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Abstract: Power quality disturbance (PQD) monitoring has become an important issue due 

to the growing number of disturbing loads connected to the power line and to the 

susceptibility of certain loads to their presence. In any real power system, there are multiple 

sources of several disturbances which can have different magnitudes and appear at different 

times. In order to avoid equipment damage and estimate the damage severity, they have to be 

detected, classified, and quantified. In this work, a smart sensor for detection, classification, 

and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection 

technique; then, the classification of the envelope of a PQD obtained through HT is carried 

out by a feed forward neural network (FFNN). Finally, the root mean square voltage 

(Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) 

indices calculated through HT and Parseval’s theorem as well as an instantaneous 

exponential time constant quantify the PQD according to the disturbance presented. The 

aforementioned methodology is processed online using digital hardware signal processing 

based on field programmable gate array (FPGA). Besides, the proposed smart sensor 

performance is validated and tested through synthetic signals and under real operating 

conditions, respectively. 
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1. Introduction 

Over the past few years, the power quality (PQ) has become an important issue in industrial and 

academic fields due to the growing number of disturbing loads in the industrial and public sectors; 

another important factor is the susceptibility that certain loads present to the presence of these 

disturbances. These anomalies are generally called power quality disturbances (PQD), which are 

deviations of voltage or current from the ideal sinusoidal waveform, such as sags, swells, interruptions, 

harmonics, flicker, notching, spikes, and oscillatory transients [1]. In any real power system, there are 

multiple sources of disturbances which can have different magnitudes and appear at different times. 

Therefore, and in order to reduce the generated problems caused by PQD, it is necessary to have 

systems that are able to detect, classify, and quantify automatically the different PQD [2]. This also 

allows developing solutions for avoiding damage to equipment, extend its lifetime, and reduce costs as 

well as for estimating the damage severity in the equipment. 

At present, different techniques have been used for analyzing PQD, such as short-time Fourier 

transform (STFT), wavelet transform (WT), S-transform, Kalman filter, Gabor-Wigner, Hilbert 

transform, and Hilbert Huang transform [3–13]. For instance, STFT gives time–frequency information 

related to disturbance waveforms [3], but transient signals cannot be adequately described with this 

methodology due to its fixed window size. To overcome the drawbacks of STFT, the WT provides the 

time-scale analysis of the non-stationary signal since it decomposes the signal into a time-scale 

representation rather than a time-frequency representation. Different WT analyses [4], wavelet 

multiresolution analysis (MRA) [5], and MRA with entropy norm (EN) [6] have been used to detect and 

classify several types of PQD. Unfortunately, in real practice the WT capabilities are often significantly 

degraded in noisy environments [7]. For this reason, other schemes based on S-transform [7–9], 

Kalman filter [10], and Gabor-Wigner transform [11] have been developed for detecting effectively 

PQD in noisy environments. On the other hand, the Hilbert transform (HT) envelope detection 

technique [12] and a combination with ensemble empirical mode decomposition (EEMD) called 

Hilbert Huang transform (HHT) [13] have also been used in PQD monitoring. Unfortunately, none of 

the aforementioned works provide any information about the PQD quantification which is very 

important in industrial applications since with this information it is possible to estimate the damage 

severity in the equipment due to the PQD. Therefore, an online system that detects, classifies, and 

quantifies the different PQD is a necessity. It is worth noting that in the current literature different 

systems cover topics concerning online PQD detection and classification; nevertheless, just a few 

works provide any information related to the characteristics of the different disturbances, such is the 

case of Radil et al. [14], who provided information about time localization, duration, and magnitude of 

the disturbances using digital filtering, mathematical morphology, root mean square (RMS), and peak 

values; however, more specific characteristics according to the classified PQD are not given. On the 

other hand, other works propose to obtain several electric power characteristics using PQI. For 
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instance, Mindykoswki et al. [15], using techniques such as WT, FFT, and chirp z-transform (CZT) 

developed a PQ instrument for PQ assessment in ship systems, yet, the classification stage is not 

carried out; therefore, specific features of each PQD are not obtained. 

From the technological and industrial points of view, smart sensors which utilize a standard sensor  

and includes in their functionalities signal processing, communication, and integration capabilities can be 

used to overcome the issues of PQ monitoring systems. The term “smart sensor” is employed according to 

the functionality classification given by Rivera et al. [16], from the definitions of the Institute of Electrical 

and Electronics Engineers [17,18]. On the other hand, smart sensors based on field-programmable gate 

arrays (FPGA) are capable of performing the task in real time due to their high-speed processing 

capabilities, configurability, and system-on-a-chip (SoC) solutions for industrial applications [16]. Smart 

sensors related to PQ monitoring have being applied in different ways [19–22]. For instance,  

Granados-Lieberman et al. [19] developed an FPGA-based smart sensor for real-time high-resolution 

frequency measurement in accordance with international power quality monitoring standards.  

