integers w, v, k = (kl−1, . . . , k1, k0)NAFw , P ∈ E(Fq).

Output: Q = kP .
1. a = d l

w
e, b = da

v
e

2. Compute G[0][sd], G[j][sd]

for all s ∈ {1, 2, 22, 23, . . . , 2w−1},
0 < j ≤ v − 1, d ∈ {1, 3, 5, . . . , 2w−1 − 1}.

3. Q =∞
4. For t = b− 1 down to 0 do
4.1 If w = 1, then
4.1.1 Q = 2Q.

4.2 Else
4.2.1 Use Algorithm 6 to compute Q = 2wQ.

4.3 For j = v − 1 down to 0 do
4.3.1 Ij,t = (kjb+t,w−1, . . . , kjb+t,0)NAFw .

4.3.2 If Ij,t > 0, then
4.3.2.1 Q = Q+G[j][Ij,t].

4.3.3 Else if Ij,t < 0

4.3.3.1 Q = Q−G[j][−Ij,t].
5. Return (Q).

2.1.6. Direct Doubling Method

Sakai and Sakurai proposed a multi-doubling method for elliptic scalar multiplication. This reduced
computational complexity by applying one constant inversion operation, regardless of the number of
doubling. The complexity is given as (4r + 1)M + (4r + 1)S + I,, where M,S and I denote a
multiplication, a squaring and an inversion in Fq, respectively.

2.1.7. Mohamed, Hashim and Hutter’s Method

This method represents the scalar, k, in width-w NAF. First, k is divided into a = d l
w
e blocks of equal

size, w. k can then be written as follows:

kP = Ka−1Ka−2 . . . K1K0 =
a−1∑
d=0

Kd2
dw (9)

where 0 ≤ d < a. Each block, Kd, is then a column of w bits, and each block consists of w values.
Hence, a block can be represented in w rows and is rewritten as kd,dw+i. For each element, kd,dw+i,
the first subscript, d, indicates the column, whereas the second subscript, dw + i, indicates the exact
bit index from width-w NAF (k). To simplify the notation in the following, kd,dw+i is written as kd,i.
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From right-to-left, w × a blocks are divided into w × b× v blocks, each of size, b = da
v
e, and rewritten

as follows:

kP = Ka−1Ka−2 . . . K1K0P =
v−1∑
j=0

b−1∑
t=0

(Kjb+t2
tw)2jbwP =

b−1∑
t=0

2tw
v−1∑
j=0

Kjb+t2
jbwP (10)

where Kjb+t = kjb+t,w−1 . . . kjb+t,0 is in width-w NAF representation. The following values are
pre-computed and stored for all s ∈ {1, 2, 22, 23, . . . , 2w−1}, 0 < j ≤ v−1 and d ∈ {1, 3, . . . , 2w−1−1}:

G[0][sd] = ew−12
w−1P + ew−22

w−2P + . . .+ e0P = sdP

G[j][sd] = 2wb(G[j − 1][sd]) = 2jwbG[0][sd] = 2jwbsdP
(11)

where the index, sd, is equal to the decimal value of (ew−1 . . . e1e0). Therefore, kP can be rewritten as
kP =

∑b−1
t=0 2

tw
(∑v−1

j=0 G[j][Ij,t]
)

, where Ij,t is the decimal value of kjb+t,w−1 . . . kjb+t,0.

3. (Proposed) Fixed-Base Comb with Window-NAF Method

This method represents the scalar, k, in the width-w NAF used for the previous approach. First,
the scalar, k, having length (l), is divided into a = d l

w
e blocks of equal size, w, and k can be written

as follows:

kP = Ka−1Ka−2 . . . K1K0 =
a−1∑
d=0

Kd2
dw (12)

where 0 ≤ d < a. Then, each block, Kd, is a column of w bits, and each block consists of w-bit elements;
so a block can be represented in w rows and is rewritten as kd,dw+i. For each element, kd,dw+i, the first
subscript, d, indicates the column, whereas the second subscript, dw + i, indicates the exact bit index
from width-w NAF (k). The number of look-up tables is z = d a

w
e. To simplify the notation in the

following, kd,dw+i is written as kd,i and rewritten as follows:

kP = Ka−1Ka−2 . . . K1K0P =
z−1∑
t=0

w−1∑
i=0

(Ktw2+i2
i)P (13)

where Ktw2+i = ktw2+w(w−1),i . . . ktw2+w,iktw2,i is in width-w NAF representation. The following values
are pre-computed and stored for all s ∈ {1, 2, 22, 23, . . . , 2w−1} and d ∈ {20, 2w, . . . , 2w(z−1)}.

