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Abstract: During the last three decades; dielectrophoresis (DEP) has become a vital tool 

for cell manipulation and characterization due to its non-invasiveness. It is very useful in 

the trend towards point-of-care systems. Currently, most efforts are focused on using DEP 

in biomedical applications, such as the spatial manipulation of cells, the selective 

separation or enrichment of target cells, high-throughput molecular screening, biosensors 

and immunoassays. A significant amount of research on DEP has produced a wide range of 

microelectrode configurations. In this paper; we describe the microarray dot electrode, a 

promising electrode geometry to characterize and manipulate cells via DEP. The 

advantages offered by this type of microelectrode are also reviewed. The protocol for 

fabricating planar microelectrodes using photolithography is documented to demonstrate 

the fast and cost-effective fabrication process. Additionally; different state-of-the-art  

Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the 

literature are reviewed. We also present our recently designed LOC device, which uses an 

improved microarray dot electrode configuration to address the challenges facing other 

devices. This type of LOC system has the capability to boost the implementation of DEP 

technology in practical settings such as clinical cell sorting, infection diagnosis, and 

enrichment of particle populations for drug development. 
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1. Introduction 

The trend toward point-of-care (POC) systems has grown dramatically in the past two decades. 

New diagnostic tools are needed to meet the increasing demand for fast, reliable and cost-effective 

diagnostic devices. These new tools would replace currently available tests that can only be conducted 

in fully equipped diagnostics laboratories [1]. Many research groups have proposed models for POC 

systems that are implemented in microfluidic-based platforms, based on a wide range of available 

technologies. Miniaturized laboratory equipment has been designed to achieve better reaction 

efficiency and faster results, while being more portable and consuming fewer reagents.  

One of the platforms used in microfluidic devices is the lab-on-a-chip (LOC), which has great 

potential for use in automated bio-microfluidic diagnostic systems. Various diagnostic techniques have 

been employed to effectively integrate multiple microfluidic components into fully automated LOC 

systems that can perform sophisticated biomedical analyses [2]. Specifically, capillary driven 

microfluidics, multilayer soft lithography, multiphase microfluidics, electrowetting-on-dielectric 

mechanisms, electrokinetics, and centrifugal microfluidics are the platforms with the most potential for 

incorporating microfluidics into a variety of biomedical engineering applications [3]. Each approach 

has unique advantages and disadvantages. This paper discusses dielectrophoresis (DEP) (specifically 

electrokinetics), which offers a number of positive features that many other available techniques are 

unable to provide.  

In this paper, we demonstrate the potential of the microarray dot electrode geometry to generate the 

DEP effect for cellular characterization and manipulation. Furthermore, we review several  

state-of-the-art LOC devices that have been described in the literature to create DEP systems. Finally, 

we present our recently designed LOC device, which works with the improved microarray dot 

electrode configuration to address the challenges faced by other devices. 

2. Lab-on-a-Chip (LOC) 

Various LOC designs have been developed in the past three decades for use in several different 

applications. The strengths of such systems include a reduced requirement for samples and reagents, 

fast and high-throughput results, low power consumption, a reduced contamination risk and a high 

degree of parallelization [1,3]. These designs take advantage of the great developments occurring in 

microfabrication techniques.  

Masuda et al. were one of the first groups to use DEP in an LOC device [4]. They designed a “fluid 

integrated circuit,” which was used to manipulate cells and separate them into different outlets. The 

proposed tool enabled automated single cell manipulation and device miniaturization by combining 

multiple cell-handling components, such as micropumps and cell-fusion electrodes, onto one substrate. 

Gascoyne et al. described a device for separating certain cancerous cells from blood in a dielectric 

affinity column [5]. The device involved two parallel glass walls, in which the lower portion of the 

glass contained an interdigitated electrode. Three holes were drilled in the top chamber wall to play the 
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roles of inlet and outlet ports for cell suspensions and elution buffers. A gasket chamber of a 100 µm 

thickness was manufactured using Teflon. This technique, when integrated with other diagnostic or 

cell separation applications, increased the overall efficiency and sensitivity of the device.  

MDA-435 cells, which are human breast cancer cells, and peripheral blood mononuclear cells were 

separated according to their dielectric properties by a device developed by Gasperis et al. [6]. That 

device combined 2D dielectrophoretic forces with field flow fractionation to manipulate cells 

efficiently. The device consisted of a 250-µm thick latex gasket sandwiched between top and bottom 

plastic plates. The electrical connections to the electrodes were linked via pressure-loaded metal wires. 

