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Abstract: An application of spectral analysis to the transient response signals of  

ALD-fabricated conductometric sensors (chemiresistors) upon exposure to short vapor 

pulses is discussed. It is based on the representation of a response curve in the frequency 

domain, followed by the multi-dimensional Quadratic Discriminant Analysis (QDA) for 

analyte identification. Compared to the standard steady-state amplitude analysis, this 

technique does not depend on a short-term sensor drift, does not have limitations for the 

number of extracted features and has a strict physical validation. Effective recognition of 

some relatively simple combustible analytes (acetone, toluene, ethanol) was demonstrated 

using a single nonspecific chemiresistor. 
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1. Introduction  

Detection and recognition of combustible and explosive vapors remains an important problem for 

industry and national security. Major efforts in this direction have been concentrated on the 

development of analytical instruments, such as spectrometers of different kinds that are capable of 

detecting and analyzing the molecular structure of gaseous species. Currently, analytical tools of this 

type remain bulky and expensive, require considerable time for analysis, typically under laboratory 

conditions, and highly-qualified personnel to operate them. The best alternative for replacing the 
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spectroscopy tools is the use of artificial olfactory systems also known as electronic noses [1,2]. An 

electronic nose is a biologically inspired device that identifies and analyses chemical compounds in 

gaseous environments. An electronic nose consists of a mechanism for chemical detection, such as an 

array of electronic sensors, and a mechanism for pattern recognition, such as a neural network [3]. 

Conductometric sensors (chemiresistors) are traditionally used as the building blocks for electronic 

noses [1,2]. A chemiresistor is a device whose electrical resistance can be modulated by molecular 

adsorption on its surface. Typically, the changes in resistance are proportional to the partial vapor 

pressure of chemicals in the atmosphere; hence a chemiresistor converts the concentration of chemicals 

in the atmosphere into a measurable electrical signal. Commonly utilized chemically sensitive 

materials are carbon-black polymer composites, arrays of metal nanoparticles, biological materials and 

metal oxide films [4–16]. Sensing behavior is one of the most important and well-known properties of 

metal oxide materials and it was found that metal oxide sensors usually demonstrate much higher 

sensitivity, selectivity, and stability to their chemical environment than the other materials. The 

sensing mechanism by metal oxide films is primarily based on high-temperature activation of 

atmospheric oxygen on the semiconductor surface [4–13]. Consequently, the catalytic reactions of 

gaseous species with oxygen sites on the surface induce charge transfer from the surface to the bulk, 

changing the electrical resistance of the device (Figure 1a–c)). In order to generate a comprehensive 

smell-print, sensors are usually arranged in an integrated array. Individual chemiresistors in the array 

are nonspecific and vary by physical or chemical parameters, such as: type of oxide, thickness of oxide 

layer, temperature, n or p-type volume doping, surface doping with catalytic nanoparticles.  

Figure 1. (a) Schematics of a thermally activated metal oxide chemiresistor of with  

O
−
 termination at the surface in the ambient air and (b) upon the exposure to combustible 

vapor. (c) A typical response curve of a metal oxide chemiresistor upon exposure to a 

combustible vapor (d) Stages of signal processing and pattern recognition. 

 

Upon the exposure to analyte, the integrated patterns of signals undergo processing by the pattern 

recognition software. Most feature extraction techniques for recognition software have been based on 

linear techniques, mainly principal components analysis (PCA) and Fisher’s linear discriminant 

analysis (LDA) [3,17]. PCA is a signal representation technique that generates projections along the 

directions of maximum variance, which are defined by the eigenvectors of covariance matrix. LDA is a 

signal classification technique that directly maximizes class separability, generating projections where 
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the examples of each class form compact clusters and the different clusters are far from each other. 

The LDA algorithm selects features that are most effective for class separability, while PCA selects 

features important for class representation. Initially, the most common practice for recognition of 

gaseous analytes was to use the steady state responses of the sensors as a feature vector [1–3,17]. At 

the same time, the transient response contains sufficient discriminatory information. Later, multiple 

successful studies have been conducted in order to expand the LDA and PCA for transient response. In 

these studies, the feature vector was extracted using a variety of methods, such as fast Fourier 

transform (FFT) [17], Continuous wavelet transform [18], Gardner transform, multi-exponential 

transient spectroscopy, Pade-Laplace and Pade-Z transforms [19], and dynamic moments [20]. In an 

earlier work [21] the authors demonstrated the extraction of a transient feature, which is strongly 

correlated with the steady-state response, but available much earlier than the latter. Once the features 

are extracted, the back-propagating PCA or LDA-based neural network is typically used for  

predictive classification. 

