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Abstract: One of the most challenging problems in target classification is the extraction of 

a robust feature, which can effectively represent a specific type of targets. The use of 

seismic signals in unattended ground sensor (UGS) systems makes this problem more 

complicated, because the seismic target signal is non-stationary, geology-dependent  

and with high-dimensional feature space. This paper proposes a new feature extraction 

algorithm, called wavelet packet manifold (WPM), by addressing the neighborhood  

preserving embedding (NPE) algorithm of manifold learning on the wavelet packet node 

energy (WPNE) of seismic signals. By combining non-stationary information and  

low-dimensional manifold information, WPM provides a more robust representation for 

seismic target classification. By using a K nearest neighbors classifier on the WPM 

signature, the algorithm of wavelet packet manifold classification (WPMC) is proposed. 

Experimental results show that the proposed WPMC can not only reduce feature 

dimensionality, but also improve the classification accuracy up to 95.03%. Moreover, 

compared with state-of-the-art methods, WPMC is more suitable for UGS in terms of 

recognition ratio and computational complexity.  
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1. Introduction 

Unattended ground sensor (UGS) systems consist of a lot of sensor nodes and are usually employed 

for battlefield situation awareness through detection of seismic, acoustic and infrared signals emitted 

by moving targets [1]. Pedestrians, wheeled vehicles, tracked vehicles and helicopters are the seismic 

targets of focal interest to land-based monitoring systems, nevertheless they are out of the monitoring 

capability of radars, thus, UGSs are responsible for detecting and recognizing them. Acoustic sensors 

and seismic sensors are typically used in UGS systems, however, acoustic target recognition will be 

affected by weather, Doppler effects and environmental noise. Fortunately, seismic signals are less 

sensitive to these factors [2], therefore, seismic sensors have become a dominant kind of sensor for 

UGS systems [3].  

However, moving targets’ seismic signals are non-stationary [3]. In addition, the seismic signal 

generated by a moving target is characterized by target velocity, target structure, the signal’s 

propagation distance and local underlying geology, etc. [4,5], and is not a simply linear combination of 

these factors. Therefore, the seismic signal of a moving target is usually considered as a kind of signal 

with a high-dimensional feature space [4,6,7]. In order to obtain the compact time-frequency feature of 

each kind of seismic target, it is necessary to reduce correlation contents and fuse the feature set to a 

minimum but robust one. Thus, a robust seismic feature with the properties of non-stationary and  

low-dimensional is in urgent demand. 

Current feature extraction methods for seismic signals can be classified into three categories, 

namely, time domain [8,9], frequency domain [4,10,11] and time-frequency domain [3]. On the one 

hand, time-domain analysis may not be able to recognize targets very accurately because of the 

interference noise, complicated signal waveforms and variations of the terrain [3]. On the other hand, 

the accuracy of frequency domain methods may be degraded due to underlying non-stationary in the 

observed signal [12]. Therefore, recent research has concentrated on time-frequency domain methods 

(e.g., wavelet transform) thanks to their denoising and localization properties [12]. 

The conventional seismic target recognition methods usually consist of four steps, just  

as discussed in [13]. First, the wavelet packet transform (WPT) that overcomes the fixed  

time-frequency resolution is performed on the original signal. Second, to alleviate the time-variant 

characteristics of the WPT coefficients, wavelet packet node energy (WPNE) is used as an essential 

time-frequency feature measure of the target [13]. Although the WPNE provides us with a  

multi-resolution view of a signal, it still has correlation information. Therefore, the third step is to 

reduce the dimensionality of the feature space, using some feature selection criteria to discard those 

feature components which contain little discriminate information, and result in a feature subset having 

a reduced number of parameters without compromising the classification performance. Finally, the 

reduced dimensional feature vector is then used as an input to a classifier. In reference [13], even if the 

feature selection has been already employed to discard redundant information, a complex neural 
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network classifier is still indispensable. In [3], principal component analysis (PCA) is employed to 

reduce the dimensionality of seismic feature space. Unfortunately, PCA is only suitable for  

signals whose feature space is globally linear, while seismic features are only locally linear, therefore, 

the performance obtained in [3] is unsatisfying. Recently, manifold learning has emerged in  

feature extraction for its capability of effectively identifying low-dimensional structure hidden in  

high-dimensional data [14–19]. The technique can be realized through several algorithms, including 

Laplacian Eigenmap [20], locally linear embedding (LLE) [21], and ISOMAP [22], etc. These methods 

yield impressive results on some benchmark artificial data sets, besides some real applications, 

however, their nonlinear properties make them computationally expensive [23]. Moreover, they can’t 

deal directly with the out-of-sample problem [24,25], which states that only the low dimensional 

embedding map of training samples can be computed by these traditional manifold learning methods, 

but the samples out of the training set (i.e., testing samples) cannot be calculated directly, analytically 

or even cannot be calculated at all [23,26], due to the shortage of a definite mapping matrix. 

