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Abstract: Harrowing is often used to reduce weed competition, generally using a constant
intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be
optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken
into account. This study aimed to develop and test an algorithm to automatically adjust the
harrowing intensity by varying the tine angle and number of passes. The field variability of
crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to
investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density
were assessed using bispectral cameras through differential images analysis. The draught
force of the soil opposite to the direction of travel was measured with electronic load cell
sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity
levels were derived in previously implemented experiments, based on the weed control
efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density
were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy
inference system (LFIS). The system was evaluated in two field experiments that compared
constant intensities with variable intensities inferred by the system. A higher weed density
reduction could be achieved when the harrowing intensity was not kept constant along the
cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly
improving crop yield. A real-time intensity adjustment with this system is achievable, if the
cameras are attached in the front and at the rear or sides of the harrow.



Sensors 2013, 13 6255

Keywords: site-specific harrowing; selectivity; crop-weed-soil variability; crop-weed-soil
sensors; fuzzy logic; precision weed control

1. Introduction

Mechanical weed control provides a good alternative to reduce weed pressure, in both organic and
conventional farming. The heterogeneous spatial and temporal distribution of weed populations causes
underestimation of potential yield loss in areas with high weed densities or overestimation in areas with
low or no weed densities [1]. This has opened an opportunity to develop strategies for site-specific
mechanical weed control and thereby to reduce environmental and economic costs associated with weed
control treatments. Machine vision, global positioning systems (GPS), variable rate application systems
and robotics are providing technological tools to allow autonomous control of weeding implements to
become feasible [2]. Moreover, site-specific weed management strategies have been investigated under
variable field conditions [3]. Advances on GPS-guidance of intra-row hoes or automatic control of finger
weeders provide promising prospects to achieve site-specific mechanical weed control [4–6].

Harrowing with a flexible tine weeder is commonly used to reduce weed competition in cereals
and legumes. Generally, a constant harrowing intensity is applied across the whole field, regardless of
variations in weed distribution and soil structure. Keeping a constant harrowing intensity for the whole
field may result in crop damage due to an aggressive treatment in areas with low weed infestations,
young and small weeds or light soil density. Similarly, a gentler intensity may generate yield losses
due to insufficient weed control in high weed infestation patches. Weed harrowing controls weeds by
uprooting or covering weed seedlings with soil, but the crop may also get covered with soil or torn
into pieces [7]. The draught force opposite to the direction of travel is the specific resistance that the
harrow tines should overcome to cultivate the soil [8]. Areas with loose soil conditions would be more
aggressively harrowed than areas with denser soil, and these variations in soil conditions might lead to
uneven weed control [5]. To increase the harrowing efficacy and balance the trade-off between crop
damage and weed control, the applied intensity should be adapted to the variability of soil, weeds and
crop within a field.

Harrowing intensity refers to the cultivation aggressiveness of the tines penetrating into the soil
surface. Higher intensity levels are achieved by decreasing the tine angle relative to a perpendicular
axis to the field surface, increasing the depth of the implement, increasing driving speed or through
various consecutive passes on the same day of cultivation [6,9,10]. The crop-weed selectivity of
harrowing and crop recovery have been studied as key relationships to determine the optimal harrowing
intensity [11–13]. Implement settings have not been investigated, thus they were a topic of this study.
Selectivity refers to the ratio between weed control percentage and the percentage of soil covering the
crop, immediately after harrowing and excluding weed recovery or new weed emergence [14]. Crop
recovery refers to the ability of the crop to tolerate burial in soil and to avoid yield losses as a result
of harrowing. Selectivity and crop recovery from harrowing have been determined with objective
assessment and analysis methods [10,11]. However, the non-uniformity of weed occurrence and soil
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conditions has been left aside. Conversely, in other studies weed spatial variability and soil density have
been used in systems to automatically control the harrowing intensity, but selectivity and crop recovery
were not taken into account [5,6]. Therefore, a system gathering all these aspects is still required.

