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Abstract: An experimental platform to communicate between a set of mobile robots 

through a wireless network has been developed. The mobile robots get their position 

through a camera which performs as sensor. The video images are processed in a PC and a 

Waspmote card sends the corresponding position to each robot using the ZigBee standard. 

A distributed control algorithm based on event-triggered communications has been 

designed and implemented to bring the robots into the desired formation. Each robot 

communicates to its neighbors only at event times. Furthermore, a simulation tool has been 

developed to design and perform experiments with the system. An example of usage  

is presented. 

Keywords: distributed control systems; mobile robots; multi-agent systems; wireless 

communications; embedded systems 

 

1. Introduction 

Significant developments in the fields of communication technology, wireless technology, 

embedded devices, and many others, have enabled the development of autonomous air, ground, or 

OPEN ACCESS 



Sensors 2013, 13 9397 

 

 

underwater vehicles. Groups of such vehicles, referred to as agents, can be utilized to solve a variety of 

problems very efficiently, such as for example exploration and monitoring tasks. 

One of the main problems in these systems is when the control task is centralized. This 

centralization demands a very powerful communication network to send state information in a timely 

manner and detailed models of the mobile robot interactions. Both of these requirements can greatly 

limit the scalability of centralized approaches in networked control systems. An alternative way is to 

use a distributed approach [1,2], where each mobile robot decides its actions based only on his own 

state and the direct neighbors’ information, while guaranteeing that the whole group fulfills a common 

group objective. One example of a group objective for multi-agent systems is state agreement or 

consensus, i.e., all agents are supposed to converge to a common point or state. Such consensus 

problems have a variety of applications in flocking, attitude synchronization in satellite swarms, 

distributed sensor networks, congestion control in communication networks, or formation control [3]. 

We are particularly interested in the last field of application since achieving a stable formation is 

analogous to reaching consensus. In this consensus problem the agents communicate through a 

network exchanging information to reach the desired formation. Specifically, we propose to 

incorporate wireless links between the mobile robots to support the communications, the embedded 

systems, and the control.  

Moreover, all real networks have bandwidth limitations that can cause delays in message delivery 

producing a major impact on overall system stability [4]. In this sense, it is desirable to know how 

frequently mobile robots should communicate such that the system maintains a desired level of 

performance. In this light, event-based communications are an alternative to time-scheduled  

control [5], and they have been in the focus of many researchers in recent years such as [6–11], to 

mention just a few. In the literature, several simplifications are usually done in both the robot 

dynamics and the network models of a multi-agent robot system. However, a real robot has its own 

physical parts, including sensors, processors, actuators, and communication devices. Therefore, its 

limitations must be considered, such as those related to computational power, sensor errors, and 

actuating and communicating devices. 

This paper presents a multi-agent approach through the use of a decentralized control with  

event-triggered communication in a mobile robot formation control with a consensus algorithm. The 

decentralized control is less vulnerable to a node failure and easier to scale than the centralized 

approaches presented in [12–14]. In [12] the formation control of a multi-Khepera robot system is 

solved without communication between robots. However, each robot executes an algorithm 

periodically that requires the knowledge of the complete graph of the formation, so it is computationally 

intensive for large number of robots. Centralized approaches are proposed in [13,14]. In [13] all 

complexity of sensing, control, and computation is relegated to the leader of a group of robots,  

and [13] treats the robots formation as a single virtual rigid structure. 

A decentralized approach for cooperative control is presented in [15] and a detailed hardware 

description is given and several experimental examples of multi-vehicle control for TXT-1 monster 

trucks from Tamiya, Inc, are given for both communication and vision formation control. In [16] a 

hardware platform for a single vehicle is developed and a PID event-based control is implemented. 

However, none of these works consider distributed event-based control in a multi-robot environment. 

Hence, the main contribution of this paper is the implementation of distributed event-triggered 
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algorithms in a real mobile robots platform since, to the best knowledge of the authors, all the results 

in this field are mainly theoretical and only present simulation results. The experimental results show 

the goodness of the event-trigger approach compared to time-driven control, reducing the 

communication between agents. Furthermore, in contrast to other works, as for example [12,15], in 

which a costly platform for indoor or outdoor experimentation is used, we give a detailed description 

of our low-cost hardware platform, and how it was implemented in LEGO robots, in order to help 

readers who are considering building a similar system for research, educational purposes [17], or to 

mimic real world exploratory applications [18].  