Fortunately, the neighborhood preserving embedding (NPE) algorithm [23] of manifold learning, with 

a definite mapping matrix, was put forward. Thanks to its specific mapping matrix and excellent merits 

in dimensionality reduction, NPE may be adequate for seismic pattern recognition. 

In this paper, wavelet packet manifold classification (WPMC) is developed for seismic target 

recognition. Specifically, the WPMC is produced by the three following steps: first, wavelet packet 

transforms are performed on seismic signals and then WPNE is obtained. Second, a novel feature, 

wavelet packet manifold (WPM), is obtained by applying the NPE algorithm on WPNE. Third, 

classification is performed using a K nearest neighbors (KNN) classifier. Since through the 

combination of manifold learning and wavelet packet transform, distinctive features are obtained, then 

the classifier is less important and easily implemented. Experiments show the WPMC method not only 

can reduce the feature dimensionality, but also achieve a satisfying recognition rate. Due to its great 

advantages in recognition rate and computation consumption, WPMC may be widely used in UGS. 

This paper is organized into five sections, including the present one. Section 2 introduces the WPM 

model. Section 3 illustrates how the WPM feature of seismic targets is more insensitive to 

environmental variations than other traditional methods and thus suitable for pattern recognition. 

Section 4 explains how classification is conducted on seismic targets. Finally, conclusions and 

discussion are provided in Section 5. 

2. WPM Principle 

It is known that wavelet packet transforms (WPT) are commonly used to reveal the  

non-stationary characteristics of a seismic target [3,12]. In addition, the NPE algorithm of manifold 

learning can reveal the low-dimensional structure hidden in high-dimensional data [23]. Therefore, this 

paper intends to construct a robust feature which is non-stationary and low-dimensional, called WPM, 

by applying the NPE algorithm to WPNE. To achieve this aim, two techniques comprising WPT and 

the NPE algorithm of manifold learning are integrated, as indicated in Figure 1. Given an analyzed 

signal x(n), the WPM principles are described in the following subsections. 
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Figure 1. Flowchart of WPM extraction. 
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2.1. Wavelet Packet Transform 

The wavelet transform (WT) possesses good localization performance both in the time and 

frequency domains [27]. The wavelet packet transform (WPT) is a direct expansion of the 

conventional discrete wavelet transform (DWT) [28]. In the WPT, both the approximation space and 

detail space are decomposed to get new lower resolution approximation spaces plus detail spaces. Let 

Φ(t) and ψ(t) be the scaling function and the corresponding mother wavelet function in the 

conventional DWT respectively, and 0
0,0 (t) = Φ(t), 1

0,0 (t) = ψ(t). Using two-scale equations [13], we 

construct the wavelet packet basis as follows: 

2
, 1,2( ) ( ) ( )i i

j k j k n
n

t h n t     (1)

2 1
, 1,2( ) ( ) ( )i i

j k j k n
n

t g n t 
   (2)

where i is the index of node, j is the level of decomposition, h(n) and g(n) = (−1)1−nh(1 − n) are a pair 

of quadrature mirror filters. The WPT coefficients of a given data x(n) at the jth level and the kth point 

are computed via the following recursive equations: 

2 2
, 1( ) ( ) ( ) ( ) (2 )i i i

j j k j
n

d k x t t dt h n d k n     (3)
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The decomposition coefficients of the jth level can be obtained from the (j − 1)th level, finally we 

can get the coefficients of all levels through sequential analogy. After j levels decompositions are 

accomplished, the frequency ranges of all sub-bands at the jth level are: 

1 1 1 1 1 1

2 2 3 (2 1)
(0, ]; ( , ]; ( , ]; ; ( , ]

2 2 2 2 2 2 2

j
s s s s s s s

j j j j j j

f f f f f f f
     

 
 
 

  (5)

where fs is the sampling frequency. To alleviate the time-variant characteristics of the wavelet packet 

coefficients, wavelet packet node energy (WPNE) which measures the signal energy contained in some 

specific frequency band is adopted. Mathematically, for a discrete signal with frame length as 2q, the 

WPNE is defined as Equation (6):  

2
2

' 1
2 ( 1) 1

( , ) | ( ) |
q j

q j

i
DIM i
x j

k i

n i d k






  

 WPNE  , 1, 2, , 2 ji    (6)

where n1 represents the index of frames, '
DIM
xWPNE  subscript x′ corresponds to the pre-processing 

version of original data x(n) and superscript DIM = NF × 2j denotes the dimensionality of feature  

(NF is the number of frames for every classification operation). The reason why wavelet packet node 

energy rather than wavelet packet decomposition coefficient is employed as features of target can be 

found in [13,29]. 