G[0][sd] = sdP = {e02P + ew2
wP . . .+ ew(w−1)2

w(w−1)P}+
2w

2{ew22P + ew2·w2
wP . . .+ ew2·(w(w−1))2

w(w−1)P}+
. . .+ 2w

2(z−1){ew2(z−1)2P + ew2(z−1)·w2
wP . . .+ ew2(z−1)·(w(w−1))2

w(w−1)P}
G[i][sd] = 2(G[i− 1][sd]) = 2iG[0][sd] = 2isdP

(14)

where the index, sd, is equal to the decimal value of (ew2(z−1) . . . ew2·wew2 . . . ewe0). Therefore,
kP can be rewritten as kP =

∑w−1
i=0 2i

(∑z−1
t=0 G[i][Ii,t]

)
, where Ii,t is the decimal value of

kzw2+w(w−1),i . . . kzw2,i)NAFw .
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Algorithm 8. (Proposed) Fixed-base comb with Window-NAF method for scalar multiplication.
Input: Positive integers w, v, k = (kl−1, . . . , k1, k0)NAFw , P ∈ E(Fq).

Output: Q = kP .
1. a = d l

w
e, z = d a

w
e

2. Compute G[0][sd], G[i][sd]

for all s ∈ {1, 2, 22, 23, . . . , 2w−1},
0 < i ≤ w-1, d ∈ {20, 2w, . . . , 2w(a−1)}.

3. Q =∞
4. For i = 0 to w − 1 do
4.1 Q = 2Q.

4.2 For t = z − 1 down to 0 do
4.2.1 Ii,t = (kzw2+w(w−1),i . . . kzw2,i)NAFw .

4.2.2 If kzw2+w(w−1) > 0, then
4.2.2.1 Q = Q+G[i][Ii,t].

4.2.3 Else if kzw2+w(w−1) < 0

4.2.3.1 Q = Q−G[i][−Ii,t].
5. Return (Q).

3.1. Comparison of Pre-Computation Table Structures

In this section, we demonstrate fixed-base scalar multiplication in a block form to allow a comparison
of the table structures. In the example, we use a 64-bit scalar value, k, and a look-up table with width-4
index. To illustrate the look-up table index more vividly, we use the same color for the same group
elements. Figure 1 shows the structure of Lim and Lee’s method when the width of the block index, (a),
is set to 16. In the Figure, elements are grouped in this order: (k0, k16, k32, k48), . . . , (k15, k31, k47, k63).

In the case of Tsaur and Chou’s method described in Figure 2, the look-up table has
the same structure as in Lim and Lee’s method, so elements are grouped in this order:
(n0, n16, n32, n48), . . . , (n15, n31, n47, n63). However, the scalar value (k) is represented in NAF2(n)
to generate frequent consecutive zero sequences, which can reduce the overhead of group addition.

Figure 1. Look-up table structure of Lim and Lee’s method in a block form.



Sensors 2013, 13 9495

Figure 2. Look-up table structure of Tsaur and Chou’s method in a block form for 2NAF.

In the case of Mohamed, Hashim and Hutter’s method described in Figure 3, the scalar value (k) is
represented in window-NAF (w), which replaces the adjacent set values to zero values by window size.
The look-up table index is grouped in incremental order by window size, and elements represented in
w-NAF are grouped in this order: (w0, w1, w2, w3), . . . , (w60, w61, w62, w63). This structure is efficiently
reducing table size, because within window size, only one element can have a value.

Figure 3. Look-up table structure of Mohamed, Hashim and Hutter’s method in a block form
for 4NAF.

Our proposed method described in Figure 4 represents the scalar value (k) in window-NAF (w).
Mohamed et al. grouped values in incremental order of index. On the other hand, we use a different
look-up table structure, following the characteristic that the set value in one position will affect the
following value’s bit setting. For window size, w, the a-th and the (a + w)th sub-windows, e.g., in the
case of w = 4, (w0, w4), (w2, w6), (w3, w7) and (w4, w8), exhibit a strong interrelationship. If one value
is set, the other has a high probability of being set, and the opposite case shows same results. In Table 1,
we give a test on this features by testing all cases. This characteristic can be used to construct a look-up
table with a more frequent number of zero occurrences, so our method constructs a table in this order:
(w0, w4, w8, w12), . . . , (w51, w55, w59, w63).