An interactive simulation, which is available at http://lab.dia.uned.es/mass, is also presented as a 

complement to the experimental setup. This simulation helped in the design and trial of different 

experiments with variable system and network conditions. 

The paper is organized as follows. Section 2 describes in detail the experimental environment and 

its components. Section 3 gives a background on event-based control and multi-agent systems, and the 

extension of these to the formation control of a multi-robot system. Section 4 describes the simulation 

tool and an example of usage. Section 5 discusses experimental results and compares them to 

simulation results and experiences based on time-driven control. Finally, Section 6 ends the paper with 

conclusions and suggestions of future works. 

2. Test Platform Description 

We next describe the experimental environment designed with low-cost components. This may help 

readers to build similar systems. It can also be scaled up or down to equip bigger or smaller robots, 

respectively [19,20].  

2.1. Platform Architecture and Components 

The developed tool is a test platform for multi-mobile robot systems. It consists of two main 

components: the vision and the communication systems. Different software tools exchange 

information to transform the images captured by the camera into positioning data, which are sent to the 

robots via wireless communications. Figure 1 shows the block diagram of the architecture and the 

components of the platform, which are the following: 

1. A personal computer (PC) to calculate and send the position and orientation to  

the robots.  

2. A CCD camera (charge-coupled device) connected to the PC and equipped with wide 

angle optics. The camera is placed in the ceiling of the room, as described in [21]. 

3. A Waspmote Gateway card connected to the PC [22]. 

4. A group of LEGO Mindstorms NXT robots with the HiTechnic IR RC Car 

configuration [23,24]. 

5. A Waspmote card connected to each NXT LEGO Mindstorms robot by I
2
C port [25]. 
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6. A control and communication application, developed in LabVIEW, for each NXT 

LEGO robot. 

7. An application, written in C++, for each Waspmote card. 

8. An application (running on the PC), developed in LabVIEW, for the interaction with 

the camera [21]. 

9. A Java application, built with Easy Java Simulations (EJS) [26], for communication 

between the robots and the PC. 

10. A Java XBee API to send and receive data through the Waspmote Gateway card [27]. 

11. The JIL server [28] to link LabVIEW with EJS. 

Figure 1. Block diagram of the platform architecture. 

 

2.2. Vision System 

Though LEGO platforms provide an interesting group of sensors such as ultrasonic, touch, or light 

sensors, there is no device for measuring absolute positions. This makes experimentation in robot 

formation control difficult. One option to solve the previous drawback is the use of a GPS as the main 

localization sensor as in [29]. However, when the experiments are performed indoors, GPS is impractical.  

Another alternative is to incorporate a vision system to get the robots poses. The recent appearance 

of RGB-D cameras has made possible 3D mapping from a single image and state estimation. However, 

running the robot real-time state estimation algorithms on board would require a powerful computer, 

which would increase the cost of the platform considerably. Thus, a single camera on the ceiling 

observes the arena from an overhead position. Each robot can be distinguished thanks to three high 
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brightness LEDs. These light spots form an isosceles triangle with different aspect ratio for each robot 

as shown in Figure 2a. In Figure 2b, the points Pa, Pb, and Pc represent the LEDs. The orientation is 

denoted by θ. The position of each robot is calculated using their center of mass (Xcm; Ycm).  

Figure 2. (a) The NXT LEGO robot, (b) Isosceles triangle formed by the LEDs. 

 

(a) (b) 

The Basler A631fc CCD camera (block 2 of Figure 1) is configured in monochrome mode for 

image acquisition in order to maximize the resolution and shutter speed. Under these conditions, we 

obtain images with a resolution of 1,388 × 1,038 pixels at 18.7 fps.  