There is no universal sensor system that can solve all the gas or vapor analysis problems. Instead, 

there is a need to employ intelligent sensor systems that are appropriate to the application. This means 

building in intelligence through the development of suitable sensor structures, sensor materials and 

pattern recognition methods. In this paper we present a technique that allows one to build a simple 

vapor recognition system based on a single broadly-tuned metal-oxide chemiresistor, fabricated using 

atomic layer deposition (ALD). This method is based on the combination of fast Fourier transform 

(FFT) with exponential windowing and Quadratic Discrininant Analysis (QDA). It is specifically 

designed for rapid delivery of the analyte to the sensor in the form of short 0.1 s bursts and takes 

advantage of the rising and declining parts of the response curve. In contrast to the traditional analysis 

of the steady-state responses, the advantage of this method is the ability to analyze the entire catalytic 

process occurring on the sensor. Sensor calibration was performed via a VaporJet calibrator, which 

simulates vapor-pulse delivery typical for pre-concentrators of analytes [1,22]. This approach has strict 

physical validation, since the time-dependent features of the response curve are uniquely determined 

by a particular catalytic reaction. The number of extracted features in our method does not have 

limitations and can be adjusted depending on tested analytes. 

2. Experimenal Design  

Chemiresistors were fabricated using a Beneq atomic layer deposition (ALD) system TFS 500 for 

deposition of ZnO on the silicon oxide substrates. ALD utilizes a binary reaction sequence of  

self-saturating chemical reactions between gaseous precursor molecules and a solid surface to deposit 

films in a monolayer-by-monolayer fashion. ALD of ZnO was conducted at 150 °C using diethyl zinc 

(DEZ) and deionized water (H2O) as zinc and oxygen sources, respectively [23–26]. During the 

deposition, the background pressure of 1 Torr in the reaction chamber was maintained by a steady flow 

(300 sccm) of the process gas nitrogen. Each ALD reaction cycle included a 250 ms DEZ pulse, 

followed by a 2 s pressurizing with nitrogen purge, a 250 ms H2O pulse and another 2 s nitrogen purge. 

A complete layer deposition consisted of 375 cycles. Following the above procedure, a uniformly 

distributed 85 nm polycrystalline ZnO coating was achieved.  



Sensors 2013, 13 9019 

 

 

A standard two electrode test geometry was used for measuring the electrical response of 

chemiresistor to chemical vapors. Electrodes were deposited on the ZnO layer using shadow masking 

and consisted of the adhesion 50 nm thick nickel layer followed by 250 nm layer of gold. The 

electrodes were annealed and the ohmic nature of ZnO-metal contacts was verified by I–V 

characterization. The 5 mm × 5 mm sensor was connected to a thermocouple and placed on a variable 

temperature platform for temperature control. Sensor responses were acquired with a Keithley 3706 

six-slot system switch with a high-speed multiplexer Keithley 3723 card interfaced to a computer via 

Labview-operated data acquisition software for real time conductance measurements. The sensor's 

operational temperature range was found to be between 100 °C and 500 °C. The lack of sensitivity 

below 100 °C is due to a sufficient drop in surface oxygen vacancies below this temperature. The 

reduction of sensitivity above 500 °C is caused by the activation of surface phonons resulting in a 

sufficient increase in the oxygen desorption rate. Maximum sensor response was achieved at 400 °C. 

The sensor was initially heated to 400 °C in synthetic air at ambient pressure to obtain a steady state 

resistance. Once the steady state resistance was achieved, pulses of vapors were introduced in the air 

flow by a MicroFab VaporJet calibrator (Figure 2a). 

Figure 2. VaporJet calibrator (a) and principle of operation (b). 

 

The principle of operation of the VaporJet calibrator is shown in Figure 2b. The ink-jet dispenser 

that is employed in the VaporJet calibrator is drop-on-demand (DOD), meaning that it can produce a 

drop only when required. The actuation of the dispenser is done with a piezoelectric element. The 

dispenser consists of a glass tube having an orifice at one end and being connected by the means of 