The aim of this study was to develop and test a decision making based method to automatically adjust
the harrowing intensity by varying the tine angle and number of passes. For this purpose, assessment
of the crop-weed-soil variability was a requisite, as well as the intensity optimization through analysis
of selectivity and crop recovery. Results of previous studies were used to determine optimal intensity
levels, which became the output of the decision system [15,16]. These optimal intensity levels generated
yield gain as a result of reduction of weed competition, in some cases even comparable with the effects
of herbicide application [16]. It was assumed that these optimal intensities could be applicable in
other fields with variable conditions. Since selectivity and crop recovery are relationships established
after harrowing operations, they could not be included into the decision making method to adjust the
intensity. Instead, the assessed variables (crop) leaf cover and weed density were used as inputs. In early
post-emergence harrowing, leaf cover refers to crop plants because weed cover is insignificant [10]. In
addition, the draught force of the soil (soil density) was assessed and included as another input into
this decision making method. Hypotheses in this study included the following. (i) Leaf cover, weed
density and soil density and the applied harrowing intensities in a previous experimental phase can be
used to create a decision making based method for the automatic control of the harrowing intensity.
Therefore, simple rules were formulated in a linguistic fuzzy inference system (LFIS) to combine input
from bi-spectral cameras estimating crop leaf cover and weed density and a soil sensor; (ii) Harrowing
according to the assessed variability is achievable, and site-specific harrowing effectively diminishes crop
damage due to harrowing, while maintaining high levels of weed control and increasing crop yield. For
this, application maps were created using the aforementioned decision making based method and applied
in two field experiments. With these experiments it was intended to determine effects of keeping constant
harrowing intensities along plots compared with applying sensor-based variable intensities. Fuzzy logic
allows to implement human reasoning in computing technology through an interface between symbolic
and numerical spaces [17]. Therefore, the method proposed here contributed a tool to deal with the
contextual definition of harrowing intensity, which may vary from light to high levels depending on the
implement settings.

2. Materials and Methods

2.1. Data Source

A decision system for automatic harrowing was developed based on results of previously carried out
experiments in winter and spring cereals, barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.).
With these experiments it was possible to determine the influence of crop growth stage and harrowing
intensity on selectivity and crop yield. The experimental period ranged from 2007 to 2009, at different
sites with varying soil conditions and weed densities (Table 1). Further details on experiments 1 to 4
are given in Rueda-Ayala and Gerhards [15] and Rueda-Ayala et al. [16]. Experiments 5 and 6 contain
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previously unpublished data [18], but the variable assessment and analysis procedure were the same as
for experiments 1 to 4.

Table 1. Experimental site and treatment description for the trials conducted during
2007–2009, to analyse selectivity and yield response to harrowing. Different tine angles,
driving speeds and number of passes constituted the harrowing intensities, which were
applied all at differing crop growth stages. Experiments were placed at various location
with differing soil types and weed populations.

Experiment Crop Location
Dominant Weeds

Harrowing Intensity
Source

(Year) (BBCH-Code) (Soil Type) Tine Angle
Speed

Passes
(km h−1)

(2007)
1 winter barley Heidfeldhof Lamium purpureum L., lightest 10 1 Rueda-Ayala and Gerhards [15]

(12, 24) (silty loam) Galium aparine L., light 10 1
Alopecurus myosuroides Huds., strong 12 2

Matricaria inodora L. strongest 12 2
(2008)

2 spring barley Meiereihof Lamium purpureum L., lightest 8 1–3 Rueda-Ayala and Gerhards [15]
(13, 21, 24) (silty loam) Polygonum convolvulus L., light, 8 1–3

Amaranthus retroflexus L., strong 12 1–3
Chenopodium album L.

3 winter wheat Heidfeldhof Matricaria inodora L., strongest 12 1–4 Rueda-Ayala et al. [16]
(12, 15, 21) (silty loam) Cirsium arvense (L.) Scop.,

Alopecurus myosuroides Huds.,
Galium aparine L.