2.2. NPE Manifold Learning  

In NPE, searching low-dimensional embedding of high-dimensional space works as follows: given 

a set of points X = (x1, x2, …, xm) in RDIM, find a mapping matrix A that transforms these m points to a 

set of points Y = (y1, y2, …, ym) in Rdim (dim << DIM), such that yi “represents” xi, where yi = ATxi. The 

computation of matrix A is divided into three parts.  

2.2.1. Constructing an Adjacency Graph 

Let G denote an adjacency graph with m nodes. The ith node of graph corresponds to the vector xi. 

In NPE algorithm, K nearest neighbors (KNN) method is adopted to construct G.  

2.2.2. Computing the Weights 

In this step, we need to compute the weights on the edges of G. Let W denotes the weight matrix 

with Wij having the weight of the edge from node i to node j, and 0 if there is no such edge. The 

weights on the edges can be measured by minimizing the following objective function: 

2

arg min i ij j
W

i j

W  W x x  (7)

with constraints: 

1, 1,2, ,ij
j

W j m    (8)
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2.2.3. Computing the Projections 

In order to compute the projections, we need to solve the following generalized eigenvector problem: 

T TXMX a XX a  (9)

where: 

1( , , )mX x x  (10)

( ) ( )T  M I W I W  (11)

(1, ,1)diagI   (12)

Let the column vectors a0,…,ad−1 be the solutions of Equation (9), ordered according to their 

eigenvalues, λ0≤…≤λd−1. Thus, the embedding is as follows: 
T

i i i x y A x  (13)

0 1 1( , , , )dA a a a  (14)

where yi is a d-dimensional vector, and A is a NF × d matrix. In the NPE algorithm, there are two 

parameters that need to be configured, namely, the k of KNN and output dimensionality d. The 

effectiveness of NPE in dimensionality reduction and target classification is discussed in [23]. 

2.3. Wavelet Packet Manifold 

To apply the NPE algorithm on wavelet packet features, first the '
DIM
xWPNE  of a seismic signal is 

calculated, then the mapping matrix A of NPE algorithm is obtained by substituting '
DIM
xWPNE  for 

matrix X (see Section 2.2), finally dim
'xWPM  is achieved by means of multiplying '

DIM
xWPNE  by A: 

dim
' '

T DIM
x x WPM A WPNE   (15)

where the superscript T means the operation of matrix transposition. 

Here, the sizes of '
DIM
xWPNE and matrix A are NF × 2j, NF × d respectively, therefore the 

dimensionality of dim
'xWPM  is dim = d × 2j. The low dimensional manifold of a new sample can be 

computed quickly, through multiplying matrix A by the sample’s '
DIM
xWPNE . 

When wavelet packet transform is executed on the seismic signal, each row of matrix '
DIM
xWPNE

contains the non-stationary information of a specific frequency band. By reducing the row 

dimensionality of matrix '
DIM
xWPNE , the non-stationary information and low-dimensional information 

of a given frequency band is concentrated on the corresponding row of dim
'xWPM . Therefore, the 

whole matrix of dim
'xWPM  can illustrate the non-stationary and low-dimensional information of target. 

Consequently, WPM may provide a robust representation for seismic targets. 

The change of feature dimensionality can be illustrated by an example. If there are 30,720 sampled 

points and the length of each frame is 512, then the sampled points could be divided into 60 frames. 

Making five levels wavelet packet transforms on each frame, WPNE, size of 60 × 32, is obtained. 

Finally, when the NPE algorithm is applied on the WPNE with the parameter d chosen as 2, the WPM 

feature is achieved with the size of 2 × 32, as shown in Figure 2. Through dimensionality reduction, 

the dimensionality of the target feature is reduced from 60 × 32 to 2 × 32. 
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Figure 2. The diagram of dimensionality transformation. 
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3. WPM Signature Analysis 

WPM with the properties of non-stationary and low-dimensional is analyzed in Section 2, so the 

main task of Section 3 is to show that WPM is a robust representation for seismic targets. As is known 

to us, the features of seismic target are strongly influenced by two environmental factors which are 

environmental noise and environmental underlying geology [5]. Therefore, the aim of this section is to 

verify that WPM of seismic targets is more insensitive to the variations of environment than other 

traditional time-frequency features by an experimental approach. 