Teflon™ tubing to the reservoir containing the solution to be dispensed. An annular piezoelectric 

element poled in the radial direction is bonded to the glass using a thin epoxy layer. When voltage is 

applied to the piezoelectric actuator, the actuator contracts or expands (depending on the direction of 

the electric field produced in the piezoelectric element relative to the poling direction) and this 

deformation is transmitted to the glass and then to the fluid. Because the structural response is very fast 

and the solution to be dispensed is in contact with the glass, the motion of the structure translates in a 

volumetric change in the solution. The change produces a localized pressure variation that travels as 

acoustic waves in the solution contained by the glass tube. The details of VaporJet design and 

operation can be found in [22]. Thanks to the advantages of this technology, short 0.1 s pulses of 

various analytes were used for sensor exposure in this study. 
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3. Signal Processing and Pattern Recognition 

The signal processing and pattern recognition techniques are demonstrated on the example of three 

combustible substances: ethanol, toluene and acetone. All three of the tested chemicals effectively 

participate in a rapid catalytic oxidation on the surfaces of metal oxides. In the present study, the 

partial vapor pressures of the analytes in the ambient atmosphere were between 100 and 150 ppm. The 

raw data curves obtained from the sensors upon the exposure to 100 ppm of toluene, acetone and 

ethanol are shown in Figure 3a–c. Typically, the relative change of the sensor resistance in the range 

0.1–10 times can only be achieved after a few seconds of exposure [10–16]. A significant change in 

resistance of the atomically deposited ZnO layer upon the 0.1 s exposure of 100 ppm analyte pulse can 

be broadly categorized as a finite size effect. Specifically, the diffusion of the molecular species 

between the neighboring nanocrystals, as opposed to depletion of free carriers over the entire surface 

of an individual ZnO nanocrystal, creates stochastic contact potentials at grain boundaries (Figure 4). 

The contact potential can be viewed as a tunneling barrier to electrons, which in our case is modulated 

by the oxidation of the analyte. It is well known that the surface area and the surface defects are crucial 

for a high sensitivity given that the ionization happens primarily on the edges and corners of the 

nanocrystals [4–6]. This explains the superior sensitivity of the ALD fabricated polycrystalline oxide 

films. The amplitudes of sensor responses are clearly different for different chemicals, which gives a 

discrimination mechanism for pure analytes having the same vapor pressure; however, the amplitude 

data can be insufficient if the vapor pressures are different. In addition, a common sensor drift problem 

makes vapor recognition by amplitude using a single nonspecific chemiresistor impossible. 

Figure 3. (a–c) Raw data obtained from the sensor. (d–f) Signal extracted by the analysis of 

autocorrelation coefficient (g–i) Extracted signal enhanced with the exponential window. 
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Figure 4. Schematic energy-level diagrams of the polycrystalline ZnO layer (a) prior to 

exposure to toluene and (b) after exposure and subsequent oxidation of toluene. 

 

A more productive approach would be to represent the entire response signal as a mathematical 

object suitable for processing by the recognition algorithm. The stages of signal processing and pattern 

recognition are shown in Figure 1d. In order to analyze the sensor response, the meaningful part of the 

response curve corresponding to the catalytic reaction on the surface has to be extracted. The 

extraction of meaningful part can be divided in two stages. A drop of resistance, corresponding to 

vapor exposure, is a relatively fast process compared to the rising part of the curve, corresponding to 

the recovery of oxygen species on the chemiresistor surface (Figure 1c). By monitoring the time 

derivative of the curve, the moment of rapid resistance drop can be detected. This moment is a starting 

point of the extracted signal. The sensor recovery takes longer, compared to the reaction phase. 

Therefore, the ending point of the extracted signal was determined by the analysis of an 

autocorrelation coefficient [27]:  

 
(1) 

where xi is a single observation, and  is the overall mean. In our experiments a short-term 

autocorrelation was considered (k = 1) and the mean value was taken over N = 20 observations. The 

value of the autocorrelation coefficient that separates the signal from background noise depends on 

variety of factors corresponding to the particular experiment: type of background, humidity, 

temperature, or presence of electromagnetic field. Under the laboratory conditions the optimum lower 

boundary for autocorrelation coefficient that separates signal from noise was found to be 0.9. The 

meaningful part of the curve corresponding to sensor response to vapor exposure (extracted signal) is 

shown in Figure 3d–f. In order to create an array of input parameters for recognition algorithm, these 

raw data curves have to be transformed into mathematical objects suitable for processing. A very 

efficient technique to mathematically reconstruct the signal is to use fast Fourier transform (FFT). 

Application of FFT requires that the signal must be periodic in the sample window or frequency 
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leakage will occur [27]. In other words, the signal must start and end at the same point in its cycle. 