The images captured by the camera are processed by the LabVIEW Camera App (block 8  

of Figure 1), which computes the robots poses. The execution of the application implies the  

following steps: 

• Barrel distortion correction: The image magnification decreases with distance from the 

optical axis. The apparent effect means that an image has been mapped around a sphere  

(or barrel). 

• Perspective transformation: Transforms the coordinates of the object to the camera 

coordinates, making rotation and translation transformations. 

• Calculation of positions and orientations: From the reference points on the ground,  

we calculate the position and orientation taking into account the morphology of the  

obtained points. 

• Transformation of coordinates: From pixels to meters. 

• Calibration: Gets the perspective calibration parameters. 

The front panel of the LabVIEW Camera App is shown in Figure 3. The values of the configuration 

of the camera (gain, shutter, and frame rate) and the period (T) are required to compute the bearings, 

and shown on the front panel. The application sends the absolute position and orientation to the robots 

every 200 milliseconds. Further details about this application can be found in [21]. 
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Figure 3. User interface of the Camera LabVIEW App. 

 

2.3. Communication System 

After the processing of the robots poses, they are sent to the robots. Each one receives its position 

and orientation, and decides when to broadcast this information to its neighbors based on the local 

data, updating the control law afterwards. Thus, the control is distributed in the sense that each robot 

takes by itself the decision of when to transmit its state and the control law is computed locally, in 

contrast to [16], where the control law is computed on the central computer and sent to the robots. 

Waspmote boards (block 5 of Figure 1) are used for the wireless communications. This card has a 

modular architecture and is based on the Atmel ATMEGA 1281 microcontroller. The Waspmote also 

integrates the Digi XBee RF (ZigBee standard) module for communication in the ISMB bands 

(Industrial Scientific Medical Band, RF-868 MHz) [30]. This module communicates with the 

microcontroller via interruptions using the UART at the speed of 38,400 bps. It allows the definition of 

different network configurations (e.g. p2p, tree, or mesh) and uses the protocol 802.15.4 with a 

frequency of 2.4 GHz [22]. For wireless network settings, each card uses the MAC address of its 

corresponding XBee. Each robot “talks” to its neighbors given by the communication graph  

(see Sections 3 and 4.2 for further details). 

The power supply for the Waspmote is a lithium battery. The energy system has four operational 

modes (on, sleep, deep sleep, and hibernate). In normal operating mode (on), the consumption is 9 mA. 

Every 125 ns the microcontroller runs a routine of low level (machine language) instructions [31,32], 

which is fast enough to the time requirements of our system.  

The I
2
C bus interfaces the NXT LEGO with the Waspmote. The NXT LEGO runs as master and the 

Waspmote as slave. The Waspmote card runs an application (block 7 Figure 1) that allows the LEGO 

NXT to communicate with other robots and the PC. Every 100 ms the following tasks are executed: 
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1. It checks if a packet has been received by the XBee radio. Packets can be sent from the 

PC or from another robot. If the answer is positive, the received data is stored in a 

buffer until the NXT LEGO requires it.  

2. It checks if a flag is true. If the answer is positive, it indicates that the NXT LEGO 

requires the sending of a packet to other robots (its neighbors) by Xbee radio. Once the 

packet is sent the flag is set to false. The NXT LEGO triggers an interruption routine 

(which sets the flag to true) when a packet must be sent. In event-based control, the 

flag is set to true at the event occurrence time. 

Each NXT LEGO runs a LabVIEW App (block 6 of Figure 1) to interface with the Waspmote card 

by I
2
C (see Section 2.4 for further details). This application requests data to the Waspmote every  

200 ms. If the received packets are from the camera application (own position and orientation), the 

position is compared to the last broadcasted position, i.e., to the state which generated the last event. If 

the difference is greater than a threshold, then the current position is sent to its neighbors by using the 

I
2
C interface with the Waspmote. By contrast, if the source is any robot in the neighborhood, the 

received data is then used to update the control law as explained later in Section 3.  