3.1. Feature Evaluation 

In the evaluation, two parameters including between-class scatter and within-class scatter are 

employed to quantitatively describe the feature capability in pattern classification. Mathematically, for 

a given feature set {f1,……,fQ}, where Q is the number of feature samples, the two parameters are 

defined as follows [30]: 

1

( )( )
f

c
p p T

b f f f
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S
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   μ μ μ μ  (16)
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where p
fμ  is the average value of the feature vector for samples with the class Cp (p = 1,2,……,c), and 

1

1/
f

c
p
f

p

c


 μ μ  is the total average of the feature vector for all classes. The between-class scatter Sb 

describes how far different classes are separated, and the within-class scatter Sw indicates how compact 

each class of samples is distributed. Thus small within-class scatter and large between-class scatter 

represents better features for classification purpose. Certainly, Sr, the ratio of Sw and Sb, can be taken to 

characterize the discriminating capability of feature:  

w
r

b

S
S

S
  (18)
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3.2. Feature Performance 

To simplify the exposition, a seismic signal generated by a shot is regarded as the target model. In 

experiment, the shot falling freely from a height of 1.5 meters hits the ground and induces a seismic 

signal. The freely falling body motion of the shot is repeated at the same height but three different 

positions located 1, 10, 30 meters away from the seismic sensor, respectively. The heights of the freely 

falling body motions are the same, so the strengths of the shots stimulate on the ground are identical. 

The signal sources produced at three positions are denoted as Source No. 1, Source No. 2 and Source 

No. 3, separately. HSJ-L1 10-1250, a vertical geophone made by OYO GEOSPACE (Houston, TX, 

USA), is employed to measure the seismic waves [31], with 1,024 Hz sample frequency. These are no 

other targets existing in the experimental field when the experiment is executed, so the seismic target is 

considered as a shot when a bump happens, yet the seismic target is regarded as background noise 

when no operations are taken. The experimental situation is displayed in Figure 3. 

Figure 3. The situation of a shot hitting the ground. 

 

The seismic signal (SS), wavelet packet node energy (WPNE) and wavelet packet manifold (WPM) 

determined in a certain demonstrative experiment which is conducted in a gravel road are shown in 

Figure 4, where the length of frame is 512 sample points and 128 overlapping points exist in the 

adjacent frames. 

As shown in Figure 4(a,c,e), sharp impulses can only be observed when the shot is hitting the 

ground, because the sampled seismic signal is induced by background noise when a bump doesn’t 

happen. Examination of Figure 4(a,c,e) shows the gradual degradation of the impulses as the 

propagation distance increases from 1 meter to 30 meters and the transition of impulses from sharpness 

to flatness, which means the signal-noise-ratio (SNR) decreases heavily as the propagation distance 

increases, because the farther signal propagates, the worse the signal degrades. As displayed in  

Figure 4(a,b), in the moment that impulses occur, the WPNE is obvious different from other times’. 

According to Figure 4(b,d,f), the WPNEs of impulses become more and more indistinct as the 

propagation distance increases. Seismic signals are generated in three different positions with different 

signal-noise-ratios and with different underlying geology conditions, while their signatures, including 

the waveform in time-domain and WPNEs in time-frequency domain, change considerably when the 

position of the target varies. In order to combine the non-stationary information and low-dimensional 

information, the NPE algorithm is applied on WPNE to construct WPM and the dimensionality of  

WPM is reduced to 3 × 1 (the dimensionality of WPM is first reduced to 32 × 1, subsequently it is 

reduced to 3 × 1) to clearly display the results as described in Figure 4(i). Fortunately, regardless of the 
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differences of geology condition and environmental noise, the WPMs of the signals generated at the 

three positions gather at one point, what’s more, they are different from noises.  

Figure 4. Data set of demonstrative experiments with a shot hitting the ground. (a) SS of 

No.1; (b) WPNE of No.1; (c) SS of No.2; (d) WPNE of No.2; (e) SS of No.3; (f) WPNE of 

No.3; (g) SS of noise; (h) WPNE of noise; (i) WPMs of four seismic signals.  
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In order to further verify that the robustness of WPM algorithm is better than other traditional  

time-frequency methods, the above demonstrative experiment was conducted 300 times on three 

different geologies, specifically the experiment of shot hitting the ground is repeated 100 times in each 

geology. The Sr of different features which were obtained in the three geologies are detailed in Table 1.  

