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Abstract: Chlorophyll a fluorometry has long been used as a method to study 

phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to 

provide depth-resolved estimates of phytoplankton biomass. However, the high price of 

commercially manufactured in situ fluorometers has made them unavailable to some 

individuals and institutions. Presented here is an investigation into building an in situ 

fluorometer using low cost electronics. The goal was to construct an easily reproducible  

in situ fluorometer from simple and widely available electronic components. The simplicity 

and modest cost of the sensor makes it valuable to students and professionals alike. Open 

source sharing of architecture and software will allow students to reconstruct and 

customize the sensor on a small budget. Research applications that require numerous in situ 

fluorometers or expendable fluorometers can also benefit from this study. The sensor costs 

US$150.00 and can be constructed with little to no previous experience. The sensor uses a 

blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. 

The sensor is controlled by an Arduino microcontroller that also serves as a data logger. 

Keywords: fluorometer; fluorescence; phytoplankton; chlorophyll; Arduino; inexpensive; 

sensors; oceanography; technology; education 

 

  

OPEN ACCESS 



Sensors 2013, 13 7873 

 

 

1. Introduction 

In oceanography, monitoring the distribution of phytoplankton (microscopic algae) in the water 

column is vital to understanding many large-scale physical and biological processes. Measurement of 

phytoplankton abundance in seawater is relatively simple due to the unique fluorescent properties of 

chlorophyll a, which is contained inside phytoplankton cells. The combination of chlorophyll a and 

other cellular components inside phytoplankton cells have a maximum absorption near 440 nm and 

maximum fluorescence at 685 nm [1]. The unique wavelength of fluorescence (685 nm) and spectral 

distance between excitation and emission wavelengths has made fluorescence a reliable proxy for 

phytoplankton biomass for over 50 years [2].  

Historically, fluorescence was primarily measured in vitro. In the past few decades, advances in 

technology have allowed for high resolution in situ monitoring of phytoplankton biomass. Today, 

fluorescence of chlorophyll a can even be measured from aircraft or satellites [3,4]. However, aerial 

methods can only measure chlorophyll a at the ocean surface during daylight hours. High resolution 

measurements of chlorophyll a concentration at depth require the use of submersible in situ 

fluorometers. This makes in situ fluorometers an essential tool for 21st century oceanography.  

The retail price of commercial in situ fluorometers (>US$3,000) has limited their availability to 

both students and professionals. This is especially true if the desired spatial resolution requires 

multiple fluorometers. However, recent technological advances have reduced the size and price of 

many electronic components used to build optical sensors [5,6].  

This study demonstrates the use of low cost electronics to measure in situ phytoplankton 

fluorescence. The goal was to construct a cost effective in situ fluorometer that could be easily 

reproduced by individuals with no prior engineering background. Ideally, this design would allow 

anyone with US$150.00 to collect accurate measurements of in situ phytoplankton fluorescence. 

Similar low cost sensors have been constructed in the past. For example, Schofield [7] constructed a 

fluorometer using low cost components to measure DNA marked with fluorescent tags. Low cost 

optical sensors have also been used in numerous biomedical applications [8]. However, these sensors 

were designed primarily for lab use. This study attempts to bring low cost instrumentation out of the 

lab and into the field. 

2. Methods 

Like many commercially manufactured in situ fluorometers, the sensor uses a flat face design. Two 

holes were drilled through the flat side of a waterproof case at a 45° angle (Figure 1). These two holes 

provided a window for light to pass through the opaque housing. The holes were covered with a square 

of ¼ inch (0.635 cm) Plexiglas
®

 to keep the housing watertight while still providing an optically clear 

window. The Plexiglas
®
 was adhered to the housing using IPS Weld-On 3 (Compton, CA, USA). The 

light source and detector were mounted just behind the two 45° angle holes such that the angle 

between the cone of illumination and cone of detection was on average 90°. This helped to reduce the 

amount of excitation light scattered toward the detector. The flat face design used here is ideal because 

it requires minimal alterations to prefabricated waterproof cases. 
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Figure 1. Sensor components and geometry. The detector is placed at 90° to the light 

source to minimize the amount of excitation light scattered toward the detector. 