The communication between the PC and the Waspmote is carried out by the Waspmote’s Gateway 

(block 3 of Figure 1) connected to the PC through the USB port. The Waspmote’s Gateway has drivers 

for Java but not for LabVIEW. For this reason, it is necessary to use an application developed in Java 

to send the data to each corresponding robot using the gateway. In this case, the JIL Server  

application [28] (block 11 of Figure 1) is used as interface between the camera application and the EJS 

Robots App (block 9 of Figure 1). This latter application sends the position and orientation to the 

robots by using XBee-Java-API (block 10 of Figure 1). 

The data packet sent from the PC and between the robots has a size of 16 bytes. This is the 

maximum size allowed by NXT LEGO Mindstorms for the communications by I
2
C port [33].  

Figure 4 shows the packet structure, which is as follows: 

 Byte 0 (S): The source where the packet comes from. The value is 0 for the robot 0, 1 for robot 

1, and so on.  

 Bytes 1…4 (X1…X4): 4 bytes corresponding to the X coordinate of the robot position. 

 Bytes 5…8 (Y1…Y4): 4 bytes corresponding to the Y coordinate of the robot position. 

 Bytes 9…12 (T1…T4): 4 bytes corresponding to the robot orientation (θ). 

 Bytes 13…15: Not used in this platform. 

Figure 4. Data packet structure. 

 

2.4. Using I
2
C in NXT LEGO 

The LabVIEW toolkit for LEGO has buffers to write and read in each port, and three system call 

methods to access to these buffers. The write operation begins with the corresponding system call 

method, which constitutes the start of an asynchronous transaction between the NXT brick and the 
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Waspmote. If the return value is zero, the method starts a communication transaction. After a write 

transaction is started it is necessary to use a system call function to check the status of the port. To 

ensure the success of the transmission, there is a system call function to check the status port. 

The read operation of a device through I
2
C port is carried out in two stages. First, a write operation 

must be executed with the number of bytes that the slave has to send. If the count of bytes available in 

the read buffer is not zero, the read operation is executed and the data is obtained in the external buffer. 

3. Event-Based Control and Communication in Multi-Agent Systems 

3.1. Multi-Agent Systems and the Consensus Problem 

The simplest model to represent the communication topology of a multi-agent system is a graph  

G = {V,E}, where the nodes V correspond to agents and the edges E represent communication links 

between nodes.  

According to [3], a simple consensus algorithm to reach an agreement regarding the state of N 

single integrators of the form )()( tutx ii   can be expressed as an nth order linear system on a graph: 

 



iNj

iji txtxtx )()()(  
(1) 

The dynamics of the group of agents can be written as:  

)()( tLxtx   (2) 

where L is the laplacian of the graph, and Ni the set of neighbors of the node i [34]. 

Based on analytical tools from algebraic graph theory, it can be shown that if the graph is 

connected, then there is an unique equilibrium state for Equation (2) of the form 1eqx , where 

 


N

i iN
x

1

1 )0(  and 1 = (1 … 1)
T
. 

Consensus algorithms can be extended to formation control if the formation is represented by 

vectors of relative positions of neighboring agents. In particular, let us denote by rij the desired  

inter-vehicle relative position vector. The following control law:  

 



iNj

ijiji txtxtx r)()()(  
(3) 

yields the group to achieve the objective of the formation.  

The consensus problem has been extending regarding the agents dynamics to higher order 

integrators [35,36], or linear systems [37]. 

3.2. Model of Non-Holonomic Mobile Robots 

Single or double integrators do not describe properly the dynamics of most of commercial mobile 

robots, since these cannot move in any direction instantaneously. In robotics, holonomicity refers to 

the relationship between the controllable and total degrees of freedom of a given robot. If the 

controllable degrees of freedom are less than the total degrees of freedom the vehicle is  

non-holonomic. To avoid the non-holonomic constraint, Reference [38] defines the dynamics in terms 

of the front wheels coordinates  ii yx ,  as: 
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where iiiiii dyydxx  sin,cos  . The triple (xi, yi, θi) denotes the position and the orientation of 

the vehicle (see Figure 2b, xi = Xcm, yi = Ycm for each vehicle), and vi and ωi are the longitudinal and 

angular velocities, respectively. Let us consider as control inputs for each robot ui = (vi, ωi). 