Figure 4. Look-up table structure of the proposed method in a block form for 4NAF.
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3.2. Size Optimized Method

The size-optimized model has a pre-computation table combining the proposed method and
that of Mohamed et al. Therefore, the method constructs the table structure with consecutive
elements and elements in distance. The consecutive elements represented in NAF form do not
have consecutive values, so the number of cases in the table is smaller than the table constructed
with elements in distance. Unlike the consecutive elements, an element selected in distance
shows higher zero occurrence, but the table size is much larger than consecutive elements. For
this reason, the method combining both table structures reduces the table size, while it degrades
speed performance. However, reduction of speed performance is minor, compared to the huge
reduction of table size. Examples of 3NAF and 4NAF are illustrated in Figures 5–8, respectively.
In Figure 5, two elements are selected from a consecutive index, and one element is
chosen in distance. The elements are grouped in this order: (w0, w1, w44), (w22, w23, w45) . . . ,

(w20, w21, w64), (w42, w43, w65). To compute this structure, elements are added to a result, and then,
the result is doubled twice.

Figure 5. Look-up table structure of (size-optimized) the proposed method in a block form
for 3NAF (version 1).

In Figure 6, a different 3NAF look-up table, version 2, is illustrated. Elements are grouped in the same
structure of that of the previous one, but the index is mixed. This structure combines the elements by
window size, so it can group similar characteristic elements, but this structure requires a doubling process
three times, because the elements are grouped by window size: three. In this model, the elements are
grouped in this order: (w0, w1, w35), (w2, w33, w34) . . . , (w32, w63, w64), (w30, w31, w65).

Figure 6. Look-up table structure of the (size-optimized) proposed method in block form
for 3NAF (version 2).

In Figure 7, the 4NAF look-up table, version 3, is illustrated. The elements are grouped in
two structure, which are placed in a window size distance, and the inner structures of this follow
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Mohamed et al. To compute scalar multiplication, a grouped element is added, and then, doubling is
conducted twice in a row; then, addition is computed. In the example, the elements are grouped in this
order: (w0, w1, w4, w5), (w2, w3, w6, w7) . . . , (w56, w57, w60, w61), (w58, w59, w62, w63).

Figure 7. Look-up table structure of the (size-optimized) proposed method in block form
for 4NAF (version 3).

In Figure 8, a different 4NAF look-up table, named version 4, is introduced. The elements are
grouped in two structures, and one inner structure follows Mohamed et al. The other index is placed
in distance. This shows a size optimized model, because three elements are consecutively grouped,
so this has a small number of table cases. However, compared to version 3, this model needs to
compute a doubling process four times. In the example, the elements are grouped in this order:
(w0, w1, w3, w35), (w3, w32, w33, w34) . . . , (w31, w60, w61, w62), (w28, w29, w30, w63).

Figure 8. Look-up table structure of the (size-optimized) proposed method in block form
for 4NAF (version 4).

3.3. Hybrid Method for Fine Tuning

The hybrid method combines two methods, including our size-optimized or speed-optimized model
and that of Mohamed et al. The advantage of a combined model is in generating a fine-tuned
look-up table, which can adjust speed and size accurately, because both of them have a trade-off relation.
By adjusting the look-up table size property, we can generate a proper look-up table more efficiently
and accurately. This is based on the previous observation that Mohamed et al. provided a small
pre-computation table with low zero occurrence and ours provides a big pre-computation table with
high zero occurrence. Therefore, if we represent the table as Mohamed et al., that part shows low zero
occurrence and a small table, and if we use the proposed table, this part shows high zero occurrence and
a big table. Finally, we draw a trade-off relation by representing a table with the finely-tuned method.
This relation is available in Tables 3 and 4.
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Table 3. Performance evaluation for hybrid model in the case of our speed-optimized 2NAF;
the bit section indicates the ratio of bits using our method and that of [10], respectively.
Non-zero P: non-zero point, SP: speed optimized.

Bit Non-zero P Total Size
[10] Here Sp Sp [KB]

160 0 52.88 591.46 3.2
156 4 52.05 582.60 3.36
152 8 51.23 573.74 3.52
148 12 50.40 564.88 3.68
144 16 49.58 556.02 3.84
140 20 48.76 547.17 4
136 24 47.93 538.31 4.16
132 28 47.11 529.45 4.32
128 32 46.28 520.59 4.48
124 36 45.46 511.73 4.64
120 40 44.64 502.88 4.8
116 44 43.81 494.02 4.96
112 48 42.99 485.16 5.12
108 52 42.16 476.30 5.28
104 56 41.34 467.44 5.44
100 60 40.52 458.59 5.6
96 64 39.69 449.73 5.76
92 68 38.87 440.87 5.92
88 72 38.04 432.01 6.08
84 76 37.22 423.15 6.24
80 80 36.4 414.3 6.4

Table 4. Performance evaluation for hybrid model in the case of 3NAF; versions 1 (V1)
and 2 (V2) have the same table size. The bit section indicates the ratio of bits using our
method and that of [10], respectively. Non-zero P: non-zero point.