Table 1. Sr of four kinds of feature in three different geologies. 

 STFT WPNE WPM TFM [14] 

Grass 32 21 3 19 
Gravel 30.1 22 2 14 

Hard Soil 25.2 18.9 1.5 16.4 
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In Table 1, TFM denotes another manifold feature which is calculated by addressing manifold 

learning on a signal’s STFT distribution [14]. According to the above results, the Sr of WPM is the 

smallest, no matter in which geology condition. Therefore, we can draw a conclusion that WPM, with 

the properties of non-stationary and low-dimensionality, can capture the pattern difference of  

seismic targets and be more robust than others, so WPM can be regarded as a kind of feature for  

target classification. 

4. Classification Experiment 

4.1. Experimental Description 

The underlying geology condition of the experimental field isn’t very homogenous, since the field 

is transformed from a building wasteland and lots of building rubbish remains underground. A seismic 

sensor is vertically buried 10 centimeters into the ground where 10 meters away from the road. The 

category of the employed seismic sensor is as discussed in Section 3.2. The experimental situation is 

shown in Figure 5. In this paper, four categories of seismic targets, including pedestrians, tracked 

vehicles, wheeled vehicles and helicopters, are involved in our classification, and part of their 

specifications are listed in Table 2. When the experiment is conducted, the targets move on at a 

constant velocity, while different targets have different velocities, just as Table 3 shows. Specifically, 

the helicopter flies at the height of 300 meters above the road and the reason why a helicopter can 

induce the ground seismic signal can be seen in [2].  

Figure 5. The experimental situation of seismic targets classification. 

 

Table 2. Different Targets’ Specifications. 

Feature 
Wheeled Vehicle 

Tracked Vehicle Low-Altitude Helicopter
Car Truck SUV Van

Weight (kg) 1,425 6,800 1,635 1,713 40,200 3,850 
Number of Cylinders 4 6 4 5 10 8 

Engine Capacity 78 170 110 140 3,240 1,468 

Table 3. Targets’ velocity. 

 Ground Seismic Source Low-Altitude Acoustic-Seismic Source

Target Category Pedestrian 
Wheeled 
Vehicle 

Tracked 
Vehicle

Helicopter 

Velocity (km/h) 6 50 40 120 
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4.2. Data Sets 

Data sets, including training sets and test sets, are sampled in the test field. Each kind of target has 

100 samples in the training set and other 50 samples in the testing set. In the experiment, the sampling 

rate is 1,024 Hz and frame length is 1,024 sample points. There is an overlap of 512 points existing 

between the adjacent frames. If 5 levels wavelet packet transform is executed on the signal frame,  

32 (25 = 32) sub-bands are obtained in the 5th level and the bandwidth of each sub-band is equal to  

16 (512/25 = 16) Hz. We make a recognition operation every 60 frames, namely, the size of WPNEs 

that used in every classification operation is 1,920 (32 × 60 = 1,920).  

Figure 6. Signal of seismic targets. (a) Pedestrian SS; (b) Pedestrian WPNE; (c) Wheeled 

vehicle SS; (d) Wheeled vehicle WPNE; (e) Tracked vehicle SS; (f) Tracked vehicle 

WPNE; (g) Helicopter SS; (h) Helicopter WPNE. 
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Figure 6. Cont. 

 

The obtained seismic signals and WPNEs of seismic targets are depicted in Figure 6. Compared 

with other ground targets, the envelope of the pedestrian’s time-domain signal is the longest and the 

sparsest because its velocity is the slowest and its impact on ground is the weakest. Among the ground 

seismic targets, the velocity of the wheeled vehicle is the fastest, so the span of its envelope is the 

shortest. The velocity of the tracked vehicle is between the former two, but its envelope density is 

maximal, since its weight is the largest and its stimulation on the ground is the strongest. According to 

Figure 6(b), only the WPNEs of the first seven frequency bands, corresponding to the signal of 0~112 Hz, 

changes significantly when this target is passing through the seismic sensor zone. This phenomenon 

reveals that the principal frequency component of a pedestrian concentrates around 0~112 Hz, and it 

matches well to the conclusion of [32]. The wheeled vehicle, tracked vehicle and helicopter have some 

differences with the pedestrian, their feature frequencies are higher than pedestrian and as high as  

512 (16 × 32 = 512) Hz. Therefore, their WPNEs of all 32 frequency bands will vary obviously when 

these targets move across the sensor, as shown in Figure 6(b,d,h). The images of Figure 6(b,d,f,h), size 

of 32 × 60, indicate that the dimensionality of WPNEs is 1,920 (32 × 60 = 1,920). This dimensionality 

is still too large to classify. Therefore, the manifold of WPNE, WPM, is extracted using the  

NPE algorithm.  

