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Abstract: Strain gauges are widely applied to measure mechanical deformation of 

structures and specimens. While metallic foil gauges usually have a gauge factor slightly 

over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. 

Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable 

strain gauges have been achieved by integrating thin silicon strips on soft and deformable 

polymer substrates. To achieve a fundamental understanding of the large variance in gauge 

factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, 

finite element and analytically models are established to reveal the effects of the length of 

the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results 

for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found 

good agreement with FEM results. We have discovered that strains in silicon resistor can 

vary by orders of magnitude with different substrate materials whereas strip length or 

substrate thickness only affects the strain level mildly. While the average strain in silicon 

reflects the gauge factor, the maximum strain in silicon governs the stretchability of the 

system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain 

gauges has been proposed and discussed. 

Keywords: piezoresistive; silicon; polymer substrate; gauge factor; stretchability 

 

  

OPEN ACCESS 



Sensors 2013, 13 8578 

 

 

1. Introduction 

Strain gauges are widely used across all engineering fields to measure mechanical deformation of a 

solid object. The most common type of strain gauges consists of a patterned metal foil on a stiff plastic 

backing sheet glued to the solid object. Deformation in the object leads to deformation in the foil, 

thereby causing its electrical resistance to change. The fractional change in resistance, ∆R/R0, is related 

to the mechanical strain ε by the gauge factor (GF):  



0/ RR
GF


  (1) 

The GF for metallic foils are typically between 2 to 5 [1], due mostly to changes in length and 

cross-sectional area instead of changes in resistivity of the metal wires [2]. For precision measurements, 

however, semiconductor gauges are preferred over metal foils. In 1954 Smith first discovered the so-

called piezoresistive effects [3], whereby the static resistance of a piece of semiconductor can be 

changed by a mechanical stress. In fact, it is the resistivity of the semiconductor that varies 

significantly with deformation, attributing to the strong dependence of the bandgap on  

inter-atomic spacing [3–5]. For example, the gauge factor of p-type (110) single crystalline silicon can 

be as high as 200 [3,6,7]. Since then, silicon-based microelectromechanical systems (MEMS) have 

found widespread use in load cells and pressure sensors [5]. Large piezoresistive coefficients, linear 

and instantaneous responses, multiplexing capabilities, and mature processing technologies represent 

attractive aspects of silicon for these applications. Due to the intrinsic stiffness and brittleness, 

however, semiconductor gauges are widely used as ‘hard’ sensors for small strain measurement on flat 

surfaces of stiff objects. If the surface of the target object is curvilinear, the gauge will be too stiff to 

completely conform to the surface. If the target object is too soft, the stiff gauge will significantly 

constrain the local deformation in the underlying region, resulting in understated strain measurement. 

If the target object is deforming too much, silicon will easily rupture. 

Strain measurement on curvilinear surfaces and/or soft, highly deformable objects calls for flexible 

or even stretchable strain gauges. Examples of applications include structural health monitoring on 

curvilinear surfaces [8], multiplexed arrays of strain gauges for three-dimensional shape-mapping [9], 

gauges integrated on contact lenses for intraocular pressure monitoring [10], gauges mounted on 

human skin to monitor gait/joint motion [11–13], and gauges wrapped around beating heart to detect 

ischemia-induced heart stiffening [14]. Candidates of strain sensing materials for flexible/stretchable 

strain gauges include metals, silicon, piezoresistive elastomers, and even carbon nanotubes and 

graphene. Although carbon-doped elastomer exhibit intrinsic stretchability and strong piezoresistivity, 

the resistance of the percolated conductive networks is susceptible to drifting and hysteresis due to the 

viscoelasticity of rubber materials [15]. Inorganic materials generally offer better stability and 

repeatability, but their compliance and deformability are very limited. To make a gauge flexible or 

even stretchable, polymers are used as substrates to support thin wires or strips of strain sensing 

component. Metal wires exhibit much lower intrinsic gauge factors than silicon. Although flexible 

strain gauges based on carbon nanotubes [16] or graphene [17] have been reported, none has the 

maturity and proven effectiveness of silicon. As a result, we will focus on the mechanical responses of 

flexible and stretchable gauges based on polymer-supported thin silicon strips in this work. 
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Recent work shows that ultrathin sheets of single crystalline silicon, i.e., silicon nanomembranes, 