Since the starting and ending points of them have different magnitudes (Figure 3d–f), FFT cannot be 

applied to the extracted part of the response curve directly. To preserve the spectral structure of the 

signal, the exponential window typical for response signals was applied. The exponential windowing is 

a multiplication of a response signal by the following function: 

 (2) 

where N represents the window width as a number of counts, n is an integer with values 0 ≤ n ≤ N–1, 

and τ is the time constant of the function. The effect of the exponential window on the response signal 

in the time domain is shown in Figure 3g,h,i. The window weights the beginning and end of the 

sample to baseline so that it is more periodic during the FFT process. Upon applying the FFT to the 

enhanced data set, the response signal in a frequency domain is shown in the Figure 5. The obtained 

harmonics can completely reconstruct the signal in time domain as Fourier series. The example of 

signal reconstruction for acetone, ethanol and toluene using the first twenty harmonics is shown in 

Figures 5c,f,k. The contribution of baseline to the sensor response was eliminated as constant, which 

makes the extracted features independent from the short-term sensor drift. Evolution of features under 

long-term sensor drift [28] has not been evaluated in the frame of this study. Reconstructed response 

signals in the time domain (Figure 5c,f,k) are mathematical functions of the following type:  

 (3) 

where A0 is a baseline dependent constant and N is a number of harmonics. An, ωn, θn are spectral 

amplitudes, frequencies and phases respectively. For N = 20 the response signal can be characterized 

by 60 parameters: 20 amplitudes, 20 frequencies and 20 phases. Hence, in 60-dimentional hyperspace 

the entire signal can be represented as a single point. Introduction of pulses of different concentrations 

(between 100 and to 150 ppm) during the training process causes slight deviations in the spectral 

structure of the signal, which causes a formation of a cloud, rather than a single point. Upon the 

completion of training, the electronic smell-print of each chemical is represented as a cloud of points in 

60-dimensional hyperspace. Figure 6a,b,c illustrate the 3-D subspaces of the first three harmonics out 

of twenty. As one can see, the data related to different analytes are clearly grouped. Based on the 

training of our device, the pattern recognition algorithm was developed. A standard approach in 

recognition of chemical patterns is a linear discriminant analysis (LDA) [1,3,5,6,17]. However, the 

major difficulty of LDA is the assumption that the Gaussian densities for different classes (analytes) 

have the same shape, but are shifted versions of each other (different mean vectors). Frequently, for 

chemiresistors this assumption is not supported by the experimental evidence and the linear boundaries 

between the classes are not always consistent. An improved version of LDA is the quadratic 

discriminant analysis (QDA), where the differences in distributions are included in the model and the 

classes are separated by the second order surfaces. The QDA algorithm applied to the vapor 

recognition problem can be introduced using the following formalism. Let  be an arbitrary response 

signal vector of 60-dimensional hyperspace. Let  be a probability that vector  belongs to class 

k, and  be the probability that vector  belongs to class l. Assuming that the priory probabilities 

of  and  are equal, the boundary separating classes k and l is a 60-dimentional surface on 
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which the probabilities  and  are equal to each other. Therefore, the equations for boundary 

between the classes k and l can be written in the following form [3]:  

 (4) 

where p is the dimension, Σk and Σl are the covariance matrices, and  and  are the mean vectors of 

classes k and l respectively. The visualization of the QDA in 3-D subspace of the first 3 harmonics for 

acetone, toluene and ethanol are shown in the Figure 6d–j. The lines in Figure 6d–j separating the 

analytes are the projections of a 60-dimensional surface on coordinate planes of 3-D subspace. For 

QDA the projections are the second order curves, compared to LDA where the projections are linear. 

Once the training is complete and the boundaries are found, any new sensor response vector  will be 

attributed to a particular class of analytes. 

Figure 5. Spectral structure of the first twenty harmonics and the signal reconstruction in 

time domain for acetone (a–c), ethanol (d–f), and toluene (i–k). 

 

The number of classes, as well as the structure of boundaries between the classes, is completely 

determined by the training data set. Therefore, with an increase in the number of training inputs, the 

structure of boundaries will evolve and eventually stabilize. For very different chemicals like acetone, 

ethanol and toluene at 100 ppm levels of concentrations the electronic smell-prints are perfectly 

separable. However, for similar analytes, like DNT and TNT, at lower levels of concentrations (ppb, 

ppt), the smell-prints will be less distinguishable and the statistical analysis of an integrated signal 
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from multiple sensors with different catalytic properties will become essential. The extension of this 

method for multi-sensor detection will be considered in our future publications.  