This device could be integrated with other microfluidic elements, such as a micro polymerase chain 

reaction (micro-PCR) system and capillary electrophoresis systems, to create a preliminary stage for 

sample preparation. 

Li et al. [7] proposed a highly accurate device to manipulate Listeria innocua bacteria with DEP. 

The DEP effect took place in a rectangular electrode chamber, which was built by attaching silicone 

rubber to a glass substrate equipped with interdigitated microelectrodes. Such accurate yet simple LOC 

arrangements have great potential to be implemented in diagnostic applications. 

A device developed by Fatoyinbo et al. rapidly determined the dielectric properties of biological 

cells [8]. The device consisted of a 4 × 4 dot-patterned gold microarray with a parallel ground ITO 

microelectrode on top. The microarray was designed so that each dot could be energized separately. 

The gasket chamber was fabricated using a UV-curing photopolymer resin. Overall, their design 

measured cell electrophysiology at a nearly real-time speed.  

The above reviewed works are capable of successfully manipulating and separating their intended 

cell populations; however, most of them are contained by laboratories and have yet to gain worldwide 

recognition by the biotechnology industry. Their limitations are due to fabrication constraints and 

difficulties, primarily cost factors.  

3. Dielectrophoresis  

DEP was chosen among other various approaches to manipulate cells due to several advantages. 

Features of DEP include non-invasiveness, high selectivity and efficacy on small scales, label-free 

manipulation, low costs and well-established fabrication techniques [9]. 

DEP, a phenomenon that can be used to manipulate and characterize polarizable particles, has been 

shown to work on a wide range of constituents since its discovery by Pohl [10]. It is a novel technique to 

separate living and dead cells by taking advantage of each bioparticle’s unique electrical properties [11]. 

DEP describes the movement of polarizable particles under non-uniform electric fields. 

By applying electrical forces at the micro level, researchers can determine the forces generated on 

cells, which depend on the electrical phenotype of the cell. This information can be used to determine a 

cell’s electrical properties (conductivity and permittivity) as a function of the applied signal frequency, 

creating a plot known as a “DEP spectrum,” making DEP a powerful tool for cell characterization 

studies. Different cells exhibit different crossover frequencies which are the frequency values where a 

cell’s DEP effect changes from positive to negative DEP or vice versa [12].  
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The electrical phenotype of a cell is primarily determined by its total net charge and polarizability. 

Electrical phenotypes are valuable because they correlate to biological variations in cells. Therefore, 

DEP can be used to characterize two biologically different cells [13]. 

One of the core strengths of DEP is that the characterization of different cells depends only on their 

dielectric properties, which are controlled by the cell’s individual phenotype. Hence, the process of 

DEP characterization does not require specific tags or involve chemical reactions [14]. 

Since its discovery in the 1950s, DEP has been employed in a wide variety of applications. It has been 

used to manipulate viruses [15–19], proteins [20–22], bacteria [23–26], DNA [27–29], spores [30,31], 

algae [32,33], and parasites [34,35]. DEP has also been used in research on apoptosis [36,37] and cell 

lysis and viability [38–40]. Moreover, the phenomenon has been used to manipulate micro-sized 

polystyrene particles [41], nano-sized latex particles [42] and biopolymers [43]. DEP has been employed 

extensively to characterize various mammalian cells such as neurons [44], leukemia cells [45], yeast 

cells [46], platelets [47], cancer cells [48] and sperm cells [49]. 

3.1. Theory 

Applying a non-uniform electric field to polarizable particles that are placed in a conductive 

medium produces a DEP force. The magnitude and direction of the DEP force depends on the relative 

polarizabilities of the particle and of the surrounding medium [50]. The DEP force acting on a 

spherical particle can be expressed by the following equation [51]: 
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where εo is the permittivity of free space, εm is the permittivity of the surrounding medium, r is the 

particle radius, ∇E is the electric field gradient and Re[K(ω)] is the real part of the Clausius-Mossotti 

factor. The Clausius-Mossotti factor is defined as follows: 
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where ε
*
 is the complex permittivity and subscripts p and m denote the particles and the medium, 

respectively. The complex permittivity ε
*
 is described by the below equation: 
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(3)  

where ε is the permittivity, 1j , σ is the conductivity and ω is the angular frequency of the applied 