 

A blue LED with a ball lens was used as the excitation light source. The beam angle of the LED 

was 18°. This is wider then necessary, however it allowed for easier alignment of the light source and 

detector. The LED emits a narrow band of light centered at 425 nm (Figure 2). The LED was wired in 

parallel with two 10 Ω resistors. This provided a current of 85 mA when supplied with 5 V. The LED 

was powered by one of the microcontroller digital pins (described below), which allowed it to be 

turned on and off in the microcontroller script. Both the maximum wavelength of emission and  

the output of the LED over time were characterized using a Satlantic HyperOCR radiometer (Halifax, 

NS, Canada). 

Figure 2. Emission spectrum from LED420L and percent transmission of Roscolux filter #19. 

 

The detector consisted of a red filter, convex lens, photodiode, and amplification circuit. The light 

detector itself was a silicon FDS 100 photodiode. The FDS 100 is sensitive to all visible wavelengths 

of light. Therefore, a Roscolux #19 filter (Rosco, Stamford, CT, USA) was placed over the photodiode 

to shield it from the blue excitation light (Figure 2). The lens helped to collect fluoresced light and 

focus it on the small face of the photodiode. 

The current produced by the photodiode was amplified using a transimpedance amplifier. The gain 

of this amplifier is equal to the sum of the two resistors used in the circuit (Figure 3). The resistance 

values can be adjusted if the specific application requires a detector that has greater or lesser sensitivity 
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to light. The transimpedance circuit not only amplifies, but also converts the current produced by the 

photodiode to a voltage that can be read at Vout (Figure 3). The transimpedance circuit requires very 

few components and can be construed with minimal soldering. 

Figure 3. Transimpedance amplifier using OP07 and 5 GΩ resistors. 

 

The sensor was controlled using an Arduino Duemilanove (ATmega328) microcontroller  

(Smart Projects, Strambino, Italy). Two 9 V batteries connected in parallel were used to power the 

Arduino, which in turn provided power to the LED and amplification circuit. The Arduino was also 

used to set the sampling interval of the sensor (time between measurements) by turning the LED and 

amplification circuit on and off (see Supplementary Material for the Arduino code).  

An SD card attachment for the Arduino was used to log data collected by the sensor. To record the 

output from the detector, one of the Arduino analog pins was connected to the output of the amplifier 

(Vout in Figure 3). The Arduino analog pins are capable of measuring voltages between 0 and 5 V, with 

a 10-bit resolution. The Arduino analog to digital converter measures voltage in counts ranging from  

0 to 1,023 (~0.005 V/count). Voltage, measured in counts, was stored on the SD card along with the 

date and time of each measurement. 

The completed sensor was calibrated using both extracted chlorophyll a from spinach leaves and 

with live phytoplankton cells. The sensor was cross calibrated with a WetLabs WETStar chlorophyll a 

fluorometer (Philomath, OR, USA). Calibration with extracted chlorophyll a was conducted in 25 °C 

deionized water. Calibration with live cells was conducted in 17 °C filtered seawater using the 

phytoplankton Thalassiosira weissflogii. Aliquots from a stock mixture of extracted chlorophyll a or  

T. weissflogii were added to approximately 9 L of water. Both the constructed fluorometer and a 

WETStar fluorometer were immersed in the mixture. Type one linear regression between the output of 

the constructed fluorometer and the WETStar fluorometer yielded the relationship between counts and 

chlorophyll a concentration. 

The sensor was also tested to determine its response to water turbidity. A mixture of 0.8 g of clay 

and 1 L of deionized water were mixed thoroughly. Aliquots from the 1 L mixture were sequentially 

added to 9 L of deionized water to create clay concentrations from 10 to 80 g·m
−3

. The sensor was 

immersed in each dilution and allowed to collect 10 readings. 

Two in situ overnight deployments of the sensor in the Damariscotta River Estuary were conducted 

at the Darling Marine Center (DMC), located in Walpole, ME, USA. The first deployment was 

conducted on 3 April 2012. The sensor was suspended off the floating dock at the DMC at a depth of 
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two meters. The sensor collected 10 measurements every 10 minutes until it was recovered the 

following morning. The second deployment was conducted on 1 August 2012. The sensor was 

deployed in conjunction with a Seabird CTD off the floating dock at the DMC. The CTD was outfitted 

with the same WETStar fluorometer used to cross-calibrate the sensor. The CTD and constructed 

fluorometer were recovered the morning of 2 August 2012. During the deployment water samples were 

collected next to the CTD using a niskin bottle. The water samples were used to measure extracted 

chlorophyll a according to the JGOFS protocol [9]. 

