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Abstract: Timely and accurate condition monitoring and fault diagnosis of rotating 

machinery are very important to maintain a high degree of availability, reliability and 

operational safety. This paper presents a novel intelligent method based on local mean 

decomposition (LMD) and multi-class reproducing wavelet support vector machines 

(RWSVM), which is applied to diagnose rotating machinery faults. First, the sensor-based 

vibration signals measured from the rotating machinery are preprocessed by the LMD 

method and product functions (PFs) are produced. Second, statistic features are extracted to 

acquire more fault characteristic information from the sensitive PF. Finally, these features 

are fed into a multi-class RWSVM to identify the rotating machinery health conditions. The 

experimental results validate the effectiveness of the proposed RWSVM method in 

identifying rotating machinery fault patterns accurately and effectively and its superiority 

over that based on the general SVM. 

Keywords: local mean decomposition; reproducing wavelet kernel support vector 

machines; fault diagnosis; sensor-based vibration signals; rotating machinery 
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1. Introduction 

Rotating machinery fault diagnosis is actually a pattern recognition process [1,2], which includes 

acquiring the information, extracting the features and recognizing the conditions. The latter two are the 

key links.  

The purpose of extracting the features is to extract parameters representing the machine operation 

conditions to be used for machine condition identification. There are a number of feature extraction 

methods for vibration signals in the literature. A popular and noted example is the time-frequency 

analysis method of wavelet transform, which has obtained great success in machine fault diagnostics 

for its many distinct advantages [3,4]. However, wavelet transform, is essentially an adjustable 

window Fourier transformation. On the one hand, due to the limited length of the wavelet base 

function, energy leakage would occur inevitably in a wavelet transformation [5]. In addition, the result 

of a wavelet transform depends on the choice of the wavelet basis function, and only those signal 

features that match well with the shape of the wavelet basis function have a chance to be detected, 

while all other features will be masked or even completely ignored. Therefore, wavelet transform is not 

a self-adaptive signal processing method in nature [6]. Empirical Mode Decomposition (EMD) 

proposed by Huang et al. [5], is a self-adaptive signal processing method that could decompose a 

complicated signal into a number of intrinsic mode functions (IMFs). Unlike the wavelet transform, 

EMD has no need for a basis function and no need for a Fourier transformation, and can perform 

decomposition of the raw signal and automatically determine the level of decomposition based on the 

nature of that raw signal. Frequency components contained in each IMF not only relate to the sampling 

frequency, but also change with the signal itself. Furthermore, the whole transform process would not 

lead to energy diffusion and leakage. Fault diagnosis based on the EMD has been improved and 

successfully applied to rotating machines [7–9]. 

Local mean decomposition (LMD) is a novel adaptive time–frequency analysis method proposed by 

Smith [10] in 2005. It is suitable for the analysis of multi-component non-linear and non-stationary 

signals caused by faults in rotating machinery [11–13]. Moreover, the differences between the two 

adaptive methods LMD and EMD are given in [14] where it was shown that LMD is superior to the 

EMD method in four aspects. Therefore, the LMD technique is further investigated to preprocess the 

vibration signals to highlight the features in this work.  

Final condition identification is another task in fault diagnosis of rotating machinery. Machine 

condition identification via artificial intelligence techniques can provide an automated fault diagnosis 

procedure [15,16]. However, lack of fault samples is the main bottleneck. Support vector machine 

(SVM) developed by Vapnik in 1999 is an effective method for pattern recognition with small 

samples [17]. The basic idea of SVM is to implement nonlinear transformations by defining an 

appropriate kernel function. The input space is transformed into a high-dimensional space and then the 

optimal liner classification hyper-plane is calculated in the new space [18], so the kernel function plays 

a very important role in the SVM method. However, due to the limitations of different kernel functions 

and the difficulty of designing a universal kernel function, novel kernel functions still need be studied, 

designed and applied to SVM.  

The combination of wavelet analysis and SVM kernel function is a new idea and technology, which 

has the advantages of better accuracy, generalization capability and multi-resolution [19]. In this paper, 
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we present a novel support vector classification model based on reproducing wavelet support vector 

machines (RWSVM), which is an expansion and improvement of the general SVM. RWSVM model is 

based on the theory of wavelet analysis and Reproducing Kernel Hilbert Space (RKHS) [20]. A new 

reproducing wavelet kernel is constructed by wavelet basis function in different resolution, which is 

used to construct support vector classification model. 