3.3. Time Schedule Control 

In a distributed control approach, each agent collects information from its neighboring nodes and 

updates the control law according to some rules. In a networked system, collecting information means 

to transmit it through the communication channel. The information can be transmitted through the 

network in a periodic or an event-based fashion. The first case involves the traditional approach of 

sampling at pre-specified time instances, usually separated by a specific sampling period. However, 

the selected period must assure adequate system performance over a wide range of operating 

conditions. This can yield to a conservative choice and result in significant over-provisioning of the 

communication-network. Event-triggering represents one way of generating sporadic transmissions 

across network channels [39]. The communication is invoked only when something significant has 

occurred in the system. 

The problem of multi-agent systems with event-based communications has been recently  

addressed [40,41]. Whereas the controller design of [41] is centralized, [40] presents a distributed 

approach, in which the agents are modeled by single and double integrators. The control law is based on 

the states that the agents broadcast to their neighbors through the network at event times. The average 

consensus is reached preserving convergence properties and the experimental results show a significant 

reduction in the number of transmissions respect to a periodic approach. Distributed event-based control 

has been also addressed in [42], where physical coupling may exist between the subsystems. 

The control signals in each robot are computed based on the broadcasted information, which means 

that are not updated continuously, not even at each measurement of its own state received by the 

camera (see Section 2.2). The rule to determine when to broadcast is given by the trigger function. A 

trigger function determines the instants of time }{ i

kt  at which each agent broadcasts the state to its 

neighbors. In general, these broadcasting times are not equidistant as in periodic communications. 

Moreover, the proposed trigger functions depend on local information only.  

If we denote the state of an agent i as xi(t) and )(ˆ txi  as the broadcasted state of agent i to its 

neighbors, which is a piecewise constant function, an event is triggered for an agent i when: 

0)(ˆ),(ˆ),( 

















iNj

jiii txtxtxf  (5) 

is fulfilled, where Ni is the neighborhood of agent i. The trigger functions are said to depend on local 

information because the decision of when to re-compute the control law depends on the last update 

values and the neighbors’ states, and each agent does not have to monitor the states of its neighbors 

continuously in order to evaluate the triggering condition, in contrast to the trigger rules proposed in [10]. 
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Specific trigger functions based on the error )()(ˆ)( txtxte iii   are proposed. For example, static 

trigger functions have the form
0)())(( ctetef iii  , where c0 is a constant value. 

The control law ui = (vi, ωi) to reach the desired formation is computed as: 





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


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






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 
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r
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yy
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L

L

d
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ˆ

ˆ

cossin

sincos
1

0

0






 (6) 

where: 

 x̂  and ŷ are the stack vectors of the broadcasted positions, i.e.  N

T xxx ˆ,...,ˆˆ
1  and 

 N

T yyy ˆ,...,ˆˆ
1 . 

 rx  and ry  are the stack vectors of the desired positions of the agents with reference to the 

center of the group. 

Combining Equations (4) and (6) it yields that: 

 
 r

r

yyLy

xxLx





ˆ

ˆ




 (7) 

3.4. Stability Anaalysis 

Note that defining the control law given in Equation (6), two decoupled equations are obtained and 

they correspond to the equation of the event-triggered consensus problem of single integrators studied  

in [40], but extended to reach a formation. There it was proved that the consensus was reached, so in 

this case the agents achieve the desired formation translated into the XY plane by a vector which is the 

average of the initial positions (average consensus).  

Hence, the stability results sum up in the following corollary to the Theorem 4 in [40], in which 

time-dependent trigger functions of the form: 

)()())(( 10

t

iii ecctetef   (8) 

are considered. 

Remark 1. In trigger functions given in Equation (8) it is assumed that the initial conditions are t0 = 

0. Otherwise, Equation (8) can be rewritten as: 

)()())((
)(

10
0tt

iii ecctetef





 (9) 

where t0 refers to the initial time of the experiment. Thus, the threshold decreases exponentially and 

takes the value c0 in the limit when time goes to infinity. 