can survive severe bending or stretch when supported by polymer substrates [18]. Depending on the 

substrate material, flexible strain gauges based on polyimide substrates [9] and tissue-like strain 

gauges based on elastomer substrates [13,14] have been reported. We notice that even silicon strips 

with the same thickness, orientation, and doping concentration, when bonded to different types of 

polymer substrates, the GF and stretchability (the applied strain beyond which silicon ruptures) can 

vary by orders of magnitude. For example, when polyimide substrates are used, GF obtained from 

uniaxial tension tests are 43 and the system cannot be stretched beyond 1% [9]. In contrast, when the 

substrate is elastomer, the measured GF reduced to 0.23 but the system can be stretched beyond 25% 

without inducing any cracks in silicon [13,14]. Mechanics models accounting for the silicon length and 

thickness as well as substrate modulus and thickness need to be developed to explain the discrepancies 

found in different systems and to guide the rationalized design of future flexible/stretchable  

silicon-on-polymer strain gauges. 

In this paper, we describe finite element and analytical modeling of thin silicon strips bonded to 

polymer substrates of wide ranges of Young’s modulus and thickness. Both gauge factor and 

stretchability can be predicted and effects of material and geometric variables are revealed. The 

tradeoff between GF and stretchability is proposed for the first time to provide guidance for the choice 

of substrate material and thickness. This paper is organized as follows: Section 2 describes the basic 

models adopted in this paper. Section 3 presents the finite element modeling (FEM) results. Section 4 

provides analytical results for two limiting cases. Section 5 discusses the tradeoff between GF and 

stretchability. Concluding remarks are provided in Section 6. 

2. Model Setup 

Silicon-based stretchable strain gauges are often composed of arrays of strips. The modeling work 

in this paper will just focus on a unit cell cut out of the periodic array. A schematic of a unit cell and its 

corresponding 2D plane strain model are depicted in Figure 1A,B. L represents the length of the silicon 

strip, h and H are the thicknesses of silicon and polymer, respectively. To minimize the number of 

variables, the size of the unit cell is fixed to be 1.5 L for all the models following a convention of 

island-on-polymer analysis [19–21]. When a uniform tensile strain, εapp, is applied to the substrate, the 

resistance of the silicon strip will change by ∆R, and the effective GF of the strain gauge system is 

defined as:  

 (2)  

Although strain distribution in silicon might not be uniform, it has been proven [11] that the 

fractional change of resistance is proportional to the average longitudinal strain in silicon, i.e.: 

 (3)  

where GFSi represents the intrinsic gauge factor of silicon. Depending on the crystal orientation as well 

as the doping type and concentration [22], the GFSi of p-type (110) silicon can reach as high as  

200 [3,6,7]. The overall average strain in silicon, εavg, can be calculated by just averaging the strain of 

app

0/



RR
GF




avgSi0/ GFRR 
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the neutral axis over the total length of silicon. This is because the strain of the neutral axis is the 

average strain across the thickness due to the linear strain distribution in the thickness direction. Using 

εn(x) to denote strain along the neutral axis of silicon as shown in Figure 1B, εavg is defined as: 

 (4)  

Plugging Equation (3) into Equation (2) yields: 

 (5)  

suggesting that to find out the effective GF of the strain gauge system, we need to calculate the 

average strain in silicon. 

The maximum strain in silicon, εmax, will be related to the stretchability of the system. We define 

stretchability as the critical strain applied to the substrate, ε
cr 

app, beyond which silicon will rupture. For 

brittle silicon, we adopt a failure criterion, εmax = εcr, in which εmax represents the maximum tensile 

strain in silicon and εcr denotes the intrinsic critical strain-to-rupture of silicon that is to be measured 

experimentally. The failure criterion can be rewritten in the normalized form εmax/εapp = εcr/ε
cr 

app, which 

can be rearranged to obtain the stretchability:  

 (6)  

When the polymer substrate is very thin or very soft, there will be slight concave bending in the 

silicon strip when the substrate is subject to tensile strain (Figure 1C,D). As a result, the maximum 

strain in silicon always takes place along the bottom of silicon. Using εb(x) to denote strain along the 

bottom of silicon as shown in Figure 1B, then: 

 (7)  