To automatically and effectively diagnose rotating machinery faults, a novel fault diagnosis method 

based on LMD and RWSVM is proposed in this paper. In the proposed method, the sensor-based 

vibration signals captured from the rotating machinery are first decomposed by the LMD method. 

Second, the most sensitive PF that contains the main fault information is selected. Third, statistic 

features are extracted from the most sensitive PF. Finally, these features are input into the RWSVM to 

recognize the health conditions of the rotating machinery. The identification results validate the 

effectiveness of the proposed method. 

2. The Proposed Method 

2.1. LMD Algorithm 

LMD was originally developed to decompose modulated signals into a small set of product 

functions (PFs), each of which is the product of an amplitude envelope signal and a frequency 

modulated (FM) signal. Different from EMD, the essence of the LMD method is to isolate pure  

FM signals and envelope signals from the original signal by iteration, and then multiply the pure  

FM signals with envelope signals to get a PF component whose instantaneous frequency is  

physically meaningful.  

A more detailed and comprehensive explanation of LMD is provided in references [11,14]. After a 

series of calculations, the original signals are decomposed as follows: 

 (1) 

where x(t) is the original signal, resn(t) is the residue. 

In order to verify the effectiveness of the proposed signal transient detection method, an application 

example for the detection of localized outer-race defects of rolling bearing (type ZA-2115) is provided 

here. The rotating frequency fr of the shaft is 66.66 Hz. Based on the geometric parameters and rotating 

frequency [21], the characteristic frequency of the outer-race defect is 236.4 Hz. The sampling 

frequency is 20 kHz. Figure 1 shows the time domain waveform and spectrum of the vibration 

acceleration signal. It can be observed that the fault feature is so weak that it is drowned by the 

background signals related to the rotary speed of the rotor and other noise. 

The LMD is employed to decompose the vibration acceleration signal and a total of six PFs and the 

residual item are obtained, as shown in Figure 2. It can be clearly distinguished in this figure that there 

are obvious periodical impulses in the time domain in PF1. The frequency spectrum analysis of this 

signal is shown in Figure 3. The fault characteristic frequency of the outer race, fo, and its 

harmonics (2 fo, 3 fo, 4 fo, 5 fo, 6 fo) can be clearly observed. 
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As shown in Figure 3, it is clear that the rolling bearing fault frequency feature can be obviously 

distinguished. Therefore, the LMD method is effective and available in analyzing those vibration 

signals of rotating machinery which usually have modulated characteristics.  

Figure 1. The time domain waveform and spectrum of the vibration acceleration signal of 

the rolling bearing with localized defects on the outer race: (a) time domain waveform and 

(b) spectrum. 

 

Figure 2. The decomposed results and residue by LMD of a bearing outer race fault signal. 

 

Figure 3. Frequency spectrum of PF1. 

 

2.2. Multi-Class RWSVM 

The main idea in this proposed method is to construct a reproducing wavelet estimator by solving 

an empirical risk minimization problem. According to the learning theory [22], learning from samples 

can be viewed as the classification of the functional dependency between an input x and an output y of 

a system given a set of examples: 
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 (2) 

In order to avoid ill-posed problems, we have to look for the function f that minimizes the 

regularized empirical risk functional instead of the empirical risk according to regularization theory [23]. 

 (3) 

Where C(·,·) is a cost function, H is a Reproducing Kernel Hilbert Space (RKHS) and λ is a 

regularization parameter. 

By minimizing the regularized empirical risk in Equation (3), RWSVM estimator has the following form:  

 (4) 

Where b∈R, αi is the Lagrange multiplier, and K(·,·) is the reproducing wavelet kernel function with 

the form:  

     , , , =1, ,T

i j i jK x x x x i j l     (5) 

In the case of RWSVM method, K(·,·) is a multi-scale wavelet kernel constructed in the RKHS. 

RKHS is a Hilbert space with special properties. The interest of RKHS arises from its associated 

kernel functions. In learning theory, some advance of kernel issue has shown the importance of using a 

wisely chosen kernel in RKHS as it largely influences the generalization capability [24].  

Theorem. Wavelet frames’ finite set of L
2
(R) is a Hilbert space endowed with inner product spans a 

RKHS. Let’s define an indexed family of function Гt∈L
2
(R) index by t∈x (x being any subset of R

n
), its 

reproducing kernel is K(x,y) = <Гx(·), Гy(·) > L
2
(R). Interested readers should refer to [25,26] for details. 