4 winter wheat Ihinger Hof nwc† light 8 1–4 Rueda-Ayala et al. [16]
(20) (loam)

(22, 24) 10 1–4
(2009)

5 spring barley Heidfeldhof Lamium purpureum L., lightest 8 1 Meiser [18]
(14) (silty loam) Galium aparine L., light 8 1

Cirsium arvense (L.) Scop., strong 8 2
Avena fatua L. strongest 8 2

6 spring wheat Meiereihof Chenopodium album L., light 8 1–3 Meiser [18]
(12, 15) (sandy loam) Veronica hederifolia L.,

Galium aparine L., strong 10 1–3
Alopecurus myosuroides Huds.,

Avena fatua L.
† nwc: no weed competition due to absence of weed emergence.

The experimental sites were located at three research stations of the University of Hohenheim:
Heidfeldhof (48◦43′N, 9◦12′ E) and Meiereihof (48◦43′N, 9◦15′ E), near Stuttgart, and Ihinger Hof
(48◦45′N, 8◦56′ E), near Renningen. In Rueda-Ayala et al. [16], only experiments conducted in Germany
were used so as to keep homogeneous characteristics of harrowing implements and weed- and soil
assessments. Harrowing was performed with a 6-m-wide flexible-tine harrow (Hatzenbichler Austrian
Agrotechnik). Different tine angles (see below) were combined with driving speeds from 8 to 10
km h−1 and up to two passes to create increasingly aggressive intensities, including one untreated control.
Decisions about speed, angles and settings were based on visual assessments on the whole field, at the
day of harrowing such that one pass covered between 25% and 30% of the crop with soil. The analysis
procedures for studying selectivity provided in Rasmussen et al. [11] and Rasmussen et al. [12] were
used. The yield responses to weed control by harrowing was analyzed as in Rueda-Ayala et al. [16].
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The approach for sensor-based mechanical weed control outlined in Weis et al. [1] was used. Crop
leaf cover and weed density were assessed using bispectral cameras. The bispectral camera has two
channels, infrared (IR) and visual (VIS), which take two images at the same time in the near-infrared
(770–1,150 nm) and the red (610–670 nm) spectra. The images are subtracted, i.e., IR–VIS, resulting in
a differential image with strong contrast between green plants and soil, mulch and stones. Nearly one
image per second was acquired to measure crop leaf cover and weed density. For this, two bispectral
cameras separated 2.3 m from left to right were mounted on a vehicle driven at 5 km h−1. The weed
density was also manually counted to verify the results of the digital image analysis. Automated
assessment of weed density was carried out in all experiments.

Figure 1. Prototype of the automatically controlled flexible-tine harrow, adapted from
Rueda-Ayala et al. [19]. (a) Soil sensor; (b) computing unit; (c) motor; (c1) light intensity;
(c2) strong intensity; (c3) strongest intensity; (d) RTK-DGPS.� ���� �� ��

�
Figure 1 shows the developed prototype for automatic harrowing. The soil density was assessed

with an electronic load cell sensor (Tedea-Huntleigh’s model 615 S-type, Tedea-Huntleigh GmbH,
Darmstadt, Germany). A rigid tine connected to the sensor was mounted on the harrow to penetrate
the soil to a depth of ±3 cm (Figure 1(a)). The draught force offered by the soil to the rigid tine
is almost equal at this shallow depth, because the produced soil disturbance (e.g., by the harrow
tines) is similar [8]. The applied force was measured with the aid of a spring with a known
spring constant and a strain gauge that measures displacement and outputs it as voltage. Based
on Hooke’s law, the displacement measured by the strain gauge can be attributed to specific force
applied to the end of the tine. Approximately 30 measurement points per second were acquired
at a driving speed of 8 km h−1. Horizontal movements of the rigid tine were captured and the
variation of voltages were calibrated to different force levels measured in Newton (data not shown).
Soil density could not be measured in all experiments due to technical difficulties; however, a
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good differentiation in soil between winter and spring cereals was identified. Soil density data and
application maps (see Section 2.3) were sent to the computing unit (Figure 1(b)). This controlled
the actuator (Figure 1(c)) to vary the harrowing intensity from the lightest to the strongest level
(Figure 1(c1–c3)), according to the measured variability. A precise positioning system RTK-DGPS
Trimble R© 5800 Limited GPS System 2001 was mounted on the system (Figure 1(d)), which enabled
elaboration of crop leaf cover and weed density maps. Increasingly aggressive treatments were made by
decreasing the tine angle relative to a perpendicular axis to the field surface. These harrowing intensity
levels were: untreated or none (72◦), lightest (61◦), light (41◦), strong (28◦), and strongest (4◦).