Humin et al. [20] presented a smart sensor for medium-voltage dc power grid protection via current and 

voltage transformers. On the other hand, a design of wireless sensor networks for a PQ monitoring 

system in order to customize the distribution pattern of the power quality information is proposed in [21]. 

Furthermore, Lim et al. [22] presented a reliable data delivery mechanism by employing the neural 

network concept for monitoring basic electrical quantities. Moreover, a sensor to detect a very low direct 

current (DC) voltage component superimposed onto an alternating current (AC) voltage component is 

presented in [23]. Due to their proven reliability in other reported tasks of PQ monitoring, smart 

sensors are suitable candidates for simultaneously detecting, classifying, and quantifying the PQD in a 

SoC solution, rather than having different systems for each task of detecting, classifying, and 

quantifying PQD. 

The contribution of this work is the development of a smart sensor for online detection, classification, 

and quantification of single PQD. Another contribution of this work is the proposed methodology due to 

its simplicity and to the theoretical foundation by depending largely on the HT. First, the HT is used as 

detection technique; then, a feed-forward neural network (FFNN) performs the classification of the 

PQD envelope provided by the HT. Finally, the root mean square voltage (Vrms), peak voltage 

(Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through the HT and 

Parseval’s theorem, as well as an instantaneous exponential time constant, are used for quantifying the 

PQD according to the disturbance presented. All the aforementioned methodology is implemented into 

an FPGA for a SoC solution thanks to its high-performance computational capabilities for industrial 

and online applications. Besides, the proposed smart sensor performance is validated and tested using 

synthetic signals and under real operating conditions, respectively. 

2. Theoretical Background  

2.1. Power Quality Disturbances  

The power quality indices (PQI), such as Vrms, Vpeak, CF, and THD are used for illustrating the 

undesirable impact of electrical disturbances in concordance with the required standards. The electrical 

disturbances are abnormalities in voltage or current that present variations in magnitude with respect to 
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its nominal value during an interval time. Depending on the thresholds of these features, the IEEE 

Standard 1159 [24] and the European Standard EN 50160 [25] categorize these disturbances as shown in 

Table 1. For instance, a sag condition is considered when the Vrms value is within the range from 0.1 to 0.9 

per unit (pu) of the nominal voltage and has a minimum duration of 0.5 cycles of fundamental frequency. 

Regarding to the PQD and PQI, the sags, swells, and interruptions are changes in Vrms; when these 

changes are continuous and occur within proper frequency ranges they create the visual phenomenon called 

flicker [1]. The harmonic distortions are normally estimated through the THD and CF. On the other 

hand, voltage notches and spikes are characterized by their amplitude and duration in combination with 

the point on the sine wave at which the notching starts. In the same way, the oscillatory transients are 

described by their maximum peak-value or Vpeak and exponential time constant [1].  

Table 1. Power quality disturbances classification. 

PQ Disturbance Duration Values 

Sag >0.5 cycles 0.1 to 0.9 pu 
Swell >0.5 cycles 1.1 to 1.8 pu 

Interruption >0.5 cycles <0.1 pu 
Flicker - 0.9 to 1.1 pu 

Harmonic - THD >5% 

2.2. Hilbert Transform  

The HT is a mathematical tool used for tracking the voltage envelope [12,26], which is defined for 

real signals as Equation (1), with its equivalent Fourier transform (FT) version given in Equation (2): 

t
txtxHT 

1
)()(   (1)

)()sgn(- )(HT  XjX  (2)

where –j sgn(Ω), has the effect of shifting the negative frequency components of x(t) by +90° and the 

positive frequencies components by −90°.  

A useful way to understand and to compute the HT of x(t) is using the analytic signal z(t) composed 

by the real signal and the HT shifted 90°, defined as: 

)()()()()( tj
HT etAtjxtxtz   (3)

where A(t) is called the envelope signal of x(t) and θ(t) is called the instantaneous phase signal of x(t). 

In terms of x(t) and xHT(t), it is clear that:  

)()()( 22 txtxtA HT  (4)
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The sinusoidal waveform shown in Figure 1(a) has HT envelope and instantaneous phase as shown 

in Figure 1(b). 
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Figure 1. Hilbert Transform. (a) Sinusoidal waveform; (b) Hilbert Transform results. 