As we have related the device performance indices, GF and stretchability, to εavg and εmax in silicon 

respectively, in the following we will calculate εavg and εmax to ultimately determine GF and 

stretchability. Through dimensional analysis, we can get  

 (8)  

and: 

 (9)  

Where Ē = E/(1 − v
2
) represents the plane strain modulus with v being the Poisson’s ratio. Our goal is 

to find out the functional forms of f and g. Several shear lag models have been built to solve similar 

problems of stiff thin films on compliant substrates [14,23,24], but they had to make special 

assumptions of shear stress distribution along the film/substrate interface. In fact, there is no uniform 

function of interface shear stress distribution that is applicable to wide ranges of ĒSi/Ēs, L/h, and H/h, 
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which is the case for stretchable silicon-on-polymer strain gauges. As a result, we will first use FEM to 

find exact solutions for εavg/εapp and εmax/εapp, and then use analytical methods to derive the functional  

forms of Equations (8) and (9) for extreme cases (e.g., L/H >> 1 and L/H << 1) and compare with  

FEM results. 

Figure 1. Schematic and FEM contour plots of a thin silicon strip supported by polymer 

substrate subject to uniaxial tension. (A) 3D schematic of a unit cell. (B) 2D plane strain 

model adopted in FEM. εn(x) represents strain along the neutral axis of silicon and εb(x) 

represents strain along the bottom surface of silicon. Due to symmetry, only the right half 

in (B) is modeled in FEM. (C) Contour plots of εs in substrate and εn and εb in silicon when 

Es = 60 kPa and H = 30 µm, (D) H = 300 µm, and (E) H = 3,000 µm. 
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3. Finite Element Modeling 

Over one hundred finite element models are built using commercial software package ABAQUS 

6.11 to reveal the effect of the three variables in Equations (8) and (9). The boundary conditions and 

geometries are chosen to resemble the experimental setups when the sample is subject to uniaxial 

tension for GF calibration [9,13,14]. Because of symmetry, only the right half of the system shown in 

Figure 1B is modeled. A symmetric boundary condition is applied along the axis of symmetry, and the 

right end of the substrate is subject to a uniform horizontal displacement so that εapp is fixed to be 10% 

for all models. Nonlinear geometry analysis has to be enabled in ABAQUS because large deformation 

can be found in the portion of the polymer substrate that is not covered by silicon. Silicon thickness h 

is set to be 340 nm, the same thickness as the silicon nanomembrane used in most stretchable strain 

gauges [9,13,14]. Silicon length L varies from 10 µm to 20,000 µm and substrate thickness H varies 

from 30 µm to 3,000 µm, all are representative experimental parameters. The substrate length is set to 

be always 1.5 L for this unit cell. Perfect bonding is assumed between silicon and the substrate. Silicon 

and substrate are meshed using linear beam and plane-strain elements respectively. We model (110) 

silicon as a linear elastic material and polymer substrates as Neo-Hookean materials. Although the 

stress-strain curves for linear elastic and Neo-Hookean materials are not quite differentiable for strains 

up to 10%, we found the Neo-Hookean constitutive law is very helpful to achieve convergent solutions 

when nonlinear geometry analysis is enabled in ABAQUS. Effective materials properties in terms of 

Young’s modulus and Poisson’s ratio are listed in Table 1.  

Table 1. Elastic properties of materials used in FEM. 

Part Element Type Material Young’s Modulus (E) Poisson’s Ratio (v) 

silicon beam (110) Silicon [25] 169 GPa 0.27 

substrate plane strain 

Ecoflex [26] 60 kPa 0.49 

10:1 PDMS [27] 2 MPa 0.49 

Polyimide [28] 2.5 GPa 0.34 

Representative contour plots of longitudinal strain in the substrate and in silicon are given in  

Figure 1C–E. They are from models with parameters L = 1,000 µm, Es = 60 kPa and H varying from  

30 µm to 3,000 µm. When the substrate is stretched by 10%, strain in silicon is as small as 10
−7

 to 10
−4

, 

depending on substrate thickness. It is because silicon is six orders of magnitude stiffer than Ecoflex 

substrate (Es = 60 kPa) so that it is highly resistant to elongation, whereas the portion of the substrate 

not covered by silicon has to accommodate the applied strain by tensile strains up to 25%. Due to huge 

elastic mismatch between silicon and Ecoflex, horizontally applied tensile strain on a thin substrate 

will cause bending deformation in the silicon strip, especially near the end (Figure 1C,D). Therefore 

when the substrate is thin, the strain along the neutral axis of silicon, εn, is always smaller than the 

strain along the bottom of silicon, εb. Although εn is monotonic with x, εb might not be so due to 

localized bending near the end of the strip. When the substrate is thick enough (Figure 1E), it can  

be considered semi-infinite and hence can suppress the bending, resulting in identical εn and εb.  