2.2. Decision Making Based Method for Automatic Harrowing

A linguistic fuzzy logic decision making based method was developed to control the adjustment of
the harrowing intensity according to three input variables: crop leaf cover, weed density and soil density.
The harrowing intensities from the experiments in 2007–2009, which achieved high selectivity, high crop
yield gains or negligible crop yield reductions (Table 2), were assigned as the optimal output intensities,
as described below. The mathematical principle to construct this decision making based method was
a fuzzy rule-based inference system (Figure 2). This system has three main components: fuzzification
interface (fuzzy sets), inference mechanism based on if-then rules, and defuzzification interface [20]. A
broader description of fuzzy logic has been outlined by several authors [17,21–23].

The fuzzification interface received the assessed numeric inputs: crop leaf cover, weed density and
soil density. These values were translated into “fuzzy sets” characterizing the linguistic variables crop
leaf cover (ILC), weed density (IWD), soil density (ISD). The optimal harrowing intensities defined
(none, lightest, light, strong, strongest) and tested in previous experiments were also fuzzified into the
fuzzy set harrowing intensity (OHI). All fuzzy sets were characterized through membership functions
(MF ) with a continuum degree of membership. Three MF were determined for ILC and ISD, and four
for IWD (Figure 3). The universes of discourse for the fuzzy sets were determined as explained below.
Crop leaf cover measured at BBCH 12–14 depicted the “low” MF of ILC ; older growth stages, such as
BBCH 15–21 and BBCH 22–31, characterized the medium and high levels, respectively. At a crop leaf
cover lower than 2%, the crop would not resist being harrowed, but with more than 40% leaf cover, the
crop could withstand an aggressive harrowing intensity. A high weed competition was assumed with
100 weeds m−2 or more, at which harrowing must be applied with maximum intensity level. No weed
competition was assigned at a density below 15 weeds m−2. For ISD, higher membership degrees than
30 N indicated a highly dense soil, in which weed harrowing would not be favorable due to poor soil
workability [19].
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Table 2. Optimal intensities for the trials conducted during 2007–2009 (cf. Table 1) and their effects on selectivity (calculated crop
soil cover corresponding to 80% weed control) and yield response (calculated crop soil cover and weed control that attained yield gain).
Ranges of crop leaf cover, weed density and soil density in the untreated plots were used as data source to develop the decision making
based method for automatic harrowing.

Crop growth Crop leaf Weed Soil Intensity † Crop Soil Cover (%) Crop Soil Cover (%) Weed control (%) Yield
stage cover density density corresponding to that attained that attained gain

(BBCH) (%) (plants m−2) (Newton) 80% weed control yield gain yield gain (%)

Experiment 1
(12) nd 40–56 nd strong 24 94 19
(14) 18–20 82–93 nd strong 47–50 15 41 16

Experiment 2
(24) 24–27 31–41 nd lightest 7–16 11 80 −3

Experiment 3
(15) 3–5 58–73 107–147 strongest 22–30 36 90 37
(21) 8–11 148–250 101–142 strongest 22–30 28 91 45

Experiment 4
(24) 5–9 23–25 light 16–31 0

Experiment 5
(14) 4–6 28–63 9–20 strong 40–50 nd nd nd

Experiment 6
(12) 6–7 58–147 nd light 22–30 25 90 16
(15) 17–19 147–154 nd strong 40–48 50 80 5