4.3. WPM Parameters  

The extraction of WPM involves several parameters, such as frame length, decomposition level of 

wavelet packets, the nearest neighbors’ number k and output dimensionality d of NPE. A nonlinear 

optimization technique, particle swarm optimization (PSO), is employed to investigate the effect of 

these parameters on the Sr of WPM. Specifically, the frame length of 256, 512, 1,024, 2,048, 4,096, the 

decomposition level of 2~10, the nearest neighbor’s number k of 1~50 and output dimensionality d of 

1~30 are searched by PSO. The optimal parameters obtained by PSO are listed in Table 4. 

Table 4. The optimal WPM parameters. 
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4.4. Designment of Classifier 

The merits of WPM, low-dimensionality and small-scale, determine it is an excellent type of feature 

for classification. On the basis of WPM, the K-nearest neighbors classifier, which is based on 

statistical theory and easily implemented, can achieve accurate recognition. 

In the KNN classifier, supposing c categories exist in the training set, they are C1, C2, …, Cc, 
respectively. Each category has Ni samples, i = 1, 2, …, c. Euclidean distance j

id  that between test 

sample X and each training sample j
iX  is as follows: 

, 1, 2, ,j j
i i id j N  X X   (19)

where j
id  and j

iX  subscript i denotes ci class, superscript j corresponds to the jth sample of Ci class. 

As to an unclassified sample X, its k nearest neighbors j
pX  (j = 1, 2,…, k) are selected out from all 

training samples according to j
id . Finally, the decision function Fi is calculated as follows: 

( ) 1, ( )
( )

( ) 0, ( )

j
i p

i j
i p

F if p i
F

F if p i

   
 

X X
X

X X
( 1, 2, . 1, 2, .)i c j k    (20)

If a class satisfies Equation (21): 

1,2, ,

( ) ( )maxm i
i c

F F


X X


 
(21)

then we can consider that the test sample X belongs to the class m. That is to say, an unclassified 

sample X is classified by a majority vote of its neighbors, with X being assigned to the category that 

most commonly among its k nearest neighbors, after comparing the Euclidean distances between X and 

all training samples. 

4.5. Classification Performance 

Real-time classification results vary with environment, as shown in Figure 7. The horizontal axis of 

Figure 7 represents the target position which is denoted by the slant distance between the target and 

sensor. Naturally, different positions have different signal-noise ratios and different underlying 

geology conditions. The baseline curve displays the classification results of a method that directly uses 

WPNE with size of 32 × 60. The NPE curve represents the target recognition rate using WPM whose 

parameters are as shown in Table 4. In Figure 7, all recognition rates will go down when the distance 

increases. Fortunately, the NPE curve decreases more slowly than the baseline one. Experimental 

results denote that the WPM feature is more robust and suitable for moving target classification.  

Table 5 details the average result of Figure 7. As to the recognition of the four targets, the average 

classification rate of the NPE approach is 11.53% higher than baseline. 
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Figure 7. Classification results vary with environment. (a) Pedestrian; (b) Wheeled 

vehicle; (c) Tracked vehicle; (d) Helicopter. 

 
(a) (b) 

 
(c) (d) 

Table 5. Classification results of the four targets. 

 Pedestrian Wheeled Tracked Helicopter Avg. 

Baseline 84.33% 81.45% 84.04% 84.17% 83.50% 
NPE 99.13% 92.57% 92.14% 96.35% 95.03% 

4.6. Complexity Analysis 

As to a UGS system, the resources of its sensor nodes is very limited. Their complexity of any 

algorithms developed for the UGS application should be as simple as possible. For the purposes of 

comparison, we use state-of-the-art methods SDF [12,33] and the algorithm described in reference [32] 

(called algorithm Algo) which are methods for recognizing seismic targets, and implement them 

independently. The SDF-based feature extraction algorithm mitigates the noise by using wavelet 

analysis, captures the essential signatures of the original signals in the time-frequency domain, and 

generates robust low-dimensional feature vectors for pattern classification. Specifically, five symbols 

are used in SDF and db6 is adapted as wavelet basis by all three algorithms. All of the methods are 

executed on the Matlab 2011a environment of an industrial computer (dual core, 2.9 GHz-frequency 

and 2 GB memory) to process the data sets detailed in Section 4.2. The results are shown in Table 6. 
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Table 6. Complexity comparison between three algorithms. 