Figure 1C–E only list FEM results for Es = 60 kPa, as the substrate becomes stiffer, the bending will be 

less significant. 
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3.1. Strain Distribution in Silicon 

Figure 2 offers the distribution of εn and εb along x for different Es, L, and H. Figure 2A–C plot εn 

and Figure 2D–E plot εb. In all the plots, x = 0 represents the center of silicon and x = L/2 represents 

the right edge of silicon, as defined in Figure 1B. A generic feature of every strain distribution curve in 

Figure 2 is that strains always vanish at the traction free edge. Because of the traction free edge, the 

internal normal force of silicon at position x, i.e., ESihεn(x), has to balance the integration of interfacial 

shear stress from position x to the edge of silicon, L/2. As shown in Figure 2A–C, εn gradually builds 

up towards the center of silicon because interfacial shear force also builds up as we move away from 

the edge. The rate of strain growth decreases as x approaches the center of silicon because the interfacial 

shear stress decays from the edge to the center of silicon. If L is large enough, a plateau of maximum 

tensile strain could be reached toward the center of silicon. The distribution of εb shares some 

similarity with εn, as shown in Figure 2D–E. However, εb is not always monotonic with x. When the 

substrate is soft, e.g., Es = 60 kPa, edge bending can cause large variations in εb, as shown in Figure 2E,F. 

To study one effect at a time, we first vary Es with L = 1,000 μm and H = 300 μm fixed. The 

distribution of εn and εb for different Es (60 kPa, 2 MPa, and 2.5 GPa) are plotted in Figure 2A,D, with 

vertical axis in logarithmic scales. A key observation is that both εn and εb increase as substrate 

modulus increases. It is simply because the stiffer substrate can apply higher shear stress to silicon, 

meaning that silicon can be stretched more by stiffer substrate. When substrate is very stiff, i.e., when 

Es = 2.5 GPa, there is little difference between εn and εb curves because the assembly will stay almost 

flat. But when Es = 60 kPa, εb are larger than εn due to slight global concave bending. 

To study the effect of L, we fix H = 300 μm and Es = 60 kPa. The distribution of εn and εb for 

different L (200, 500, 1,000, 1,500, and 2,000 μm) are plotted in Figure 2B,E. The plateau values of 

both εn and εb increase as L increases because the longer L provides the longer distance for interfacial 

shear force (and hence the normal strain) to build up. Although εn monotonically decreases with 

increasing x, εb curves in Figure 2D always have some abnormal behaviors near the edge of silicon, as 

the result of highly localized curvature near the edge of silicon, as evident in Figure 1C–E.  

To study the effect of H, we fix L = 1,000 μm and Es = 60 kPa and vary H from 30 μm to 3,000 μm 

in Figure 2C,F. Since thicker substrates provide stronger constraint to silicon, the plateau value of εn is 

higher when H is larger. The variation of εb is more complicated than εn because when substrate is soft 

(e.g., Es = 60 kPa in this case), bending strain could become very significant. Depending on substrate 

thickness, bending strain distribution also varies a lot. When H = 3,000 μm, there is very small bending 

curvature in the majority part of silicon (Figure 1E) and hence the plateau values of the black curves in 

Figure 2C,F are very similar. At the edge of silicon, localized concave bending induces compressive 

strain at the bottom of silicon because the neutral axis of the assembly is located somewhere within the 

substrate, hence a dip presents in the black curve of Figure 2F. When H = 300 μm, neutral axis locates 

within silicon, hence slight global concave bending (Figure 1D) will induce tensile strain along the 

bottom of silicon, resulting in elevated red curve in Figure 2F. Toward the edge of silicon, the neutral 

axis will gradually shift into the substrate and hence a dip also presents. When H = 30 μm, bending 

occurs almost exclusively at the edge (Figure 1C), hence the plateau values of the blue curves in 