Bit Non-zero P Total Size
[10] Here V1 V2 V1 V2 [KB]

162 0 33.38 33.38 382.5 389.5 6.5
150 12 33.12 32.77 378.9 386.73 7.8
138 24 32.86 32.16 375.32 383.96 9
126 36 32.6 31.55 371.74 381.19 10.3
114 48 32.35 30.93 368.15 378.42 11.6
102 60 32.09 30.32 364.56 375.65 12.9
90 72 31.83 29.71 360.98 372.88 14.2
78 84 31.57 29.1 357.39 370.11 15.4
66 96 31.31 28.49 353.80 367.34 16.7
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In Figure 9, a combined look-up table structure is described. From w0 to w31, speed-optimized 2NAF
is used, and the remaining part follows that of Mohamed et al. The number of elements for each structure
model can be adjusted. To compute this model, the addition of Mohamed et al. elements is computed,
and then doubling is conducted once. Afterward, then, our speed-optimized elements are added, and
then doubling is conducted.

Figure 9. Look-up table structure of the (hybrid) proposed method in block form for 2NAF
(speed-optimized model).

In Figure 10, a combined look-up table structure is described. From w0 to w23, 3NAF version 1 is
used, and the remaining part follows Mohamed et al. The number of elements for each structure model
can be adjusted. To compute this model, the addition of Mohamed et al. elements is computed, and then
doubling is conducted once. Afterward, then, our size-optimized elements are added, and then direct
doubling in a width of two is conducted.

Figure 10. Look-up table structure of the (hybrid) proposed method in block form for 3NAF
(version 1).

In Figure 11, the hybrid model of 3NAF version 2 is introduced. To compute this model, addition
of Mohamed et al.’s and our model’s elements are conducted, and then, direct doubling in a width of
three is conducted for both structures. For this reason, more simple computation is available than the
version 1 model.
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Figure 11. Look-up table structure of the (hybrid) proposed method in block form for 3NAF
(version 2).

In Figure 12, the hybrid model of 4NAF version 3 is introduced. The version 3 model is structured in a
width of two elements. To compute scalar multiplication, direct doubling in a width of two is conducted
once, and then, our elements are added after. Then, direct doubling in a width of two is conducted.

Figure 12. Look-up table structure of the (hybrid) proposed method in block form for 4NAF
(version 3).

In Figure 13, the hybrid model of 4NAF version 4 is introduced. This model is conducted with direct
doubling in a width of four. Compared to version 3, this model consumes a small-sized look-up table.

Figure 13. Look-up table structure of the (hybrid) proposed method in block form for 4NAF
(version 4).
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4. Results

In this section, we evaluate the proposed method in terms of its look-up table size and computation
speed for practical performance evaluation.

4.1. Random Number Generator for Pair Evaluation

Random numbers are needed to evaluate the methods of generating the secret value (k) that is used to
construct the look-up tables. For pair comparison, we choose a high-entropy random number algorithm
(Blum-Blum-Shub) that is suited to the NIST random number suite. The difficulty of this pseudo-random
number generator (PRNG) is based on integer factorization. When the prime is chosen appropriately,
predicting the random patterns is at least as difficult as factoring prime. For this reason, using the output
from this PRNG is suitable for pair comparison of computation.

4.2. Zero Occurrence of Look-up Table

Table 5 shows the percentage of zero occurrences under various conditions, such as the representation
and window size. Lim and Lee use a normal representation, and the other methods are represented in
NAF form. In each case, our proposed method shows better performance than previous published works.
One interesting result is that the method of Mohamed et al. has a lower performance than that of Tsaur
and Chou, but this becomes obvious after referring to the experimental results in this section. Within a
given window size, values repeat periodically with high probability. Therefore, the model of Mohamed
et al. has a low probability of having a zero sequence index for a given window size. On the other hand,
Tsaur and Chou’s method has no relation to the index of the look-up table, but shows higher performance.

Our model is perfectly suited to the characteristics of w-NAF, exhibiting a high zero occurrence.
We also provide a size-optimized model, because our model requires a huge amount of storage for the
look-up table. This model is properly adjusted for demand on speed and size.

Table 5. Average percentage (%) of zero occurrences for a 160-bit scalar, tested
using random number vectors from Blum-Blum-Shub (Lim and Lee use a normal
representation), SP: speed-optimized model; V(1,3): size-optimized model in the case of
version 1 and 3; V(2,4): size optimized model in the case of version 2 and 4.