† Tine angles: lightest = 61◦, light = 41◦, strong = 28◦, strongest = 4◦; nd = data could not be assessed.
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Figure 2. Inner structure of the fuzzy inference system decision making based method to
control the harrowing intensity. The inference and the involved processes of fuzzification
and defuzzification are based on if-then rules. Adapted from Xia et al. [20].
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Figure 3. Membership functions of the input variables crop leaf cover (ILC), weed density
(IWD), soil density (ISD) and of the output variable harrowing intensity (OHI).
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MF for OHI were defined using the same intensity levels from the data source (Table 2), as “none”
(i.e., untreated), “light”, “lightest”, “strong” and “strongest”. Intensities that achieved high weed control
with low crop soil cover and yield gain or yield loss due to harrowing not higher than 3% were used. All
levels of the fuzzy sets ILC , IWD and ISD were inserted into the inference mechanism. This mechanism
applied a predefined set of rules to infer the output OHI , which is the fuzzy output with a degree of
matching linguistic quantity. These rules basically consist of two parts: an IF “antecedent proposition”
and THEN “consequent proposition” [24,25]. Thirty six rules (Table 3) were created using Boolean
relations [26,27]. For instance, a rule is: IF ILC IS low AND ISD IS low AND IWD IS none THEN OHI

IS none. Thus, the most influential input variable to infer a harrowing intensity was the weed density.
Even if IWD is ‘none’, a gentle intensity might benefit the crop at ‘medium’ or ‘high’ soil densities
(ISD) through soil loosening and reduction of evapotranspiration [30]. All rules in Table 3 were of
general use because they were created using experimental data and objective variable assessment. The
fuzzy output went through the defuzzification interface to be translated into numeric values, to enable its
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use in engineering applications [23,28]. The defuzzication method was center of gravity (CoG), which
calculates the centroid from the integrated membership function [29].

Table 3. Fuzzy rule-base to infer the harrowing (OHI) (none, lightest, light, strong, strongest)
for site–specific harrowing, after three levels (low, medium, high) of the variables crop leaf
cover (ILC) and soil density (ISD), and four levels (none, low, medium, high) of the variable
weed density (IWD).

Input variables Output variable
IF ILC AND ISD AND IWD THEN OHI

low low none

none
medium low none

high low none
low medium none

medium medium none

lightest

high medium none
low high none

medium high none
high high none
low low low

medium low low
high low low
low medium low

medium medium low
low medium medium
high medium low

light

low high low
medium high low

high high low
low low medium

medium low medium
high low medium

medium medium medium
low high medium

medium high medium
low low high

medium low high
low medium high
low high high
high medium medium

strong
high high medium
high low high

medium medium high
medium high high

high medium high
strongest

high high high
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2.3. Experimental Application of the System

To test the fuzzy inference system, two harrowing experiments (A and B) in winter wheat were
conducted. The experiments were located at the Ihinger Hof research station, and the crop sown in
autumn 2009. A split-strip plot design with four replication blocks was used in both trials. The harrowing
treatments were applied to the whole length (80 m) of the main plots. The soil was rolled in strip-plots
by one, two or three passes a few weeks after sowing. Each strip was 24 m long separated by a 4 m
buffer-border to facilitate the rolling operations. The aim was to artificially generate three soil density
levels along each experimental plot, thus enabling harrowing according to three known soil densities.
The harrowing intensity levels none, lightest, light, strong and strongest were applied in twelve subplots,
6 m × 6 m within the main plot, as explained below.

In experiment A, the harrowing intensity levels none, light, strong and strongest were compared with
a “fuzzy inferred variable intensity”, resulting in five treatments in total. Each intensity level was kept
constant along the main plot, while the variable treatment consisted in varying those intensity levels in
each subplot, within the main plot and based on the measured variability. Crop leaf cover ILC , weed
density IWD and soil density ISD were assessed about two weeks before harrowing (not shown), as
mentioned in Section 2.1. Technical difficulties did not allow to proceed with harrowing operations
during the time lag after data assessment. Temperatures and rainfall from March 26th to April 9th,
2010 were on average lower than 4 ◦ C and 16 mm day−1, respectively. Thus, it was assumed that no
significant plant growth or weed development existed.