Figure 2C,F are very similar. However, toward the edge of silicon, there is highly localized concave 

bending. Since neutral axis is within silicon, the bottom of silicon is subject to large tensile strain, 
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resulting in a big bump in the blue curve of Figure 2F. As a conclusion, Figure 2 has demonstrated that 

unlike εn(x), εb(x) is not a monotonic function and the effect of H on it is not monotonic either. To find 

the maximum tensile strain, εmax, in silicon, we need to find the maximum positive values of each εb(x) 

curve, which does not necessarily occur at the center of silicon.  

Figure 2. Normalized εn and εb for different L, H, and Es combinations. (A) Normalized 

εn(x) for various Es when L = 1,000 µm and H = 300 µm are fixed. (B) Normalized εn(x) for 

various L when H = 300 µm and Es = 60 kPa are fixed. (C) Normalized εn(x) for various H 

when L = 1,000 µm and Es = 60 kPa are fixed. (D) Normalized εb(x) for various Es when  

L = 1,000 µm and H = 300 µm are fixed. (E) Normalized εb(x) for various L when  

H = 300 µm and Es = 60 kPa are fixed. (F) Normalized εb(x) for various H when  

L = 1,000 µm and Es = 60 kPa are fixed. 

 

3.2. Average Strain and Maximum Strain  

With the insights from strain distribution in Figure 2, Figures 3 and 4 investigate the effect of the 

three variables L, H, and Es, on the average strain (εavg) and the maximum strain (εmax) in silicon. 

Average strains are calculated from averaging the values of εn (Equation (4)) and maximum strains are 

determined through finding the maximum positive values of εb (Equation (7)). Figure 3 plots 
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normalized εavg as a function of L/h. The same set of data is presented in two different ways: each plot 

in Figure 3A–C has a fixed Es and varying H whereas each plot of Figure 3D–F has a fixed H and 

varying Es. All plots in Figure 3 show that εavg increases with increased film size (L), substrate 

thickness (H) and substrate modulus (Es), all of which imply the stronger constraint the substrate is 

able to apply to silicon, the higher εavg. Due to experimental limitations on L and H, changing Es would 

be the most effective way to tune εavg, by orders of magnitude. According to Figure 3A–C, it is 

interesting to notice that when L is very small, especially compared to H, there exists a linear relation 

between εavg and L. According to Figure 3D–F, it is also easy to discover that when L is large enough, 

εavg will always reach a plateau, i.e., εavg becomes independent of L, and the smaller the H, the faster 

the plateau can be reached. We will thereby consider the limiting cases of L/H << 1 and L/H >> 1 and 

try to derive analytical solutions for εavg in Section 4. 

Figure 3. Normalized average strains in silicon as a function of normalized silicon length 

for various combinations of H and Es. (A) Ecoflex substrate: Es = 60 kPa. (B) 10:1 PDMS 

substrate: Es = 2 MPa. (C) Kapton substrate: Es = 2.5 GPa. (D) H = 30 μm. (E) H = 300 μm. 

(F) H = 3,000 μm. Average strain in silicon increases monotonically with L, H, and Es. 
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Figure 4 plots the normalized εmax as a function of L/h for various H and Es in a format similar to 

Figure 3. Each plot in Figure 4A–C has a fixed Es and varying H whereas each plot of Figure 4D–F 

has a fixed H and varying Es.  

Figure 4. Normalized maximum strains in silicon as a function of normalized silicon 

length for various combinations of substrate modulus and thickness. (A) Ecoflex substrate: 

Es = 60 kPa. (B) 10:1 PDMS substrate: Es = 2 MPa. (C) Kapton substrate: Es = 2.5 GPa. 

(D) H = 30 μm. (E) H = 300 μm. (F) H = 3,000 μm. Maximum strain in silicon increases 

monotonically with L and Es, but not with H when L and Es are both small, as shown in (A).  