AC electric field. The value of Re[K(ω)] for a sphere ranges between −0.5 and 1, and it depends on the 

frequency of the applied AC electric field and the relative polarizability between the particle and its 

surrounding medium [51]. Thus, particles can be induced to travel in a specific direction by carefully 

selecting these parameters. As illustrated in Figure 1, when the permittivity of the particle is higher 

than that of the surrounding medium, Re[K(ω)] > 0, and the particles have a positive DEP and move 

up the electric field gradient to the higher region. On the other hand, when the permittivity of the 

particle is lower than that of the surrounding medium, Re[K(ω)] < 0, and the particles travel down the 

electric field gradient to the lower region as a result of the negative DEP effect. 
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Figure 1. A schematic illustration of the responses of polarizable particles to a  

non-uniform electric field, provided that εp1 > εm > εp2; εm, εp1 and εp2 are the permittivities 

of the medium, particle 1 and particle 2, respectively. 

 

4. Electrode Geometry  

The non-uniform electric field required to develop the DEP effect is generated by either electrode or 

electrodeless (insulator-based) DEP devices. Electrodeless DEP employs spatially non-uniform 

insulating constriction to generate a high electric field gradient with a local maximum [52]. The 

advantage of such electrodeless devices is found in the fact that its structure is mechanically robust and 

chemically inert [53]. However, these devices require a high voltage supply and the channel length is 

limited (~10 mm) [54]. On the other hand, electrode-based DEP devices provide large trapping areas 

for cell aggregation and do not require high driving voltage; since the electric field is produced by 

electrodes on the micron scale. Another advantage of miniaturizing the electrodes is the corresponding 

decrease in the temperature rise caused by joule heating; ∇T ~ L
2
|E|

2
, where L is the length that 

characterizes the electric field variations, so a smaller L means a smaller ∇T provided that the applied 

electric field is fixed [55]. 

Various electrode geometries have been proposed in the literature, but they can generally be 

categorized into two main groups: planar and 3D electrodes. Planar electrodes are typically patterned 

on the bottom of a microchannel using conventional lithography techniques. Examples of planar 

electrode designs include interdigitated [56], castellated [57], spiral [58], curved [59], oblique [60], 

quadrupole [61] and matrix [8]. On the other hand, 3D electrodes can be designed on the bottom, the 

bottom and top, or the sidewalls of a microchannel, but these designs require complicated techniques. 

Examples of 3D electrode designs include a grid pattern [62], microwells [63], DEP-wells [64], 

extruded patterns [65], a sidewall pattern [66] and a top-bottom pattern [67].  

This variety in electrode geometry has evolved to address different research tasks. The overall 

purpose of 3D electrode designs is to perform characterization studies on large populations of particles. 

For example, interdigitated electrodes are very popular for manipulating certain populations of 
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particles depending on their characteristic electrical properties; on the other hand, a grid electrode is 

designed to precisely control the physical motions of individual particles [14]. Hence, the electrode 

geometry to be used is determined by the goal of the study.  

One of the early non-uniform electric field designs of Herbert Pohl, the pioneer of DEP, was built 

by inserting a wire into a glass tube, with another wire surrounding the inner wall of the glass  

tube [68]. However, this device required a high electric potential and could only manipulate particles 

larger than 1 micron due to the Joule heating effects. Another drawback to this design is that its 

electrodes only quantify positive DEP, since the target particles were manipulated to move only toward 

the wires not away of them. 

A quadrupole electrode, made of four electrodes facing each other to form an inner defined area, 

has been a popular electrode configuration choice for particle trapping and DEP manipulation 

applications [17,69,70]. Recently, Guan et al. used a quadrupole electrode to trap charged particles in 

aqueous solution [71]. This type of electrode has many advantages; however, it increases the applied 

electric field, resulting in a divergence of the targeted particles so that they travel away from the center 

of the four electrodes. To avoid this limitation, Voldman et al. proposed the extruded quadrupole 

electrode to manipulate particles using stronger DEP forces [72]. However, these extruded quadrupole 

electrodes, similar to other 3D electrodes, include complex fabrication processes. 

In general, most of these electrode geometries generate complicated and asymmetrical electric 

fields, making it difficult to measure the DEP force on the particles and extract their dielectric 

properties. Hence, there was a need to develop an electrode with simpler and more uniform geometry 

to address these challenges. 