Form [7] [8] [10] SP V(1,3) V(2,4)

2NAF 24.20 44.70 33.90 50.20 - -
3NAF 11.59 48.98 38.20 50.16 46.54 44.64
4NAF 6.35 40.38 18.43 53.33 44.10 44.57

The following Figures 14–16 show the frequency of the scalar value in the case of 160-bits. The
graphical results are generated from the random scalar value derived from Blum-Blum-Shub. In Figure
14, the frequency of 2NAF representation is described. The red graph is Lim et al., and the value
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range is between one and zero, because this method does not use NAF form. The line in the graph is
densely placed. The yellow graph is Tsaur et al., and the value range is between one and minus one
after transformation into 2NAF form. Compared to Lim et al., many points are placed in zero value,
and this generates consecutive zero values. The green and black graphs are Mohamed et al. and ours.
The consecutive zero occurrences in our graph happen frequently, so this represents the efficiency of
our method.

Figure 14. Frequency of scalar value represented in 2NAF.
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In Figure 15, the frequency of 3NAF representation is described. The red graph, Lim et al., has high
frequency, so it is hard to find zero occurrence. Unlike Lim et al., other methods show a sparsely drawn
graph. After 3NAF transformation, values are placed between three to minus three. At a glance, all
representations appear to have a similar frequency. However, Table 5 shows that our method presents
higher zero occurrences than any other methods.

Figure 15. Frequency of scalar value represented in 3NAF.
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Figure 15. Cont.

In Figure 16, the frequency of 4NAF representation is described. This example describes the strength
of our method vividly. The red graph, Lim et al., obtains a higher frequency, so this has a high hamming
weight. In the case of Tsaur et al., there are low frequencies and many consecutive zeros. In the case
of Mohamed et al., the frequency is much higher than Tsaur et al., so its hamming weight is higher
than Tsaur et al. Finally, our method shows an impressive consecutive zero array. Furthermore, a high
frequency is gathered in some regions. For this reason, this method is more efficient than other methods.

Figure 16. Frequency of scalar value represented in 4NAF.
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Figure 16. Cont.

4.3. Size of Look-up Tables

In this section, we consider the size of the look-up tables, and detailed table size is described in
Table 6. Lim and Lee’s method has the smallest look-up table, and this can compute a storage size
of (2w − 1) × t, where t is the size of a point (in the case of 160-bit, 40 bytes are used, 20 for
the x-axis and 20 for the y-axis), because elements consist of two values, zero and one. In the case
of Tsaur and Chou’s method, the number of elements for w-NAF is 2(w−1) + 1, so the table size is(
(2(w−1) + 1)(w−1)(2(w−2) + 1)

)
× t. Mohamed et al.’s method has a smaller look-up table than that

of Tsaur and Chou, because elements do not exist consecutively within each window size, due to the
characteristics of w-NAF; so, the table size is w× 2(w−2)× t. Our speed-optimized method is equivalent
to Tsaur and Chou’s method, because elements in the look-up table are randomly chosen, meaning that
we should compute all cases. To reduce the size, while keeping a high zero occurrence, we provide a
size-optimized model that has a high probability of zeros with reduced storage size. The size-optimized
model combines our speed-optimized model and that of Mohamed et al., so the table size estimation
follows both methods partly, and the total table size is ((w − 1)× 2(w−2) × (2(w−1) + 1) + 2(w−2))× t.
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Table 6. Size (Kbyte) of the look-up table in the case of a 160-bit scalar (Lim and
Lee’s method uses a normal representation). Sp: speed optimized version; V(1,3): size
optimized version 1 and 3; V(2,4): size optimized version 2 and 4.

Form [7] [8] [10] Sp V(1,3) V(2,4)

2NAF 0.12 0.16 0.08 0.16 - -
3NAF 0.28 3.00 0.24 3.00 0.88 0.88
4NAF 0.60 145.80 0.64 145.80 4.48 5.44

4.4. Computational Efficiency

Table 7 shows the performance results in terms of size and speed factors. For size, we calculate table
size depending on the number of points. For speed, we estimated complexity from the number of group
operations. In the table, we evaluate two cases, one using a partial look-up table and the other using
the full look-up table for fixed point computation. The benefit of full computation is that all doubling
computations are removed. Compared to Mohamed et al., our speed-optimized method exhibits the best
performance, due to the large number of zero occurrences, but it suffers from having a large look-up
table. On the other hand, Mohamed et al.’s method has a small look-up table, but suffers from poor
performance, due to the small number of zero occurrences. In the size-optimized model, it provides a
proper zero occurrence probability with a much smaller table size than the speed model.