Consider the family ei(·) as an orthonormal basis of L
2
(R) and let Φi be a point-wise defined wavelet 

basis of L
2
(R). One can write: 

     ,

,

x i j j i

i j

x e      (6) 

where αi,j=cjδi,j is the coefficients combining the orthonormal basis {ei} of L
2
(R) with wavelet basis Φj 

of L
2
(R), and cj is a coefficient depending on the considered wavelet Φj. 

So far, we can construct a wavelet kernel in RKHS as follows: 

     , ,

, ,

, i j j n j n

i j n

K x y x y     (7) 

For a common multidimensional wavelet function, the mother wavelet can be given as the product 

of one-dimensional (1-D) wavelet function according to the tensor products of RKHS [27]: 

 (8) 

Let ψ(x) be a mother wavelet and let a and b denote the dilation and translation factor, 

respectively, a, b∈R, then according to wavelet theory: 
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 (09) 

where a0, b0∈R, j, k∈Z, i denote a multi index. It is know that when the function ψ(x) satisfies the 

necessary condition (admissibility of the mother wavelet and suitable parameters with a0, b0 such as 

a0 = 2, b0 = 1) will lead to wavelet frames. 

For practical kernel construction, we have to define a mother wavelet function and select suitable 

parameters according to the problem at hand. Moreover, we can truncate the range of the scales and set 

coefficients in Equation (7) so that the kernel in RKHS can be written as follows: 

 (10) 

where j, k are the dilation and translation parameters of a mother wavelet function respectively, jmin 
and jmax are the minimum and maximal dilations [20], and kmin and kmax are the minimum and maximal 

translation of the wavelet kernel, respectively. The minimal and maximal dilations can be selected by 

the cross-validation model [28]. 

In this study, we constructed RWSVM with different wavelet functions. Figure 4 shows the 

representations of the wavelet kernel SVM function using Haar, Daubechies, and Coiflet. 

Figure 4. Examples of wavelet kernel: (a) Harr Kernel (b) Daubechies Kernel (c) Coiflet Kernel. 
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multi-class RWSVM is constructed according to 1-v-r multi-class SVM. Therefore, the process of the 

multi-class RWSVM is described in Figure 5. 

Figure 5. ‘One-versus-rest’ multi-class RWSVM. 

 

3. The Proposed Method 

A novel intelligent fault diagnosis strategy is proposed in this study, which is based on LMD and 

multi-class RWSVM. Figure 6 shows the architecture of the proposed fault diagnosis method. 

Procedure of the proposed system can be summarized as follows: 

Figure 6. Architecture of the proposed fault diagnosis system. 

 

Step 1: acquiring vibration acceleration signals when the rotating machinery operation state is 

normal or faulty. 

Step 2: preprocessing vibration signals by using LMD. 

Step 3: extracting seven statistic features [30,31] (i.e., peak value, mean, standard deviation, root 

mean square, shape factor, skewness, kurtosis, crest factor, K factor, and pulse index) by using the first 

three PF(the most important information of the vibration signal is included in high-frequency bands are 

shown in Figure 2). All features are taken as samples that are divided into two subsets, the training 

samples and testing samples. 

Step 4: constructing classification process for fault diagnosis by RWSVM using different 

reproducing wavelet kernel function. 

RWSVM(1)

f(x)=1?

 
    

N N

Y Y Y

   

Data 

samples

Fault type 1 Fault type 2 Fault type n

Normal stateRWSVM(2)

f(x)=1?

 RWSVM(n)

f(x)=1?

 N

Training 

date

Testing 

date

RWSVM training  

model

is stop condition 

satisfied?

Yes

No

RWSVM testing  

model

Fault  identification

Parameter selection
(cross validation)

Data Preprocessing 

(LMD)

featu
re sam

p
les

 

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4 Vibration signal

Extracting the statistic 

features 

Rotating machinery



Sensors 2013, 13 8686 

 

 

Step 5: the testing samples can be in put into the trained RWSVM classifier and then the operating 

conditions can be identified by the output of the RWSVM classifiers. 

4. Experiments, Results and Discussion 

In order to evaluate the effectiveness of the proposed method, two kinds of experimental setups are 

constructed to offer the vibration signals from various fault conditions. 

4.1. Case 1: Gearbox Fault Diagnosis 

4.1.1. Experimental Data 

Figure 7 shows the structure diagram of the test bench with the gearbox faults, which consists of a 

DC motor, load motor, DC speed load system, gear reducer, etc. There are two-stage cylindrical 

gearings and seven gears in the gear reducer. The parameters of the gear transmission system are listed 

in Table 1. In the first cylindrical gearing, there are one driving gear and two driven gears. The two 

driven gears both have 64 teeth in axis II, and the inner one is normal while the outer is eccentric. The 

second gearing contains three driving gears and one driven gear. All the driving gears have 85 teeth 

with the condition of spalling, pitting and normality from left to right. The vibration signals are 

obtained with the sample frequency of 6,400 Hz when the speed of the DC motor is 1,000 rpm. The 

data recorder is equipped with low-pass filters at the input stage for anti-aliasing. The acceleration 

sensor is fixed on bearing pedestal of axle II. 