In experiment B, three variable intensity treatments were compared with an untreated control (c). The
harrowing intensity levels were determined based on three input sources: soil density only (ISD), weed
density only (IWD), or a combination of both, soil and weed densities (IWD + ISD). Crop leaf cover
(ILC) was included in all three possibilities as a reference of the crop growth stage. ILC , IWD and ISD

were assessed before harrowing as described in Section 2.1 (Figure 4(a–c)). Six to eight images were
acquired per subplot (6 m) to measure ILC and IWD, and nearly 75 points were captured by the soil sensor
to assess ISD. Nearly one half of the experimental field had a lower crop leaf cover than 14%, which
refers one leaf crop growth stage. The other half was also nearly at one- or two leaves stage. Weed density
was more abundant in areas where the crop was less dense, i.e., crop leaf cover ≤ 12%. The dominant
weed species in experiments A and B were: Persian speedwell (V. persica), common chickweed (S.
media), and Red Deadnettle (L. purpureum), accounting for 70% of the weed infestation, and European
field pansy (V. arvensis), Scentless mayweed (M. inodora) and other species accounting for 30%. The
weed density ranged from about 40 to more than 100 plants m-2. Soil density was heterogeneously
distributed throughout the field and showed no clear spatial patterns; it varied from 20 to nearly 100 N
at each 6 m × 6 m subplot. This information was averaged per subplot and introduced into the LFIS to
derive the intensity levels and formulate the application map. The free geographical information system
OpenJUMP Pirol Edition, GNU [31], was used to create the application map (Figure 4(d)). The variable
harrowing intensities were applied off-line with the prototype for automatic adjustment of the harrow
(Figure 1).
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Figure 4. Experimental setup to the linguistic fuzzy inference system (LFIS) application (Experiment B). Inputs were obtained for crop
leaf cover ILC , weed density IWD and soil density ISD assessed before harrowing to infer the output harrowing intensity and create the
application map.
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Two timings of harrowing, BBCH 24 and 28, were used for both experiments, since the soil crust after
the winter reduced workability and not enough soil cover was produced to control weeds effectively. At
both timings the harrowing treatments were the same, except at BBCH 24 one pass with the harrow was
used at a driving speed of 8 km h−1, and at BBCH 28 two passes at 10 km h−1. Bispectral cameras
and manual counting were used to assess crop leaf cover and weed density reduction immediately
after harrowing, in a similar frequency as in Section 2.3. At crop maturity, yield was assessed with
an automatic yield mapping system that uses a gravimetric measuring device mounted on the combine
harvester (New Holland Agriculture). Statistical data analysis was done with PROC MIXED in SAS
(SAS version 9.1, SAS Institute Inc, NU Cary, 2004). Unlike standard analysis of variance, mixed
models include random effects (variance components) as part of the error term. The F-test allowed to
compare the variances of the fixed effects of the intensity treatments, excluding the variances of the
random effects of the rolling treatments nested within intensity levels and replicate blocks. The F-tests
were applied with a significance level of 0.05 to test fixed effects on weed density reduction and yield.
An exponential spatial covariance structure was accounted for the subplots, nested within the rolled
strips with the function “type = sp(exp)”. The Tukey’s Studentized Range Honest Significant Difference
test (Tukey HSD) was applied to identify differences among harrowing intensities and rolling passes,
regarding weed density reduction.

3. Results and Discussion

3.1. Fuzzy Inference System and Experimental Application

In general, for both experiments, weed density was effectively reduced by harrowing. In experiment
A, varying the intensity according to the measured variability of soil and weeds increased the weed
reduction (P = 0.09). F-test in the mixed model and Tukey (HSD) ranking showed that weed density
was reduced in comparison with the untreated plots in experiments A (P < 0.001) and B (P < 0.0001),
Table 4. In experiment A, contrasts between the varied intensity throughout the whole plot against
the individual fixed intensities suggested that a higher weed density reduction might be achieved
(P = 0.009) when the intensity is not kept constant along the cultivated plot. Similarly, Søgaard [5]
found that changing the tine angle of the harrow along the whole plot reduced the variations in working
depth, thus soil cover and weed control would be uniform. In experiment B, although varying the
harrowing intensity effectively reduced weed density compared with the untreated control (P < 0.001),
there was no difference in the way of varying the intensity, i.e., according to either soil- or weed
occurrence or a combination of both assessments (P = 0.42). Soil density was not influenced by the
1 to 3 passes with the roller, thus the desired high, medium and low levels of compaction could not
be achieved. Therefore, soil density assessed before harrowing was almost constant across the whole
experimental area (Figure 4(c)).