5. Microarray Dot Electrode 

There are many advantages to the dot electrode design, making its configuration unique and more 

practical than other existing designs: 

i. Confined Region of Analysis: The round structure of the dot electrode creates a well-defined 

and enclosed region of analysis. This attribute enables the holding and manipulation of 

individuals and populations of cells in defined locations. 

ii. Simple Fabrication: A dot electrode is a planar 2D electrode with a simple fabrication 

procedure that utilizes the standard lithography technique. This feature gives the dot electrode 

design a competitive advantage over existing 3D electrode designs, which require complex 

fabrication steps. The dot gold electrode, for example, is fully fabricated in approximately 3 

hours by the photolithography technique (provided that the photomask of the electrode pattern 

is available). 

iii. Strong Field: While other 2D electrode designs suffer from weak trapping forces, micro-array 

ring-dot electrodes allow for the creation of multiple capture sites, each with strong  

trapping [73]. Furthermore, previous simulation works were conducted to explore the electric 

field over the dot electrode using numerical analysis [74,75], and these works have confirmed 

its effective electric field penetration. 

iv. Integrity: The round pattern of the dot electrode can be used for the probe surfaces of 

antibodies and biosensors in diagnostic devices. Piezoelectric, optical and electrochemical 
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biosensors can be incorporated with DEP technology to better characterize and manipulate  

cells [76,77]. In addition, because the dot electrode geometry is simple (with the resultant 

image being circular), no registration is needed between the images and the electric field 

template [75]. 

v. Scalability: The number of dots in the electrode can be scaled up to create larger arrays, 

allowing more regions of analysis and reducing the time needed to generate the DEP spectrum. 

vi. Symmetry: The dot electrode design is geometrically symmetrical. As a result, the electrode can 

manipulate cells regardless of the flow direction used for their injection. 

vii. Re-dispersion: When removing the electric field from the dots, particles were observed to travel 

back across the dot, ending in a near-homogeneous distribution after a period much shorter than 

that predicted for diffusion alone [75]. This phenomenon enabled serial experiments to obtain a 

complete DEP spectrum to be conducted rapidly because there is no need for external 

intervention to redistribute the particles over the dots after each experiment. 

Figure 2 illustrates a schematic diagram for the DEP effect caused by the dot electrode. When 

supplying the electrodes with low frequency signal (~10 kHz), particles exhibit n-DEP and accumulate 

at the center of the dot aperture. On the other hand, p-DEP occurs when applying high frequency signal 

(~1 MHz) causing the particles to be cleared from the center of the dot aperture and attracted to the 

electrode edge. 

Figure 2. A schematic diagram of the movement of particles within the dot microelectrode 

device when experiencing (A) negative DEP, (B) positive DEP. Reproduced with 

permission from [75].  

 

A circular “ring-dot” electrode geometry was proposed by Taff and Voldman for bioparticle 

trapping and sorting using p-DEP [73]. The ring-dot electrode geometry incorporates an outer ring 
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electrode and an inner dot electrode that lies on a different metal layer. This electrode design maintains 

a strong and spatially localized electric field. 

Fatoyinbo et al. developed a dot microsystem to rapidly determine the dielectric properties of 

biological cells [75]. Their device consisted of a dot-patterned gold microarray with parallel ground 

microelectrode on top, made of indium tin oxide (ITO) material. They linked the electrical properties 

of the particles to the shifts in light transmission through the dots and computed their results from an 

analysis of digital images. They successfully obtained the DEP spectrum of 26 data points in 

approximately 15 minutes. 

Recently, Fatoyinbo et al. successfully recorded DEP events very close to real-time using 

independently addressable dot microelectrodes in an array format [8]. These simultaneously energized 

dots had different frequencies and increased the rate of data acquisition, bringing the field a step closer 

towards obtaining a synchronous DEP spectrum.  

Fatoyinbo et al. also reported a re-dispersion effect on the particles when the electric field was 

switched off [75]. They noted that this effect was significantly easier to observe when the size of the 

dot decreased and the particles stock concentration increased. As a result, almost real-time 

electrophysiology has been conducted successfully by taking advantage of this phenomenon [8]. This 

feature makes the dot electrode design a potential choice to develop a rapid and automated LOC device 

for biomedical applications. Dot microelectrode geometry possesses special features that can enhance 

the exploitation of the DEP phenomenon. 