3. Results and Discussion 

3.1. Components and Price 

The total price of the sensor was US$143.04, not including shipping and handling costs (Table 1). 

The most expensive component of the sensor was the blue LED light source. Different waterproof 

containers could also be purchased, depending on size and depth requirements. The container used to 

house the sensor in this example was larger then necessary. The housing was sufficient for shallow  

(<5 m) deployments for multiple days at a time. A more robust housing will likely be required for 

deeper and/or longer deployments. 

Table 1. List of prices (in US dollars) and sources for all components in the sensor. 

Component Source Price 

Blue LED (LED420L) ThorLabs $28.49 

Waterproof Box (Drybox 2500) Otterbox $20.49 

Arduino Duemilanove Amazon $20.00 

1/2" Convex Lens (f = 15 mm) ThorLabs $19.70 

Photodiode (FDS100) ThorLabs $13.10 

(2) 5 GΩ Resistor Digi-Key $10.20 

Roscolux Filter Booklet Edmund Optics $9.70 

SD Card Shield (Data Logger) imall.iteadstudio.com $9.50 

2 GB SD Card Amazon $5.29 

Operational Amplifier (OP07) Digi-Key $4.04 

Printed Circuit Board RadioShack  $2.00 

(2) 10 Ω Resistor Digi-Key $0.24 

10 pF Capacitor Digi-Key $0.29 

Total $143.04 

3.2. Laboratory Test 

When power is first applied to a light source, the output can be unstable. Numerous optical 

instruments cannot be used before warming up the light source. The output of the LED used in this 

design appears slightly unstable when power is first applied (Figure 4). Therefore, the LED was 

allowed to run for 1.5 minutes before each measurement. This allowed the output of the LED to 

stabilize before each measurement was made. The amount of time the LED is allowed to warm up is a 

trade off between light source stability and battery life. If measurements must be made less then 1.5 

minutes apart, the LED should be allowed to run continuously. 
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Figure 4. Radiance at 425 nm of blue LED over time. The LED should be allowed to run 

for at least 1.5 minutes to allow the output to stabilize. 

 

Using two 9 V batteries the sensor was able to log data for approximately 24 hours (with a sampling 

interval of 10 minutes and allowing the LED to warm up for 1.5 minutes before each sample). When 

deploying the sensor for an extended period of time, it is imperative that it is powered by an 

appropriately sized battery pack. If the voltage supplied to the Arduino drops below 6 V, data on the 

SD card can be lost or become corrupted. 

Cross calibration with a WetLabs WETStar fluorometer showed the linear dependence of counts on 

chlorophyll a concentration. The type one least-squares linear regressions for both calibrations have an 

R
2
 > 0.99 and p < 0.001 showing a significant positive correlation with chlorophyll a concentration 

(Figure 5). The mean absolute error for the extracted and in vivo calibrations was 0.34 and 0.13 μg·L
−1

, 

respectively (assuming the WETStar flurometer was well calibrated). The absolute error generally 

increased with increasing chlorophyll a concentration. For larger chlorophyll a concentrations  

(>2 μg·L
−1

) the relative error was on average ±4% of the signal. 

Figure 5. Cross calibration using extracted chlorophyll a from spinach leaves (Left) and 

live Thalassiosira weissflogii cells (Right). Regression equation, coefficient of determination, 

and root mean squared error (RMSE) are included in each plot. 

 

The slope of the regression and mean error for the extracted chlorophyll a calibration is larger than 

for the in vivo calibration. This is likely a result of the shifted excitation and emission peaks when 

 

[Chl a] = 0.237*Counts + 0.571 

R2 = 0.996 

RMSE = 0.435 

[Chl a] = 0.284*Counts + 0.058 

R2 = 0.995 

RMSE = 0.137 
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chlorophyll a is dissolved in an organic solvent [10]. The WETStar fluorometer excitation light  

(~460 nm) is also not optimized to excite extracted chlorophyll a. However, this regression analysis 

only demonstrates the linear response of the sensor and is not intended as an absolute calibration. The 

fluorescence yield of phytoplankton is highly influenced by the species composition, photoadaptive 

state, and physiological state [11]. Thus, it is typical to collect water samples near the area being 

monitored for measurement of extracted chlorophyll a. The extracted chlorophyll a measurements are 

then used to calibrate the sensor under the current environmental conditions (field calibration). 