Table 7. Evaluation result of fixed-base scalar multiplication, where A, D and DD(w)

denote addition, doubling and direct doubling (width), respectively. Computation cost
excludes a cost for look-up table construction, which is pre-computable, so the cost mainly
includes group addition and doubling.

Scheme
Computation Cost Look-up Table Size

No.Operation [KB] No.

Partial Table Implementation
[10] 33× A+ 1×DD(3) 6.48 27× 0.24

Speed 27× A+ 3×D 54.00 18× 3.00

V1 29× A+ 2×DD(2) 15.84 18× 0.88

Full Table Implementation
[10] 33× A 12.96 54× 0.24

Speed 27× A 162.00 54× 3.00

V1 29× A 47.52 54× 0.88

However, in Table 7, we compared performance unfairly, because we did not evaluate performance in
the same look-up table size. Computation with a larger look-up table shows higher speed performance
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than a method with a small look-up table, because in the case of fixed-base point multiplication, a
bigger look-up table ensure less point additions, and this directly affects faster scalar multiplication.
For clarity, we further evaluate our performance in the same look-up table size and calculate overhead,
generalized in multiplication, which is derived from Table 8, describing the relation of each operation
in an affine coordinate. There are a number of operation dependencies, so we set our coordinate as
affine and multiplication and squaring, and inversion is implemented in the basic method. Additionally,
we refer to these basic relations from [2]. First, overheads of finite field squaring and inversion are
re-written in the overhead of multiplication. Afterwards, then, group operations, overheads of addition,
doubling and direct doubling are re-written in the overheads of multiplication.

Table 8. Required number of finite field operations. Inv: inversion; Mul: multiplication;
Sqr: squaring; overhead ratio: Inv = 8×Mul, 4× Sqr = 3×Mul.

Operation
Computation Cost

Inv Mul Sqr

Addition 1 2 1
Doubling 1 2 2
Direct Doubling 1 (4r+1) (4r+1)

Table 9. Evaluation result of fixed-base scalar multiplication under the pair condition (in
terms of table size), where A, D and DD(w) denote addition, doubling and direct doubling
(width), respectively. Computation cost excludes the cost for look-up table construction,
which is pre-computable, so the cost mainly includes group addition and doubling.

Op. No. Op. Inv Mul Sqr Total Size [Kbyte]

Our size-optimized model
SZ(V1) 28.9A+2DD(2) 30.9 75.7 46.9 357.8 15.8
SZ(V2) 28.9A+3DD(2) 31.9 84.7 55.9 381.5 15.8

Mohamed et al. (partial table implementation)
2NAF 52.9A+DD(2) 53.9 114.8 61.9 591.5 3.2
3NAF 33.4A+DD(3) 34.4 79.7 46.4 389.5 6.5
4NAF 32.6A+DD(4) 33.6 82.3 49.6 388.5 12.8
5NAF 28.5A+DD(5) 29.5 78.1 49.5 351.6 25.6

Mohamed et al. (full table implementation)
2NAF 52.9A 52.9 105.8 52.9 568.7 6.4
3NAF 33.4A 33.4 66.7 33.4 358.7 13
4NAF 32.6A 32.6 65.3 32.6 350.8 25.6
5NAF 28.5A 28.5 57 28.5 306.4 51.2

In Table 9, we evaluate our model and that of Mohamed et al. under the same condition. Our
size-optimized model (version 2) has a 12.3 Kbyte look-up table. Compared to the 4NAF model (partial
table) our method outperforms in terms of size and speed factors. However, the 3NAF model (full
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table) shows much higher performance than ours with small size overheads. For this reason, we cannot
confidently say that our method is faster than that of Mohamed et al. under the same condition. However,
through this evaluation, we found that our method can be used for size and speed tuning techniques. We
named it the hybrid method.

4.5. Hybrid Model Performance Evaluation

Our hybrid model is developed during evaluation of the previous models to overcome the drawbacks
of the proposed method. Tables 3, 4 and 10 describe the performance in size and speed. The most
interesting feature is that we can adjust performance more finely. In Table 9, using Mohamed et al.’s
method, there is no table model in 3.2∼6.4 and 6.5∼12.8 Kbyte. However, the hybrid model can tune
the performance in terms of size and speed and provide various size models, including 3.2, 3.36, . . .
11.6 and 12.9 Kbytes. Various table models generate finely-tuned table structure for user’s purposes.
However, the hybrid model using 4NAF is not useful, because zero occurrence of 4NAF is far lower than
3NAF, so even 4NAF has a large table, but shows low speed performance. In Figure 17, a finely-tuned
look-up table is depicted. In the figure, we found that with the blue dotted line, the method of Mohamed
et al. is coarsely-tuned, so there is a large gap between each look-up table. However, our hybrid model
can finely tune and fill gaps between each table, which is coarsely-tuned. Finally, we can complete the
smooth graph, which means we can adjust our performance more accurately and finely.