 

The difference between εmax and εavg is that εmax has extra bending contribution. Therefore, similar 

to εavg, εmax always increases with increased L and Es, and with increased H in most cases. However, 

when the substrate is very compliant and when L is small, Figure 4A shows that εmax could be higher in 

thinner substrate due to localized bending effect we discussed for Figure 2F. As Es increases to  

2.5 GPa, as shown in Figure 4C, bending effect is almost negligible and hence εmax and εavg become 

undistinguishable, i.e., Figures 3C and 4C look identical. Similar conclusions can be applied to thick 
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substrate (H = 3,000 μm) when comparing Figures 3F and 4F. For the two limiting cases,  

L/H << 1 and L/H >> 1, we also observed similar features as in Figure 3, i.e., linear when L/H << 1 

and plateau when L/H >> 1. Hence analytical solutions of εmax will be derived in Section 4 as well.  

4. Analytical Modeling 

In this section, we are going to develop analytical models for two limiting cases: L/H << 1 and  

L/H >> 1, and the analytical solutions will be compared with the FEM results. 

4.1. When L/H << 1 

When L/H << 1, h/H << 1 is also true since experimentally L > h is always valid. In this case, H is 

no longer a relevant variable in the system and the substrate can be considered infinitely thick. Hence 

εavg and εmax only depend on Ēs/ĒSi and L/h, and Equation (8) degenerates to: 

 (10)  

To determine the f function, a shear lag model is adopted as shown in Figure 5A. The free body 

diagram (FBD) of a thin slice of silicon would give the following equilibrium equation: 

 (11)  

where τ(x) represents the shear stress distribution along the silicon/substrate interface. Since τ(x) is 

unknown and we don’t want to make an arbitrary assumption for it, it is simply acknowledged that τ(x) 

is proportional to the Young’s modulus of the substrate, Ēs. Applying Hooke’s law in silicon, σ = ĒSiε, 

and integrating once on both sides, Equation (11) reduces to: 

 (12)  

And Equation (10) becomes: 

 (13)  

where α is a proportional coefficient to be found out through fitting FEM results of small L’s. α is a 

generic coefficient which once fitted, should be applicable to all combinations of L, H, and Es, 

provided L/H << 1. We choose to fit the data of strain gauges with H = 3,000 μm, Es = 2.5 GPa and 

very small L. The two black curves in Figure 5B are the fitted curves and α is found to be 0.219 for 

εavg/εapp and 0.279 for εmax/εapp. We then plot Equation (13) against FEM results of all the other 

combinations of Es and H, as long as L’s are small. The results are shown in Figure 5B–D. Each figure 

contains the comparison of Equation (13) and FEM results for εavg/εapp in the upper frame and εmax/εapp 

in the lower frame. It is evident that Equation (13) is able to capture very wide ranges of Es when H is 

beyond 300 μm, for both εavg/εapp and εmax/εapp. When H = 30 μm as shown in Figure 5D, Equation (13) 

is able to capture εavg/εapp over a wide range of Es but is only able to capture εmax/εapp when Es = 2.5 GPa, 

due to the abnormal εmax induced by large local bending.  
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Figure 5. Comparison of Equation (13) and FEM results of εavg/εapp and εmax/εapp when  

L/H << 1. (A) Schematic of a thin silicon strip bonded to an infinitely thick substrate and 

the FBD of a thin slice of silicon. (B) εavg/εapp and εmax/εapp for H = 3,000 μm. (C) εavg/εapp 

and εmax/εapp for H = 300 μm. (D) εavg/εapp and εmax/εapp for H = 30 μm. In general,  

Equation (13) works better for thicker and stiffer substrate.  

 

In conclusion, when L/H << 1, average and maximum strains in silicon scale linearly with Ēs and L. 

Since Ēs can be easily changed by orders of magnitude as shown in Table 1, strains in silicon could 

also be tuned cross wide ranges. 
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4.2. When L/H >> 1  

When L/H >> 1, assuming L/h >> 1 is always valid, relevant variables reduce to ĒSi/Ēs and h/H. To 

derive analytical solution for this case, we make two cross-sectional cuts within the length of silicon 

and the FBD is shown in Figure 6A. The neutral axis of this bilayer is given by [29]: 

 (14)  

where Σ = ĒSi/Ēs, η = h/H. 