However, if no field calibration is conducted, the signal is still useful as a measure of variability in 

chlorophyll a concentration. 

Highly turbid water can introduce error into fluorescence measurements by scattering the excitation 

light toward the detector. To study the magnitude of this effect, the output from the sensor was 

monitored while immersed in varying concentrations of suspended particulate matter. Turbidity was 

found to introduce a slight error of up to four counts in extremely turbid water (Figure 6). However, 

the amount of suspended material in many environments rarely exceeds 50 g·m
−3

 [12,13]. 

Concentrations below 50 g·m
−3

 introduce an error on the order of one count as result of turbidity. 

Using the calibration in Figure 5 on T. weissflogii, one count corresponds to approximately 0.28 μg·L
−1

 

of chlorophyll a. 

Figure 6. Sensor response to water turbidity. The figure shows counts returned by the 

sensor when placed in a mixture of deionized water and varying amounts of bentonite clay. 

 

3.3. Field Deployments 

During the first deployment, the sensor successfully logged over 500 chlorophyll a readings. The  

10 measurements taken every 10 minutes were median binned. The laboratory calibration using  

T. weissflogii was applied to the sensor output since no extracted chlorophyll a measurements were 

taken. Tidal fluctuations in chlorophyll a can be seen in the chlorophyll a time series (Figure 7). These 

fluctuations are typical of Damariscotta River Estuary [14], however, there was no validation of the 

data collected during the first deployment. 
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Figure 7. Time series of chlorophyll a concentration measured in the Damariscotta River 

Estuary during first deployment (04/03/12–04/04/12). Vertical lines show time of high  

and low tide. 

 

The second deployment was in conjunction with a CTD and the WETStar fluorometer used in the 

initial calibration of the sensor. The extracted chlorophyll a measurements taken during the 

deployment were used to calibrate both sensors to the current environmental conditions. During the 

first half of the deployment, output from the constructed sensor appeared noisy and did not correlate 

well with the WETStar fluorometer. This may have been due to interference between the constructed 

sensor and the CTD pump which were located close together. During the second half of the 

deployment the sampling cycle of the CTD and the constructed fluorometer became slightly offset. 

Data collected by the sensor during the second half the deployment were not noisy and correlated well 

with the WETStar fluorometer (Figure 8). 

Figure 8. Comparison of chlorophyll a concentration measured by WetLabs WETStar and 

the constructed fluorometer in The Damariscotta River Estuary (08/01/12–08/02/12). The 

outputs from both sensors were normalized to extracted chlorophyll a measurements taken 

from water collected during the deployment. 

 
  

 

y = 1.06(x) – 0.134 

R2 = 0.886 

RMSE = 0.141 
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3.4. Improvements 

There are numerous improvements that could make the sensor more versatile and more accurate. 

The primary limitation of the sensor is sensitivity to ambient light. The detector can easily become 

saturated by ambient light, thus ambient light rejection will be required for daytime operation near the 

water surface. This can be done using two methods. The first is to modulate the light source and use a 

high frequency filter as part of the detection circuit. Ambient light tends to change slowly, making the 

signal from ambient light low frequency (with the exception of focusing and defocusing of capillary 

waves). Modulation of the light source will cause light from florescence to reach the detector in high 

frequency pulses. A high frequency filter will allow the high frequency signal through while blocking 

low frequency signals. Modulation of the light source can be accomplished using the Arduino 

microcontroller. The Arduino has built in digital pins for pulse width modulation (PWM). These can 

be used to drive an LED at high frequencies. Digital pins can also be switched from 0 to 5 V at any 

given frequency. This allows for customization of both the frequency and duty cycle of the LED. This 

method of ambient light rejection is used in many optical communication devices. However, this will 

significantly increase the complexity of the sensor. 