In theory, increasing harrowing intensities results in higher weed control at the risk of raising crop
damage due to soil cover [9,12]. The crop harrowed at both BBCH 24 and 28 showed a good anchorage
to the soil, hence a higher resistance to being covered by soil. Generally, crop plants will be more
resistant to being covered by soil if harrowing is done at growth stages close to stem elongation [32].
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Nevertheless, in experiment A crop leaf cover tended to be reduced by the strongest harrowing intensities
(P = 0.05), while the variable intensity did not significantly affect the crop (P = 0.59). Consequently,
the crop damage due to soil covering the crop as a result of harrowing was diminished after adjusting the
intensity to the variable field conditions, as also found for winter wheat by Engelke [6].

Table 4. Effects of harrowing treatments on leaf cover, weed density and crop yield in
experiments A and B.

Harrowing treatment
Responses after harrowing

rolling Leaf cover ns Weed density † Crop yield ns

(passes) (%) (plants m−2) (t ha−1)

Experiment A
none 1 28.7 18.0 b 5.9

2 27.7 27.2 b 6.4
3 25.9 22.3 b 5.9

light 1 23.2 14.3 a 6.4
2 21.9 12.7 a 6.3
3 20.7 8.7 a 6.6

strong 1 22.7 11.8 a 6.8
2 23.5 13.9 a 6.1
3 22.5 8.1 a 6.4

strongest 1 21.3 7.1 a 6.5
2 22.1 9.0 a 6.4
3 22.6 8.8 a 6.8

varied 1 24.2 9.5 a 6.6
2 23.0 7.8 a 6.7
3 24.5 8.4 a 6.7

Experiment B
untreated 1 30.8 26 B 5.7

2 28.0 28.5 B 6.7
3 26.0 23.1 B 6.2

ISD 1 23.0 8.1 A 6.6
2 24.3 8.4 A 6.8
3 23.4 4.1 A 7.0

IWD 1 23.6 4.2 A 6.3
2 25.4 6.3 A 6.9
3 23.9 5.2 A 6.8

ISD + IWD 1 24.3 7.8 A 6.9
2 23.5 6.1 A 6.8
3 23.3 4.7 A 6.4

ns non-significant effects; † Tukey (HSD) ranking at α = 0.05, small letters for experiment A and
capital letters for experiment B
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The aim of site-specific harrowing is to avoid yield losses and to secure weed density reduction at
the whole field level. Reducing unnecessary passes with the harrow or applying strong intensities on
areas with high weed and/or soil densities might help to accomplish this aim. The variable intensity
treatment in experiment B tended to reduce crop leaf cover (P = 0.07), but slightly improving crop
yield (P = 0.13), as seen in Table 4. This increment in crop yield was not significant, thus we could not
calculate an optimal intensity in any of the two experiments. It seemed that weed competition was very
low, because the untreated plots showed similar crop yields as the harrowed ones. This fact confirmed the
assumption that within the two week lag between assessments and harrowing, there was no significant
weed development.

Furthermore, harrowing with a constant intensity along the main plot (80m) required continuous
operation of the vehicle, hence a higher use of fuel. In experiment B, varying the intensity reduced the
treated area, thus offering fuel saving possibilities. According to ÖKL [33], about 3.5 L ha−1 of fuel are
needed for harrowing. In Figure 4(d), it can be seen that at least a 50% of the treated plots did not require
harrowing. The highest potential to reduce fuel consumption was when the harrowing intensity was given
by soil and weed variation simultaneously. Harrowing based on weed density only or soil density only
determined more area to be treated. However, the test experiments revealed that weed density was the
most influential input for decision making about the harrowing intensity, because the soil density was
relatively homogeneous across the field.