Figure 6. Comparison of Equation (18) and FEM results of εavg/εapp and εmax/εapp when  

L/H >> 1. (A) Schematic of the FBD of a section of thin silicon strip bonded to polymer 

substrate. (B) εavg/εapp and εmax/εapp as functions of ĒSi/Ēs. (C) εavg/εapp and εmax/εapp as 

functions of h/H. (D) Comparison of Equations (13) and (18) against FEM for H = 300 μm, 

Es = 2 MPa. Analytical solutions for two extreme conditions have found good agreement 

with FEM results. 

 

Boundary conditions are decomposed to P and M, which are both acting at the neutral axis. 

Assuming the following relation between P and εapp: 

 (15)  

where β is a parameter capturing the relative contribution from uncovered substrate and (1−β) captures 

the relative contribution from the covered substrate of the silicon-substrate bilayer structure. In this 
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paper, since substrate length is fixed to be 1.5 L, then ideally β = 1/3. But for substrate with finite 

thickness, β is assumed to have linear relationship with H/h such that: 

 (16)  

where a and b are constants to be fitted. 

Following this practice, the simplest form of average strain in silicon can be written as: 

 (17)  

Combining Equations (15)–(17) gives: 

 (18)  

Through curve fitting of FEM results, a and b can be obtained as a = 5.46 × 10
−5

 and b = 0.428. 

Equation (18) turned out to be an universal expression to capture εavg/εapp and εmax/εapp, over wide 

ranges of Σ and η provided L >> H. For very big Σ and η, i.e., very compliant and thin substrate, 

Equation (18) cannot capture εmax/εapp very well due to localized bending effects.  

Figure 6B,C plots Equation (18) (as curves) against FEM results (as markers) in log log scale. Some 

important conclusions can be drawn and rationalized from the two plots. First, when the substrate is as 

stiff as silicon, or when the substrate is infinitely thick, ε/εapp approaches 1. When the substrate 

becomes extremely soft or extremely thin, ε/εapp can be reduced by orders of magnitude, and should 

eventually die out. Figure 6C also tells that the effect of h/H is insignificant when the substrate is very 

stiff but gradually becomes more effective as the substrate modulus reduces. 

With the two semi-analytical solutions given by Equations (13) and (18), it is useful to plot them for 

a representative combination of (Σ, η) in a L/h plot as shown in Figure 6(D). It is clear that  

Equations (13) and (18) can successfully bond the FEM results, except the transition zone. 

5. Tradeoff between Gauge Factor and Stretchability 

After finding out εavg/εapp and εmax/εapp, the final step is to use Equations (5) and (6) to determine the 

gauge factor, GF, and the stretchability, ε
cr 

app, of a particular strain gauge. For the purpose of illustration, 

we have to assume some reasonable numbers for the intrinsic properties for silicon, including  

GFSi = 100 [9] and εcr = 1%. Some representative results are shown in Figure 7, with GF in black and  

ε
cr 

app in red in each plot. First, effects of H are studied for fixed L, and Es, as shown in Figure 7A,B. 

Comparing the two plots, GF always increases as H increases, but the variation of ε
cr 

app with H depends 

on Es. When the substrate is really soft and silicon is short, as the case for Figure 7A, the assembly is 

easy to bend especially when H is small. The local bending induced strain contributes significantly to 

εmax which is inversely proportional to ε
cr 

app according to Equation (6). As a result, thinner substrate 

induces higher maximum strain and hence lower stretchability. When the substrate is stiff, e.g.,  

Es = 2.5 GPa as shown in Figure 7B, there is almost no bending in the assembly and hence the thicker 

substrate induces higher maximum strain (Figure 4C). It is interpreted as a tradeoff between 

stretchability and GF. As constraints from the substrate become stronger, i.e., as L, H, or Es increases, 
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the larger strain in silicon suggests the higher GF but the lower stretchability, which has been 

confirmed by Figure 7C,D. Effects of L are studied for fixed H and Es, as shown in Figure 7C. For 

longer strip, the GF is larger but the stretchability is lower. This is always the case for other H and Es 

combinations. Similar effects are observed for Es, as shown in Figure 7D, except that the scales of both 

GF and ε
cr 

app are in log scale, suggesting a big tuning range. For example, when Es = 60 kPa, the critical 

applied strain to rupture silicon (ε
cr 

app) can be as high as 10,000% in theory, which implies that the 

stretchability of the strain gauge is only limited by the stretchability of the substrate. But it corresponds 

to a GF as low as 0.006. Practically, GF should be at least 1 for strain measurement, which implies Es 

should be 2 MPa and beyond, which still corresponds to stretchability beyond 100%. 