Figure 6. Visualization of the projections of 60-dimentional hyperspace (a–c). Clouds of 

points corresponding to different analyte exposures in 3-D (amplitude, frequency, phase) 

coordinate systems, corresponding to the first (a), second (b) and third (c) harmonics. 

Visualization of the quadratic discriminant analysis for the first (d,h), second (e,i) and third 

(g,j) harmonics.  

 

4. Effect of Humidity on Sensor Performance 

One of the most complex problems of current sensor technology is the common issue of sensor drift 

due to the environmental conditions. Because of this, steady-state amplitude analysis has the potential 

to lead to false positives if the recognition algorithm training was conducted at a different humidity 

level than field conditions. This effect is especially well pronounced at low analyte concentrations, 

where drift becomes comparable with the sensor response. In contrast, the spectral analysis of the 

transient response is significantly more robust. In order to illustrate this point, vapor recognition using 
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a transient response of a single chemiresistor was compared with recognition using the steady-state 

response of an integrated system of three chemiresistors with different thicknesses of sensing metal 

oxide layers. The discrimination between the acetone and ethanol at 10 ppm concentration levels was 

studied at different humidity levels. Water vapor was introduced in the ambient air flow to simulate 

varying levels of humidity using a standard chemical bubbler. The input for a single-sensor recognition 

system was in the form of 4 s exposures, while for the multi-sensory system sensors were exposed to 

analyte until they reached a steady-state.  

Figure 7. Separation of classes in the (a) hyperspace of steady-state responses of  

multi-sensory system (b) sub-space of the first harmonic extracted from the transient 

response. Probability density for acetone and ethanol for steady-state (c) and harmonic  

(d) analysis. Coordinate x was obtained by transformation of coordinates according to 

Fisher’s criteria of LDA. 
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The extracted features for 16 exposures (eight exposures to acetone and eight to ethanol) for both 

configurations are shown in Figure 7a,b. For each analyte, the humidity level from exposure to 

exposure was adjusted by ~3% in the range between 60% and 85%. Figure 7a shows the amplitude 

output of a multisensory system, and Figure 7b shows the sub-space of the first harmonic extracted 

from the transient response. Quantitatively, the harmonic and amplitude recognition techniques can be 

compared by using probability density functions (PDF). By decreasing the amount of dimensions and 

projecting the data points into C-1 dimensional space where C is the number of classes, we maximize 

the separation between classes and minimize the separation within the classes. Figure 7c,d show the 

probability density for acetone and ethanol as functions of coordinate x that was obtained by 

transformation of coordinates according to Fisher’s criteria of LDA [3,17]. As it can be seen from the 

figure, the steady-state amplitude analysis leads to wide and overlapping distributions for two classes 

(Figure 7c), while the harmonic analysis generates well-separated narrow peaks (Figure 7d). The insets 

in the graphs show the mean values and standard deviations for each of the distributions. Also, in order 

to provide a quantitative evaluation of the steady-state and harmonic analysis, we compared  

a parameter: 

 (5) 

which can be used to determine the discrimination power of the method [3]. The result of this 

comparison is shown in the Table 1. The parameter J is ~ 17 times higher for harmonic analysis, than 

for steady-state amplitude analysis. Therefore, the variations in the level of humidity makes the 

separation of classes much less pronounced in the steady-state analysis, while through spectral 

analysis, the separation of classes remains much more stable. 

Table 1. Quantitative comparison of discrimination capabilities of the steady-state and 

harmonic analysis at different humidity levels.  

Method 
Distance between 

the Classes 

Sum of Standard 

Deviations of Classes 
J 

Harmonic Analysis 0.0132 790 × 10
-6

 16.709 

Steady-state Amplitude Analysis 0.122 126 × 10-3 0.968 

5. Conclusions 

The application of spectral analysis to the response signals of conductometric sensors was 

discussed. The analysis was demonstrated on the example of an ALD-fabricated ZnO chemiresistor, 

upon exposure to short 0.1 s pulses of analytes. The techniques of signal extraction, enhancement, spectral 

analysis and reconstruction were demonstrated. The recognition of analytes was accomplished by 

separating them in multi-dimentional hyperspace of extracted spectral characteristics using Quadratic 

Discriminant Analysis. The method helps to overcome common problems like short-term sensor drift 

and limited amount of the extracted signal features. The presented technique allows one to build a simple 

vapor recognition system based on a single broadly-tuned metal-oxide chemiresistor. The method can be 

further developed for the integrated sensor arrays for recognition of more complex analytes. 
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