Figure 7. Structure sketch of the test bench for the experimental gearbox. 

    

Table 1. Parameters of gear transmission system. 

Total Ratio 
First Cylindrical Gearing 

 
Second Cylindrical Gearing 

Modules (mm) The number of teeth Modules (mm) The number of teeth 

5.23 2 
Z1         26 

Z2         64 
 2 

Z1         40 

Z2         85 

In this experiment, a gear data set in axle II shown in Figure 8 consisting of the four conditions was 

obtained such as normal, pitting, spalling and eccentric (with labels 1, 2, 3 and 4, respectively). The 

Shaft 1

Shaft 2

Shaft 3

Gearbox
DC Motor

Load Motor

Normal sliding gear Spalling Pitting Normal Eccentric

Second cylidrical gearing

First cylidrical gearing

Normal sliding gear

Input

Accelerometer 
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vibration signals in the time- and frequency domain for all the gear running conditions are shown in 

Figure 9. For each condition, 50 samples were used, and therefore the whole data set corresponding to 

the four signal conditions includes 200 samples. Each sample is a section of vibration signal containing 

4,096 sampling points. The whole data set is split into two sets: 120 samples for training and 80 

samples for testing. The twenty-one features extracted by means mentioned in Section 3, these features are 

selected and input into the RWSVM classifiers to automatically identify health conditions of gear box.  

Figure 8. Gears defect in the shaft 2. 

 

Figure 9. Vibration signals of time- and frequency domain. 
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4.1.2. Experimental Results 

The present study chooses SVM with Gaussian radial basis function (RBF) kernel as a reference 

which is commonly preferred to other kernel function types [32,33].The analysis results are displayed 

in Figure 10 and Table 2.  

Figure 10. Results of the SVM classification for the experimental gear. 

        

         

For the SVM using RBF kernel in Figure 10a, the classification accuracies for the normal state, 

pitting, spalling and eccentric fault are 90%, 80%, 95% and 85% respectively. The overall average 

classification accuracy is 87.5%.  

As Figure 10b shows, by using the RWSVM with Harr wavelet kernel, the classification accuracies 

for the normal state, pitting fault, spalling fault and eccentric fault are 95%, 85%,100% and 90% 

respectively. The overall average classification accuracy is 92.5%. 

From Figure 10c, we can see that the RWSVM using the Daubechies wavelet kernel gives the highest 

classification accuracy (100%) for the normal state and spalling fault. The classification accuracies of 

the pitting and eccentric fault are 90% and 95% respectively. The overall average classification accuracy 

is 96.25%.  
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In Figure 10d, the RWSVM using Coiflet wavelet kernel gives the highest classification accuracy 

(100%) for the normal state, spalling and eccentric fault. The classification accuracy for the pitting fault 

is 95%. The overall average classification accuracy is 98.75%.  

Furthermore, Table 2 compares the accuracy of SVM and RWSVM. Compared with the SVM using 

RBF kernel, the proposed methods based on RWSVM using the Harr wavelet kernel, Daubechies wavelet 

kernel, and Coiflet wavelet kernel improve the classification accuracy by 5%, 8.75% and 11.25%, respectively.  

Table 2. The classified result of gear transmission system test data.  

Operating Condition 

Accuracy (%) 

SVM 

 

RWSVM 

RBF  Haar max
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Average accuracy (%) 87.5  92.5 96.25 98.75 

4.2. Case 2: Aero-Engine Rotor Fault Diagnosis 

4.2.1. Experimental Data 

The tested aero-engine rotor system is a dismountable disk-drum type rotor whose structure sketch 

is shown in Figure 11. The rotor is mainly constituted of some disks, a drum and a shaft. There are 24 

jointing bolts for connecting the disks with the drum in the rotor structure. Faulty is simulated by 

acting on these jointing bolts.  

Figure 11. The structure of the aero-engine rotor and locations of the sensors: 1–9: the 

first-ninth disk, 10: shaft, 11: location of the exciter, A-A, B-B, C-C: sections of sensor 

locations, Ⅰ–Ⅷ: locations of the accelerometers. 