 WPMC SDF Algo 

Algorithm Flow 
5 levels wavelet  

packet transform + NPE 
algorithm + KNN classifier 

wavelet transform + 
symbolization + SVM

7 levels wavelet  
packet transform + fuzzy 

neural classifier 
Target Categories 4 3 3 
Classification rate 95.03% 90.0% 85.3% 

Running time 98 s 120 s 170.2 s 

According to [12,32] and the above Table 6, on the one hand, the proposed WPMC can process the 

situation of four targets’ classification while the other two algorithms can only do so for only three 

targets. On the other hand, WPMC achieves higher classification accuracy with lower computation 

consumption. The results confirm the excellent performance of the proposed WPM feature for seismic 

targets’ classification. 

5. Conclusion and Discussion 

This paper has presented a new WPM signature by combining the wavelet packet node energy and 

NPE algorithm of manifold learning for a better representation of moving seismic targets. The 

proposed WPM can not only describe target features in low-dimensional space, but also improve the 

recognition rate of seismic targets. Furthermore, the advantage of WPM makes it possible that even 

some simple classifiers, such as KNN, would be good enough for seismic targets classification. The 

WPM-based classification method enables seismic sensor nodes to carry out precise classification, it 

does not require the target to be at a certain range from the sensor nodes or a very homogenous 

underlying geology conditions. Thanks to the excellent merits of WPM in low-dimensionality and 

feature robustness, the WPMC is very suitable for UGS. Nevertheless, the WPMC is also limited in 

single target classification due to the complex feature space of mixed targets. In addition, whether the 

accuracy of classification algorithm will depend on the speed being constant during the classification 

periods need to be further investigated. These are studies that the authors will focus on in the future. 

Acknowledgments 

The authors would like to thank Xueyuan Zhang for providing advice on experiments, as well as the 

associate editor and anonymous reviewers for their valuable comments and suggestions to improve this 

paper. This work was supported by Research Fund 9140C18020211ZK34. 

Conflict of Interest 

The author declares no conflict of interest. 

References 

1. William, P.E.; Hoffman, M.W. Classification of military ground vehicles using time domain 

harmonics’ amplitudes. IEEE Trans. Instrum. Measur. 2011, 60, 3720–3731. 



Sensors 2013, 13 8549 

 

 

2. E.Sleefe, G.; D.Ladd, M.; S.McDonald, M; J.Elbring G. Acoustic and Seismic Modalities for 

Unattended Ground Sensors. In Proceedings of the Unattended Ground Sensor Technologies and 

Applications, Orlando, FL, USA, 8–9 March 1999.  

3. Tian, Y.; Qi, H.; Wang, X. Target Detection and Classification Using Seismic Signal Processing 

in Unattended Ground Sensor Systems. In Proceedings of the IEEE International Conference on 

Acoustics Speech and Signal Processing, Orland, FL, USA, 3–5 May 2002. 

4. Altmann, J. Acoustic and seismic signals of heavy military vehicles for co-operative verification. 

J. Sound Vib. 2004, 273, 713–740. 

5. Zhou, Q.; Tong, G.; Xie, D.; Li, B.; Yuan, X. A seismic-based feature extraction algorithm for 

robust ground target classification. IEEE Signal Process. Lett. 2012, 19, 639–642. 

6. Liu, X.F.; Zheng, X.D.; Xu, G.C.; Wang, L.; Yang, H. Locally linear embedding-based seismic 

attribute extraction and applications. Appl. Geophys. 2010, 7, 365–375. 

7. Altmann, J.; Linev, S. Acoustic-seismic detection and classification of military vehicles—developing 

tools for disarmament and peace-keeping. Appl. Acoust. 2002, 63, 1085–1107. 

8. Succi, G.; Clapp, D.; Gampert, R.; Prado, G. Footstep detection and tracking. Unattended Ground 

Sensor Technol. Appl. III. 2001, 4393, 22–29. 

9. Liang, Z.; Wei, J.; Zhao, Y.; Liu, H.; Li, B.; Zheng, C. The statistical meaning of kurtosis and  

its new application to identification of persons based on seismic signals. Sensors 2008, 8,  

5106–5119. 