Figure 7. Tradeoff between GF and stretchability (ε
cr 

app): GF is plot in black with a vertical 

axis on the left and stretchability is plot in red with a vertical axis on the right. (A) Effect 

of H when L = 1 mm and Es = 60 kPa are fixed. (B) Effect of H when L = 1 mm and  

Es = 2.5 GPa are fixed. (C) Effect of L when H = 300 μm and Es = 60 kPa are fixed.  

(D) Effect of Es when L = 1 mm and H = 300 μm are fixed. Among the three variables, Es 

has the widest range of options and hence the most significant effect.  

 

The goal of plots in Figure 7 is to provide guidance for engineers to choose the right strain gauge 

systems under certain constraints or to predict the performance of a given stretchable strain gauge 

based on silicon nanomembrane. For example, to measure an object which deforms up to 30%, we will 

need to choose experimentally appropriate L, H, and Es to make a strain gauge with a stretchability of 

30% and maximized GF. Since the effects of L and H are within one order of magnitude as shown in 
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Figure 7A–C, we could fix them at reasonable numbers and the key is to select the right stiffness for 

the substrate, using a plot as shown in Figure 7D. A stretchability of 30% corresponds to a  

Es = 1.1 × 10
7
 Pa, which in turn predicts the GF to be 3.27.  

We have three final remarks on applying the analysis in this paper to real strain gauge  

samples [9,13,14]. In real samples, brittle silicon strip is usually sandwiched between two layers  

of insulating polyimide, and the strip is connected to metallic interconnects (usually in serpentine 

shape) for data acquisition. Laminating insulating polymers on silicon strip is equivalent to an increase 

of h, which would decrease strain in silicon and hence decrease the system GF. Adding interconnects 

to silicon is equivalent to an increase of L, which would increase strain in silicon and hence increase 

the system GF. Therefore the idealized model in Figure 1B may not offer the most accurate 

quantitative prediction for a practical sample. But we can always run 3D FEM to calculate the strain in 

silicon taking into account the actual layout of the circuits and the multilayer lamination to predict a 

pertinent GF and stretchability for that specific strain gauge system.  

The coupling between tension and bending is a generic problem associated with mechanical strain 

gauges. This study has also shed light on this issue. When Es << ESi, the neutral axis of the bilayer 

almost overlaps with the neutral axis of silicon. In this case bending will induce minimum εavg in 

silicon and hence bending effect can be neglected. When Es is close to ESi, the neutral axis of the 

bilayer lies far away from the neutral axis of silicon. In this case the bending will induce large εavg in 

silicon. To minimize the bending induced signal when the substrate is a stiff polymer, one can add an 

identical polymer layer on top of silicon, forming a sandwiched structure to locate silicon along the 

neutral axis of the sandwich structure. This structure can be readily analyzed by replacing the old H 

with the new 2H, leaving everything else unchanged.  

Due to the mismatch in coefficients of thermal expansion (CTE) between silicon and polymer, 

temperature variation will induce stress and hence resistance change in silicon. The best known 

method to eliminate temperature effect is to use Wheatstone bridge instead of single resistors. The 

mechanical analysis on a single resistor offered in this paper is readily applicable to each linear arm of 

the Wheatstone bridge. 

6. Conclusions 

In conclusion, we performed strain analysis on polymer-bonded thin silicon strips using both FEM 

and analytical methods. The gauge factor and stretchability of a silicon-on-polymer strain gauge have 

been predicted as functions of the normalized length of silicon, and the normalized thickness and 

modulus of the polymer substrate. In general, we found that the longer strip, the thicker or the stiffer 

substrate will transfer a larger fraction of the applied strain to silicon. Silicon length and substrate 

thickness has only moderate effects on strain in silicon whereas varying the stiffness of the substrate 

could change the strain and hence the gauge factor and stretchability by orders of magnitude. A 

tradeoff between GF and stretchability has been discovered. Since wide ranges of gauge factor and 

stretchability can be achieved through tuning the substrate modulus, results from this work can be used 

as guidelines to design appropriate strain gauges or to predict the performance of fabricated  

strain gauges. 
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