Corollary 2. If trigger functions given in Equation (8) are defined for the errors in the x- and y-

coordinates, such that:  

,ˆ

ˆ

,

,

iiiy

iiix

yye

xxe




 (10) 

the formation given by  rr yx ,  is reached with an error that depends on the value of parameter c0 of 

the trigger function, and the center of the formation is the average of the initial positions: 
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Proof. Let us denote: 

ryy

rxx

yay

xax





1

1




 (12)  

the disagreement vectors in the x- and y-coordinates, respectively, where 1 = (1 … 1)
T
 is an 

eigenvector of the laplacian L [3]. Thus, it holds that yx yx
   , , and it yields: 

 

 ,yyy

xxx

eL

eL












 (13)  

where ex = (ex,1…ex,N)
T
 and ey = (ey,1…ey,N)

T
. Hence, applying the results of Theorem 4 in [40], it yields 

the disagreement vectors 
yx  ,  converge to the following regions, respectively:  

,
)(

)(

0

2

0

2

cN
G

L

cN
G

L

y

x










 

(14)  

where )(2 G  is the algebraic connectivity of the graph G (second smallest eigenvalue of L). 

Remark 2. Note that the convergence of the disagreement vectors 
yx  ,  proves that the group of 

robots reaches the formation at ),( ryrx yaxa  11  with an error given by Equation (14).  

Despite the fact that the existing theory that proves the robustness of the proposed control strategy 

and the simulation results that show a significant improvement as far as the number of transmissions 

between agents is concerned, there are neither experimental results on a real platform nor a simulation 

tool to perform a wide set of experiments of formation control of mobile robots. The following section 

describes the developed software and all its capabilities. 

4. Simulation Tool 

The many control and system configuration options needed to simulate a multi-agent system 

demand a graphical user interface (GUI) with a high degree of flexibility. The GUI is intended to make 

rapid prototyping and simulation of wireless autonomous agents which execute distributed control 

algorithms and perform event-based communications. Nevertheless, the GUI has been made  

keeping the interaction with the user relatively simple and intuitive in order to be used as a  

pedagogical tool for advanced engineering control courses. The simulation tool is available on line at 

http://lab.dia.uned.es/mass. See [43] for further details. 

4.1. Description of the Simulator 

The interface of the application, shown in Figure 5, has five main panels, a menu bar, and a small 

task bar. The two upper panels of the interface provide a quick view of the multi-agent system and a 

time plot of the outputs and control signals. The top left panel shows an animation of the complete 
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multi-agent system. Each agent is numbered and shows a trace of its former positions. The lower left 

panel, named Agent Parameters, allows users to set the number of agents in the system, as well as to 

add and remove a particular agent.  

Figure 5. Illustrative example of the simulation tool. A multi-agent system with four agents 

is simulated. Note that the control actions are constant between two communication events. 

 

The time plots on the top right panel, which are grouped in the System Signals tab, display the 

relative distance to the desired formation as well as the control actions of each agent. There are also 

plots grouped in the Network Signals tab, which provide information about the measured delay of the 

sent packets. 

The lower panel, named Network Parameters, is devoted to setting up the network delay and also 

the network packet loss. Users can choose this panel to set fixed or random delay and loss probability 

functions. The lower right panel Control Parameters is used to specify the communication strategy 

which triggers the sending of packets from the agents in order to update the control actions. The 

interface is completed with a top task bar that provides buttons to start, pause, and reset the simulation. 

The components of the interface described earlier provide the basic functionality required to operate 

the application. A menu bar provides some additional features such as the possibility to specify the 

dynamic model of the agents and to select a predefined multi-agent system configuration and the 

experiment to be performed. The user can also save a configuration, mark it as default or load a 

previous configuration. 

4.2. A Practical Example 

This section presents a usage example of the simulator described above. Different experiments are 

prefixed. We select one of them in the top menu, for example, Experiment 2, in which the communication 
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topology for four vehicles is given by the graph in Figure 6, and the desired formation respect to the 

center of the group is: 

   0000,65.02.025.07.0  rr yx  (11) 

Figure 6. Communication graph describing one-dimensional network topology. 