10. Gramann, R.A.; Bennett, M.B.; O’Brien, T.D. Vehicle and Personnel Detection Using Seismic 

Sensors. In Proceedings of the SPIE Conference on Sensors, C3I, Information, and Training 

Technologies for Law Enforcement, Boston, MA, USA, 7 January 1998. 

11. Lacombe, J.; Peck, L.; Anderson, T.; Fish, D. Seismic detection algorithm and sensor deployment 

recommendations for perimeter security. Proc. SPIE. 2006, 6231, 623109. 

12. Jin, X.; Sarkar, S.; Ray, A.; Gupta, S.; Damarla, T. Target detection and classification using 

seismic and PIR sensors. IEEE Sensors J. 2012, 12, 1709–1718. 

13. Yen, G.G.; Lin, K.C. Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Ind. 

Electron. 2000, 47, 650–667. 

14. He, Q.B.; Liu, Y.B. Time-frequency manifold as a signature for machine health diagnosis. IEEE 

Trans. Instrum. Measur. 2012, 61, 1218–1230. 

15. He, Q.; Liu, Y.B; Long, Q.; Wang, J. Time-Frequency Manifold for Gear Fault Signature 

Analysis. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 

Binjiang, China, 10–12 May 2011. 

16. Wang, Y.; Yang, J.N.; Liu, H. Acoustic targets feature extraction method based on manifold 

learning. Electron. Lett. 2012, 48, 139–140. 

17. Liu, H.; Yang, J.A. A novel approach to research on feature extraction of acoustic targets based 

on manifold learning. Acta Phys. Sin. 2012, 60, 074302. 

18. He, Q. Vibration signal classification by wavelet packet energy flow manifold learning.  

J. Sound Vib. 2013, 332, 1881-1894. 

19. Li, X.; Shu, L. Kernel based nonlinear dimensionality reduction and classification for genomic 

microarray. Sensors 2008, 8, 4186–4200. 



Sensors 2013, 13 8550 

 

 

20. Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. 

Neural Comput. 2003, 15, 1373–1396. 

21. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 

2000, 290, 2323–2326. 

22. Tenenbaum, J.B.; Silva, V.D.; Langford, J.C. A global geometric framework for nonlinear 

dimensionality reduction. Science 2000, 290, 2319–2323. 

23. He, X.; Cai, D.; Yan, S.; Zhang, H.; Neighborhood Preserving Embedding. In Proceedings of the 

Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005. 

24. Bengio, Y.; Paiement, J.F.; Vincent, P.; Delalleau, O.; Le Roux, N.; Ouimet, M. Out-of-sample 

extensions for lle, isomap, mds, eigenmaps, and spectral clustering. Adv. Neur. Inf. Process. Syst. 

2004, 16, 177–184. 

25. Zhao, X.; Zhang, S. Facial expression recognition based on local binary patterns and kernel 

discriminant isomap. Sensors 2011, 11, 9573–9588. 

26. Pang, Y.; Zhang, L.; Liu, Z.; Yu, N.; Li, H. Neighborhood preserving projections (NPP): A novel 

linear dimension reduction method. Adv. Intell. Comput. 2005, 3644, 117–125. 

27. Daubechies, I. Ten Lectures on Wavelets; Society for Industrial Mathematics: Philadelphia, PA, 

USA, 1992; Volume 61. 

28. Cody, M.A. The wavelet packet transform, extending the wavelet transform. Dr. Dobb’s J. 1994, 

19, 44–46.  

29. Averbuch, A.; Hulata, E.; Zheludev, V.; Kozlov, I. A wavelet packet algorithm for classification 

and detection of moving vehicles. Multidimens. Syst. Signal Process. 2001, 12, 9–31. 

30. He, Q.; Kong, F.; Yan, R. Subspace-based gearbox condition monitoring by kernel principal 

component analysis. Mech. Syst. Signal Process. 2007, 21, 1755–1772. 

31. Lan, J.; Nahavandi, S.; Lan, T.; Yin, Y. Recognition of moving ground targets by measuring and 

processing seismic signal. Measurement 2005, 37, 189–199. 

32. Cao, H. Research on Collaborative Classification of Ground Targets in Sensor Networks for 

Battlefield Surveillance. Ph.D. Thesis, Shanghai Institute of Microsystem and Information 

Technology, China Academy of Science, Shanghai, China, 6 June 2009. 

33. Jin, X.; Gupta, S.; Ray, A.; Damarla, T. Symbolic Dynamic Filtering of Seismic Sensors for 

Target Detection and Classification. In Proceedings of the IEEE American Control Conference 

(ACC), San Francisco, CA, USA, 29 June 2011. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