3.2. Reliability of the Fuzzy Inference System for the Automatic Control of Intensity

The relationships between crop soil cover (%) and weed control (%) and the yield response studied
during our previous experimental period (2007 to 2009) were the reference to delimit our input and
output variables for the decision system. Our most relevant findings were that leaf cover ranged from
2% to 20%, being lower at early crop growth stages. Weed densities varied across experimental fields
from 40 to about 250 plants m-2 and soil density varied from 9 to 19 N in spring cereals and from 23 N
(autumn) to 153 N (end of winter) in winter cereals. Generally for winter cereals, harrowing in autumn
generates high degrees of crop soil cover because the soil is still loose, but in early spring the soil may
become highly compact, forming a crust that increases the soil density [34]. The intensity levels taken
from the 2007–2009 experiments (cf. Table 2) attained 80% weed control with a range of 16%–30%
crop soil cover. In cases of high weed competition and denser soils, nearly 45% crop soil cover was
necessary to achieve 80% weed control [16]. In contrast, other studies suggested a maximum of about
25% crop soil cover [13]. However, higher degrees of crop soil cover than 25% resulted in 3% to 45%
yield gain in case of high weed competition, and in cases of poor weed competition the yield loss effect
due to harrowing was lower than 1% [16].

Previous attempts to adjust the harrow automatically have shown that it is not easy to define a
standard intensity for every field, because it depends on the crop growth stage, weed infestation and
soil conditions [6]. In a study by Søgaard [5], variations in the working depth were considered as the
deciding variable to characterize the harrowing intensity, but crop growth stage and weed abundance
were not considered in that system. Engelke [6] broadened the approach by including soil density, soil
structure, crop- and weed growth stage at the time of harrowing and site-specific weed distribution.
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However, neither selectivity nor crop resistance and recovery to crop soil cover were acknowledged
in both studies. Our proposed harrowing system is advantageous owing to two main reasons. Firstly, it
integrates relationships between crop soil cover, weed control and yield increase as a result of harrowing,
e.g., as suggested by Weis et al. [1], and Rasmussen et al. [13]. Secondly, the variables required to
determine those relationships (i.e., crop leaf cover, weed density and soil density) were objectively
assessed and accurately analyzed with robust scientific methods [11,12,16].

The presented system does not include single weed species as input for the inference procedure. For
the time being, this issue may be unimportant because broadcast cultivation with the harrow affects
both the crop and the weeds, and single weed species recognition still requires further development.
However, adjustment of the harrowing intensity for site-specific weeding may be also adapted to single
weed species in the future. In this study, sowing depth and pre-emergence harrowing have not been
investigated. Nevertheless, soil density and weed density (i.e., when weeds emerge earlier than the crop)
could be used as inputs to the LFIS to adjust the harrowing intensity in future experiments including
pre-emergence treatments. Further validation of the LFIS is required, and experiments should include
fields with variable soil types and competitive weed infestations, to illustrate the weed control effect
when varying the intensity. Differing soil textures would be more accurate to improve the fuzzy decision
making based method for site-specific harrowing, rather than artificially creating variable compaction
levels with the roller. Additionally, weather conditions after harrowing must be investigated as well.
The created rules may be the starting point to reorganize a new decision method, provided improved
sensor assessments of variable conditions among different fields. A future perspective is that a real-time
intensity adjustment should be achievable. The system could include attached cameras in the front and
at the rear or sides of the harrow. Then, additional feedback information about the remaining weed
competition on the harrowed area might be a new input to the model that would indicate the necessity of
cultivating a second or more passes.

4. Conclusions

Valuable information was acquired in previous experiments and combined in this study with expert
knowledge to formulate simple rules and develop a system to automatically control the harrow intensity.
The fuzzy inference system (LFIS) was fairly well adapted to the variability of crop-weed-soil conditions
in the field. Application of the LFIS for automatic harrowing in this study did not reduce crop yield under
low weed competition. Further experiments under high weed density scenarios would reinforce the weed
control potential of the system avoiding yield losses.
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