 

The rotor structure is excited by utilizing a shaker with a constant excitation frequency of 1 Hz and 

the excitation position is on the shaft, as shown in Figure 11. For monitoring the structural response 

signals, eight accelerometer sensors are mounted at the location 1-8 on the rotor. A Sony EX data 

acquisition system is used to record the response signals and the acquisition frequency is set to 6,400 Hz. 
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The response signals in the time- and frequency domain for all the structural states (normal and faults) 

are shown in Figure 12. 

Figure 12. Vibration signals of time- and frequency domain. 

 

 

Each data subset consists of 50 samples and therefore the whole data set corresponding to the four 

bearing health conditions includes 200 samples. Each sample is a section of vibration signal containing 

2,048 sampling points. Each sub-sample data set is split into two sets: 30 sub-samples for training and 20 

sub-samples for testing. 

4.2.2. Experimental Results 
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wavelet kernel respectively. From Table 3, it can be seen that the testing accuracies of these methods 

are 91.25%, 95%, 97.5% and 98.75%, respectively. Compared with the average accuracy of SVM, the 

proposed RWSVM method increases the recognition accuracy by 3.75%, 6.25% and 7.5% respectively. 
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Figure 13. Results of the SVM classification for the aero-engine rotor. 

        
 

        

Table 3. The classified result of aero-engine rotor test data. 

Operating Condition 

Accuracy (%) 

SVM 

 

RWSVM 

RBF  Haar max

min
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 

  
 Daubechies max

min
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 Coiflet max

min

2

2

j

j

 
 

  
 

Normal state 

Pitting fault 

Spalling fault 

Eccentric fault 

95 

90 

90 

90 

 

 

100 

90 

90 

95 

100 

95 

95 

100 

100 

100 

100 

95 

Average accuracy (%) 91.25  95 97.5 98.75 

4.3. Discussion 

In the two experiments, test results verify that the proposed RWSVM method obviously 

outperforms the SVM method in diagnosing different categories of gear and aero-engine rotor faults. In 

two experimental results, the proposed reproducing wavelet kernels function with multi-resolution structure 
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have a better performance and generalization ability than the traditional RBF kernel, and the best 

classification accuracy was obtained using the Coiflet kernel function. The main reasons are as follows: 

(1) The RBF is a kind of kernel function which is generally used. It shows the good generalization 

ability. However, With the RBF kernel functions, the SVM can not approach any curve in L
2
(R

n
) space 

(quadratic continuous integral space), because the kernel function which is used now is not the 

complete orthonormal base. This characteristics result in that the classification SVM can not approach 

every classification interface in the L
2
(R

n
) space. 

(2) The kernel functions of Haar wavelet, the Daubechies wavelet and the Coiflet wavelet are the 

orthonormal base of L
2
(R

n
) space through its dilation and translation. These kernel function can 

approach almost any classification interface in L
2
(R

n
) space, thus they enhance the generalization ability 

of the SVM. Meanwhile, reproducing wavelet kernel with multi-scale structure is not only orthonormal 

(or approximately orthonormal) but also suitable for local signal analysis and signal-noise separation. 

(3) The Coiflet kernel function has some interesting properties that make it useful in signal 

processing. It possesses maximal number of vanishing shifted scaling moments for the given number 

of scaling coefficients. Coiflet are separable filters in the sense that spatial frequencies in , and 

diagonal directions can be selected using this type of filters. Coiflet filters maintain a close match 

between the trend values of the signal and the original signal. Besides, Haar wavelet does not have the 

property of continuity, Coiflet wavelet has superior symmetry than that of Daubehcies wavelet. 

5. Conclusions 

The present study proposes a novel hybrid intelligent multi-fault classification method based on 

LMD and multi-class RWSVM. In the proposed method, LMD can select frequency bands adaptively 

according to the characteristics of the vibration signal and determine signal resolutions of different 

frequency bands. It can optimize the signal analysis and increase the accuracy of useful information 

extraction. RWSVM is effective in handling uncertain data and small samples, the experiment results 

demonstrate that RWSVM produces an obvious improvement in recognition accuracy and provides a 

good diagnosis capability. Compared with the general RBF-SVM method, the proposed RWSVM has 

better generalization ability and strong robustness. 

In addition, it should be noted that although the proposed method is only demonstrated by using the 

gearbox and the rotor examples in this work, it can be easily applied to other classification problems in 

mechanical fault diagnosis. The proposed RWSVM might provide a new opportunity for other 

condition monitoring and fault diagnosis which still needs to be further explored in the future.  
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