Table 10. Performance evaluation for the hybrid model in the case of 4NAF. V3 and V4
denote version 3 and 4, respectively. The bit section indicates the ratio of bits using our
method and that of [10], respectively. Non-zero P: non-zero point.

Bit Non-zero P Total Size[KB]
[10] Here V3 V4 V3 V4 V3 V4

160 0 32.63 32.63 398.25 393.00 12.8 12.8
144 16 31.6 31.59 387.21 381.76 20.48 22.4
128 32 30.57 30.54 376.17 370.52 28.16 32
112 48 29.55 29.5 365.13 359.28 35.84 41.6
96 64 28.52 28.45 354.09 348.04 43.52 51.2
80 80 27.49 27.4 343.06 336.8 51.2 60.8
64 96 26.47 26.36 332.02 325.55 58.9 70.4
48 112 25.44 25.31 320.98 314.31 66.6 80
32 128 24.41 24.27 309.94 303.07 74.2 89.6
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Figure 17. Performance of hybrid model using fine-tuned features.
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5. Conclusions

Recently released novel scalar multiplication by Mohamed et al. reduced the number of addition
operations using w-NAF and a novel look-up table structure. However, this method cannot carefully
adjust their table structures in terms of speed and size matters, so this does not provide flexibility for
selecting table structure, depending on different purposes. In this paper, we presented a novel method
for fixed-point scalar multiplication. The new structure is firstly derived from w-NAF characteristics
observed in this paper. However, our method shows similar performance when it is tested under the same
look-up table size. However, constructing our table in various ways, we found one interesting features
that can be used for speed and size performance adjustment. Finally, we presented a novel fine-tuned
look-up table structure, which can provide more accurate and fine adjustment than previous methods.
This idea can be applied to other combinations using many other table structures for the finely-tuned
table model. This method can provide more flexible look-up tables for embedded microprocessors.
Furthermore, the proposed method is straight-forwardly implementable on an unknown point, and this
shows high performance enhancement compared to traditional NAFw methods.
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Appendix. A. Example of Proposed Method

In this section, we give a detailed process of proposed methods, including speed, size and hybrid
models. Figure 4 shows the speed-optimized model. This model is constructed after two phases. First,
Figure 1 is represented in w-NAF form using Algorithm 2; the corresponding output has the same
structure as shown in Figure 3. Second, each element is grouped by window size (four). In our case,
it is grouped in this order: [(w0, w4, w8, w12), (w1, w5, w9, w13), (w2, w6, w10, w14), (w3, w7, w11, w15),
(w16, w20, w24, w28), (w17, w21, w25, w29), (w18, w22, w26, w30), (w19, w23, w27, w31), (w32, w36, w40, w44),
(w33, w37, w41, w45), (w34, w38, w42, w46), (w35, w39, w43, w47), (w48, w52, w56, w60), (w49, w53, w57, w61),
(w50, w54, w58, w62), (w51, w55, w59, w63)]. Afterward, then, scalar multiplication is conducted in the
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following order. Firstly, elements, including (w3, w7, w11, w15), (w19, w23, w27, w31), (w35, w39, w43, w47)
and (w51, w55, w59, w63), are added to a point, and then, doubling is conducted. Secondly, elements,
including (w2, w6, w10, w14), (w18, w22, w26, w30), (w34, w38, w42, w46) and (w50, w54, w58, w62), are added
to the point, and then, doubling is conducted. Thirdly, elements, including (w1, w5, w9, w13),
(w17, w21, w25, w29), (w33, w37, w41, w45) and (w49, w53, w57, w61), are added to the point, and then,
doubling is conducted. Finally, elements, including (w0, w4, w8, w12) , (w16, w20, w24, w28) ,
(w32, w36, w40, w44) and (w48, w52, w56, w60), are added to the point.