6. Electrode Fabrication 

The uniqueness of dot electrodes is in their planar geometry nature. Its flat geometry gives the dot 

electrode a crucial advantage over 3D electrodes because it is easier to fabricate. There are number of 

techniques exist for the fabrication of microfluidic devices, including wet etching, reactive ion etching, 

conventional machining, soft lithography, hot embossing, injection molding, laser ablation, in situ 

construction, and plasma etching [78]. However, photolithography is considered the basis for most of 

these processes. Two-dimensional microelectrodes such as the dot microelectrode can be fabricated 

using the simple photolithography technique. The overall photolithography process requires only  

3 hours to fabricate planar electrodes, assuming the photomask which carries the electrode geometry  

is available.  

The electrode geometry is designed first, using any computer-aided design (CAD) software that 

sustains rigorous dimensions and shapes at a very high resolution. The pattern of the electrode is 

printed onto soda lime glass, quartz or polyester film to make the photomask; the critical dimension of 

the electrode geometry determines the photomask material. While quartz and soda lime glass maintain 

high quality photomasks that have high stability, emulsion polyester film provides cheap photomasks 

that can preserve features up to a few microns, depending on the resolution of the mask writer.  

Table 1 summarizes the protocols used in fabricating a gold-coated glass microelectrode using the 

photolithography technique. The geometry pattern is transferred from the photomask to the substrate 

utilizing a photoresist material. There are two types of photoresist: positive and negative. Table 1 

describes the photolithography process using a positive photoresist; they have become popular because 
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they offer better process control for small geometry features. The gold etchant solution referenced in 

Table 1 was prepared by mixing KI, I2 and H2O in a ratio of 4 g:1 g:40 mL.  

Table 1. The procedure for fabricating a gold microelectrode using a positive photoresist 

with the photolithography process. 

Step Actions 

Step 1: 

Surface Preparation 

Soak the gold-coated glass slides first in acetone, then in methanol and 

then in DI H2O with 5 minutes of ultrasonic agitation at each step. Then, 

dry the slides on a hotplate at 120 °C for 10 minutes. 

Step 2: 

Photoresist Coating 
Coat the slides with a positive photoresist using a vacuum spin coater. 

Set the spin coater parameters to 3,000 rpm and 30 seconds. 

Step 3: 

Soft Bake 
Lay the slides on a hotplate for 60 seconds at 100 °C. 

Step 4: 

UV Exposure  
Expose the slides to UV light through the photomask for 40 seconds. 

Step 5: 

Developing 

Immerse the exposed slides into the developer solution for a few seconds 

only, and then rinse the slides with DI H2O to avoid an overreaction. A 

longer developing time has an adverse effect on the unexposed gold 

layer. 

Step 6: 

Hard Bake 
Place the slides in a convection oven for 45 minutes at 90 °C. 

Step 7: 

Etching 
Dip the slides into gold etchant, removing them once the exposed gold 

has been washed away. Rinse the slides with DI H2O. 

Step 8: 

Seed Layer Removal 
Place the etched slides in boiled 18% HCl until the seed layer has 

bubbled away. Rinse the slides with DI H2O. 

Step 9: 

Stripping 
Remove any leftover photoresist using a positive photoresist stripper 

solution for 5–10 seconds. Rinse the slides with DI H2O and dry them.  

Step 10:  

Disposal 

Dispose of all solutions safely. 

Figure 3 illustrates the primary stages a wafer undergoes before becoming an electrode (illustrated 

electrode is 38 × 26 × 1 mm
3
 with critical dimension of 30 microns). First, the gold-coated glass slide 

is cleaned to remove any contaminants that may be stuck to its surface. Then, the wafer is coated with 

positive photoresist using a spin coater, as shown in Figure 3(A). After being soft baked to evaporate 

the coating solvent, the glass slide is arranged with the photomask in a UV light box, as depicted in 

Figure 3(B). During the UV exposure stage, the regions of the exposed photoresist become soluble in 

the developer. Figure 3(C) shows the status of the glass after the developing step. At this stage, an 

examination of the glass slide under a microscope is strongly recommended to ensure that the overall 

structure was adequately created and to confirm that the exposed photoresist material washed away. 

Next, the glass slide is placed inside a convection oven for 45 minutes at 90 °C, in a stage called the 

“hard bake.” The goal of the hard bake is to stabilize and harden the developed photoresist. Next, the 

uncovered gold regions coated with photoresist are etched using a gold etching solution, until the glass 

slide appears, as shown in Figure 3(D). To make the gold electrode transparent, the seed layer is 
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washed away. Finally, any remaining photoresist is removed, resulting in the final gold-coated glass 

electrode shown in Figure 3(E).  