 

The user can find in the help menu all the information about these experiments. Random initial 

conditions are generated, but we may be interested in comparing the performance of different control 

strategies (periodic and event-based, for example) for a prefixed initial coordinates. We can do that by 

right-clicking in the drawing panel and selecting the option “Setting current state as default”. 

Figure 5 shows the simulation output when the trigger function is of the form 
t

iii etetef 2.025.0002.0)())((  . The user can change the parameters of if  while the simulation is 

running or switch to a periodic communication and check online the effect of these changes  

in the system. 

5. Experimental Results 

5.1. Comparison of Simulation and Experimental Results 

Figure 7a,b shows the second component of the control signals (ωi) and the distances to the 

formation 2

,

2

, )()( riiriii yyxxd  , respectively, for the four agents when the experiment described 

in Section 4.2 is performed over the model (solid lines) and the real system (dashed lines). 

Figure 7. Comparative of simulation and experimental results: (a) Control signal,  

(b) Distance to formation. 

 

(a) (b) 
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We observe that the major discrepancies are at the beginning of the experiment. Note that the 

control signals are constant piecewise functions and change their value only at event times, while 

Equation (6) reads that they change continuously with the orientation θi even though rxx ˆ  and ryy ˆ  

remain constant in the inter-event times. The reason for this is the constraint imposed by the hardware 

in the real system. Because one agent cannot monitor its state continuously (the camera sends 

measurements every 200 ms, which is the minimum period allowed by the Waspmote cards), and the 

slow variation of the angle, the computation required to implement the continuous control law given in 

Equation (6) is not worthy. Thus, the angle is considered to remain constant between events. 

Moreover, the selected trigger functions decrease with time. This means that the threshold to detect 

an event is greater for small values of time, and fewer events are generated consequently. When the 

system approaches to the desired formation, the threshold decreases and makes the error arbitrary 

small. Note that id  takes the same value for all i = 1,…,4 and the final state only depends on the initial 

conditions, as predicted by the consensus problem theory (see Section 3). However, the final state for 

the real experiment differs slightly from the result given by the model. The reason for that might be 

sensing errors, dead-zone in the actuator and/or transmission delays. Finally, Figure 8 shows the view 

of the experiment at t = 0, 6, 12, and 24 s. 

Figure 8. View of the real experiment at t = 0, 6, 12, and 24 s. 

 

5.2. Event-Trigger Versus Time-Trigger 

Figure 9 compares the results obtained from event-trigger and time-trigger experiments. In the last 

case, each agent receives data from the camera every 200 ms, it processes the information, broadcasts 

its state to its neighbors, and computes the control law every two samples (400 ms). In the lower graph 

of Figure 9 the broadcasts in both cases are depicted for each agent (labeled from 1 to 4). For the 

periodic case, the number of packets sent through the network during the experiment should  

be 5004.0/450  agentss . However, for the event-based control this number is by far lower:  

83 events in total.  
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Figure 9. Comparison of the results obtained for event-trigger and time-trigger experiments. 

 

In the upper graph of Figure 9 the distance to the formation is shown. Note that even though the 

desired formation and the initial conditions are the same, the final state (which depends on the average 

of the initial positions) is different. As remarked before, these differences come out because it is 

difficult in experimentation to exactly reproduce the same conditions.  

For instance, network delays cannot be controlled, or sensing errors may occur more frequently in 

one case than in the other. However, observe that the time at which the formation is achieved  

(the stationary) is very similar for both time-trigger and event-trigger.  

6. Conclusions 

We have described an experimental environment for mobile robots. The hardware platform was 

developed using different components and software to overcome the limitations of the LEGO 

Mindstorms NXT robots. A distributed control approach has been used in formation control. Each 

robot communicates to its neighborhood in an event-triggering fashion for network saving purposes. A 

simulation tool with high degree of flexibility has been presented. An example has demonstrated its 

usability, and simulated and experimental results have been presented showing how the multi-agent 

system reaches the desired formation with few communications meanwhile the system performance is 

preserved. Future works will include the implementation of collision and obstacle avoidance control 

and formation control with specified paths. Exploring self-triggering techniques [44] to predict the 

next event occurrence in order to optimize the communication between the camera and the robots is 

also a future line of research. 
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