For the size-optimized model in Figure 5, scalar multiplication value is represented in 3NAF form.
Then, it is grouped in this order: [(w0, w1, w44), (w2, w3, w46), (w4, w5, w48), (w6, w7, w50), (w8, w9, w52),
(w10, w11, w54), (w12, w13, w56), (w14, w15, w58), (w16, w17, w60), (w18, w19, w62), (w20, w21, w64),
(w22, w23, w45), (w24, w25, w47), (w26, w27, w49), (w28, w29, w50), (w30, w31, w53), (w32, w33, w55),
(w34, w35, w57), (w36, w37, w59), (w38, w39, w61), (w40, w41, w63), (w42, w43, w65)] Firstly, elements,
including (w2, w3, w46), (w6, w7, w50), (w10, w11, w54), (w14, w15, w58), (w18, w19, w62), (w22, w23, w45),
(w26, w27, w49), (w30, w31, w53), (w34, w35, w57), (w38, w39, w61) and (w42, w43, w65), are added to the
point, and then, direct doubling by a width of two is conducted. Afterwards, then, elements,
including (w0, w1, w44), (w4, w5, w48), (w8, w9, w52), (w12, w13, w56), (w16, w17, w60), (w20, w21, w64),
(w24, w25, w47), (w28, w29, w50), (w32, w33, w55), (w36, w37, w59) and (w40, w41, w63), are added
for completion.

For the hybrid model in Figure 11, scalar multiplication value is represented in 3NAF form. Then,
it is grouped in two different orders. Firstly, elements from zero to 23 are constructed in this
order: [(w0, w1, w16), (w2, w3, w18), (w4, w5, w20), (w6, w7, w22), (w8, w9, w17), (w10, w11, w19),
(w12, w13, w21), (w14, w15, w23)]. Secondly, elements from 24 to 65 are grouped in this or-
der: [(w24, w25, w26), (w27, w28, w29), (w30, w31, w32), (w33, w34, w35), (w36, w37, w38), (w39, w40, w41),
(w42, w43, w44), (w45, w46, w47), (w48, w49, w50), (w51, w52, w53), (w54, w55, w56), (w57, w58, w59),
(w60, w61, w62), (w63, w64, w65)]. After table construction, the scalar multiplication process is
started. Firstly, elements, including (w27, w28, w29), (w33, w34, w35), (w39, w40, w41), (w45, w46, w47),
(w51, w52, w53), (w57, w58, w59) and (w63, w64, w65), are added to the point, and then, doubling is
conducted. Secondly, elements, including (w2, w3, w18), (w6, w7, w22) and (w10, w11, w19), are added
to the point, and then, direct doubling by a width of two is conducted. Finally, elements,
including (w0, w1, w16), (w4, w5, w20), (w8, w9, w17), (w12, w13, w21), (w14, w15, w23), (w24, w25, w26),
(w30, w31, w32), (w36, w37, w38), (w42, w43, w44), (w48, w49, w50), (w54, w55, w56) and (w60, w61, w62), are
added to the point.

Appendix. B. Proposed Method on an Unknown Point

Throughout this paper, we explored the proposed method on a fixed-point. However, we found
that the method is also available for an unknown point. Ordinarily, NAFw representation is used for
unknown point computation. By exploiting our structure, we can improve previous methods. The
detailed structures of previous and proposed methods are described in Figures 18 and 19, respectively.
This example shows the case of 32-bit input. First, the traditional method groups each element by a
size of two in ascending order. Unlike the previous method, our method groups element in this order:
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[(w0, w2), (w1, w3), (w4, w6), (w5, w7), (w8, w10), (w9, w11), (w12, w14), (w13, w15), (w16, w18), (w17, w19),
(w20, w22), (w21, w23), (w24, w26), (w25, w27), (w28, w30), (w29, w31)]. This structure shows a higher zero
occurrence ratio than previous method, and its result is available in Table 5. After table construction, the
scalar multiplication process is started. Firstly, element (w0, w2) is added, and then, one doubling process
is conducted. Secondly, element (w1, w3) is added, and then, direct doubling by three is conducted. This
process is repeated, until the end of computation.

In the Table 1, we compared the size of the look-up table and the computation costs of previous
and proposed methods on an unknown point in the case of 160-bit scalar multiplication with 2NAF
representation. In terms of size, the previous method has results for (10) and (01), and the proposed
method has results for (101), (100), (10-1) and (001). Each result has 40 byte values, including X
and Y values, so the previous method occupies 80 bytes and ours occupies 160 bytes. For look-up
table computation, one doubling is required for the traditional method, to compute (10). In the case of
ours, two additions and a direct doubling by two are needed to compute (101), (100) and (10-1). After
look-up table computation, point computation is conducted. By exploiting high zero occurrence, our
method shows a small number of addition computation and our method conducts a doubling and a direct
doubling by three. Total computation costs, including pre-computation and point-computation, are listed
in the Table 1. Our method shows speed performance enhancement by 12.7% compared to traditional
NAF2 representation for an unknown point.

Figure 18. Look-up table structure of the traditional 2NAF method in block form.

Figure 19. Look-up table structure of the proposed 2NAF method in block form.
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