Figure 3. Images of the key steps in the fabrication of planar electrodes by 

photolithography, including (A) photoresist coating, (B) UV exposure, (C) developing,  

(D) etching, and (E) stripping.  

 

7. Ongoing Research 

Currently, we are working on a new LOC design for cell manipulation and characterization. 

Specifically, this device will be used to conduct DEP experiments as a sample preparation prior to the 

stage of infectious diseases diagnosis. 

 The proposed design addresses the previously mentioned challenges with existing devices. We 

particularly wanted a design that met the following criteria: cost effectiveness, simple fabrication, 

leakage-free flow, reusability, the ability to change any component at any time, easy assembly, and 

compatibility with different gasket heights. 

In our proposed design, we chose to use the planar multiple microarray dot electrode (Figure 4) 

because of the various advantages discussed earlier. This electrode design is an improvement for the 
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design proposed by Fatoyinbo et al. [8] described in Section 5. We have added ground plane in 

between the adjacent dots to avoid the overlapping between the electric fields generated by adjacent dots.  

Figure 4. A schematic illustration of the proposed 4x4 microarray dot electrode geometry 

used in our LOC device. 

 

This electrode design had already been simulated in a previous work [74]. Figure 5 shows the 

simulation of the electric field strength over the dot electrode with and without ground plane between 

adjacent dot apertures. The electric field strength at the dot edge of the electrode without ground plane 

between adjacent dots was found 7.9  10
4
 V/m, whilst it increases to 2.9  10

5
 V/m when adding a 

ground plane between the adjacent dots. Results confirmed the capability of our proposed electrode 

design to produce higher electric field which leads to stronger DEP force. 

Figure 5. Simulation of electric field distribution over the dot electrode: (A) without 

ground plane between dot apertures; (B) with ground plane between dot apertures. 

Reproduced with permission from [74].  

 

Our proposed LOC design consists of five layers, as shown in Figure 6. Detailed specifications on 

the dimensions and materials for each layer are described in Table 2. The ITO layer plays the role of a 

ground electrode; a unique advantage of ITO electrodes is their transparency, which facilitates DEP 

assay monitoring.  

A spacer, where the DEP effect will take place, is another component of the device. A 3-mm 

channel should be cut at the middle of the spacer to create room for the fluid to flow. It is of  

great importance to fix the distance between the positive and ground electrodes throughout  
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the microchannel, creating a symmetrical electric field distribution and avoiding any possible  

fluid leakage.  

As shown in Figure 6, rectangular holes (10 mm  6 mm) are cut through the top and bottom layers 

to allow better light transmission for observing and recoding the DEP effect under the microscope. The 

gold and ITO electrodes are connected to the function generator via flexible wires and silver-loaded 

epoxy. There are engraved areas in the top and bottom layers to provide a space for these connections, 

as illustrated in Figure 6. 

Figure 6. A schematic diagram of the proposed LOC device. 

 

Table 2. Design specifications of the different layers of the proposed LOC device. 

Component Material Dimension (mm) 

Long Width Thickness 

Top Layer PMMA 60 40 4 

ITO Layer ITO 45 15 1 

Spacer Polyresin  38 15 0.1 

Electrode Gold 38 26 1 

Bottom Layer PMMA 60 40 4 

8. Conclusions 

Though DEP fields have been studied extensively, there is room for improvement. The significant 

quantity of research conducted on DEP in the last three decades has produced a wide range of 

microelectrode configurations. In this paper, we described a microarray dot electrode that could be a 

promising electrode geometry for cellular characterization and manipulation via DEP. The dot 

microelectrode has the potential to acquire the DEP spectra of biological cells in real-time using simple 

digital image processing techniques. The advantages offered by this type of microelectrode have been 
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discussed above. The protocol for fabricating planar microelectrodes using photolithography has also 

been documented to demonstrate that it is a fast and cost-effective process. We also reviewed different 

state-of-the-art LOC devices that have been proposed in the literature for DEP applications. In 

addition, we presented our LOC device, which has been recently designed to address the challenges 

facing other devices. The proposed LOC device can be used to study the changes in a cell’s electrical 

characteristics as they occur, enhancing our understanding of the role electrophysiology plays in drug 

actions. This study represents a step toward validating DEP in practical settings by proposing LOC 

designs that combine cost efficiency and ease of fabrication with rapid throughput. In the coming 

years, DEP technology will become a vital technique for many real and POC applications, freed from 

research laboratories. 
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