A simpler solution is to convert the sensor to a flow through system, where the measurement is 

made inside a tube that excludes ambient light. The conversion of the sensor to a flow through system 

is relatively simple. A piece of opaque rigid tubing could be placed over the face of the sensor or an 

acrylic tube can be passed through the center of housing. This is the recommended configuration for 

daylight operation, and would add only a few dollars to the total price of the sensor.  

If placed in close proximity to a pump or other source of electromagnetic field, the sensor may need 

to be shielded to prevent noise. The sensor can be shielded from electromagnetic fields by placing the 

sensor inside a faraday cage. Lining the housing with tin foil and connecting the foil to the ground pin 

on the Arduino would provide adequate shielding. 

Studying the effects of temperature on the sensor will also help to improve performance. 

Temperature does affect semiconductors, such as LEDs and photodiodes, however the effect is 

predictable [15]. For short-term deployments, a field calibration of the sensor should account for 

temperature effects. For longer deployments, or vertical profiles spanning large temperature ranges, 

temperature may introduce a significant error. If this occurs, the output of the LED can be 

characterized over a wide range of temperatures. This information can be used to apply temperature 

corrections to the fluorescence signal. To measure the temperature inside the sensor housing, a 

thermistor (temperature sensitive resistor) could be placed inside the housing. The Arduino has 

numerous analog pins that could be used to read voltages from the thermistor. Voltages corresponding 

to temperature could be logged next to fluorescence data on the SD card. The addition of a thermistor 

and the required resistor would add less then US$1.00 to the price of the sensor. 

4. Conclusions 

During both laboratory calibrations and field tests, the constructed sensor demonstrated excellent 

linearity in response to chlorophyll a fluorescence. The error in the sensor measurement, in 

comparison to a commercial instrument, was approximately ±4% of the signal (with a minimum error 
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of 0.3 μg·L
−1

 for small values chlorophyll a). The range of chlorophyll a concentrations in the North 

Atlantic alone spans three orders of magnitude from 0.029 to 32.6 μg·L
−1

 [16]. In coastal areas 

chlorophyll a concentration can reach 90 μg·L
−1

 [14]. Thus an error of ±4% in fluorescence relative to 

a commercial instrument is sufficiently accurate for many oceanographic and water quality monitoring 

applications. The resolution of the sensor is also well above the resolution needed for detecting 

phytoplankton blooms. Thus, the sensor could be used to detect and monitor the development of 

phytoplankton blooms on large spatial scales. Similarly it could be deployed in an array to aid in the 

detection of harmful algal blooms. 

There are numerous other molecules or compounds that are measured using fluorescence besides 

chlorophyll a. In oceanography fluorescence is also used to measure chromophoric dissolved organic 

material (CDOM) and other phytoplankton pigments such as phycoerythrin and phycocyanin. In 

addition to oceanography, fluorescence has application in microbiology, botany, chemistry, mineralogy, 

and geology [17,18]. Fluorescence dyes are also commonly used to measure flow rates of river and 

dispersion of waterborne toxins [19,20]. Interchangeable filters and light sources would allow the 

sensor to measure fluorescence from a number of materials (Figure 9). The resistor values can also be 

adjusted to change the sensitivity of the amplification circuit. 

Figure 9. Roscolux filter booklet from Edmund Optics (included in the total price of the 

fluorometer). A booklet contains over 200 filters, each with a graph showing percent 

transmission. These can be used over the light source or detector to measure fluorescence 

from numerous other substances in addition to chlorophyll a. 

 

This sensor can also be used as an educational tool. A project where students build the sensor using 

the above components would provide students with an understanding of how fluorometers and related 

optical sensors work. It will also give students basic experience in engineering and programming. To 

further reduce the cost for educators, it can be built as a laboratory instrument. As a laboratory 

instrument there is no need for the waterproof housing, SD card, or data logger (the lens may also  

not be required). 

Overall, this study has shown the potential for constructing low cost sensors for environmental 

applications. A fluorometer provides a good example because it is a moderately complex sensor. Other 

sensors used in oceanography can be construed using even fewer components. For example, sensors to 
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measure temperature, optical scattering, photosynthetically active radiation (PAR), depth, and/or light 

attenuation could be constructed using even simpler techniques. Therefore, one could construct a 

whole array of sensors at little cost. 
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