 

2.3. Feed Forward Neural Network 

A FFNN is characterized as having a layered architecture with single or multiple neurons in each 

layer, as shown in Figure 2(a). In this architecture, the input information moves in one direction only, 

from the input nodes, through the hidden nodes, and to the output nodes. For characterizing the 

network weights, pairs of input-output data are presented; then, a training rule for adjusting these 

weights is used. With that, the error between the desired and calculated outputs is minimized. Finally, 

the entire training data is repeatedly presented to the FFNN until the overall error is acceptable [27]. 

On the other hand, the mathematical function that describes to each neuron shown in Figure 2(b) is 

given in Equation (6); it consists on the summation Σ(·) of the multiplications between the inputs xi 

and the associated multipliers commonly called weights ωi to each input plus a bias b; then, this result 

is evaluated with a nonlinear function f(·) to provide the FFNN with the ability to model nonlinear 

relationships [27]. This is applicable to all neurons. 









 



I

i
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1

 (6)

Figure 2. Feed-forward neural network. (a) Architecture; (b) Neuron. 
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3. Smart Sensor 

In this section, the proposed smart sensor and the algorithm implemented in the FPGA-based 

processor for detecting, classifying, and quantifying the PQD are described. The proposed smart sensor 

block diagram is shown in Figure 3. 

Figure 3. Block diagram of the PQD smart sensor.  

 
 

In order to acquire the voltage signal and get a result, the smart sensor uses firstly a voltage divider 

with a measurement range from 0 V to 440 V as a primary sensor; the voltage divider arrays are made 

up of 1 W 120 kΩ and 1 W 3.3 kΩ metal-film resistors. Then, the voltage signal passes through the 

signal conditioning stage, which contains a precision isolation amplifier model ISO124PND [28] to get 

galvanic isolation between the power system and the proposed smart sensor, a DCV011515DP DC-DC 

converter model [29] in order to decouple system references, and an anti-aliasing filter of second-order 

low-pass Butterworth filter with a cutoff frequency of 3 kHz, allowing the correct analysis of harmonics 

and transient disturbances with frequencies lower than the cutoff frequency. 

Afterwards, the analog-to-digital converter (ADC), which corresponds to a 16-bit 4-channel  

serial-output ADS8341 [30], using only one channel gives the signal to the FPGA-based processor to 

determine the disturbance condition and its quantification parameters of a single-phase power system. 

The architecture of the FPGA-based processor for a single-phase is shown as a block diagram in 

Figure 4, which can be replicated for three-phase or poly-phase power systems. It is worth noticing 

that in this work just one phase of the power system is analyzed. The proposed methodology is divided 

into the detection, classification, and quantification of the voltage signal x[n].  

Figure 4. FPGA-based processor. 
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3.1. Disturbance Detection 

For the detection stage, the voltage signal x[n] is separated by two digital filters into x1[n] and x2[n] 

which correspond to the fundamental frequency component and the remaining frequency components, 

respectively, with the objective of separating and detecting the PQD that appear in the fundamental 

and in the remaining frequencies. The signal x1[n] is obtained with an order 16 finite impulse response 

(FIR) Gaussian window filter for a center frequency according to the power system frequency, in this 

case 60 Hz as fundamental component. On the other hand, the signal x2[n] is extracted through a 

second-order infinite impulse response (IIR) notch filter which removes the fundamental frequency 

component. Then, each HT block of Figure 4 computes Equation (4) according to Figure 5 to extract the 

envelope signal; there, the HT filter block implements the HT as a FIR linear phase filter of order 32 

which is designed through Parks-McClellan method by means of the frequency components shifting by 

satisfying Equation (2). In a parallel way, the input x is delayed by the Delay Block for compensating 

the sample delay produced by the HT filter; then, the outputs are arithmetically squared, added, and 

root squared to get the envelope or instantaneous amplitude A(n). 

Both HT blocks shown in Figure 4 are implemented as shown in Figure 5 for x1[n] and x2[n], 

corresponding to the instantaneous amplitudes |H(x1[n])| and |H(x2[n])|, respectively. The disturbance 

detection is triggered when any change in the signals |H(x1[n])| and |H(x2[n])| happens. Once any 

disturbance in the power line is detected, the signal is classified by means of the FFNN block. 

Figure 5. Hilbert transform tracking of the voltage envelope. 

 

3.2. Disturbance Classification  

The classification stage is carried out by an FFNN, which analyses the envelope signals |H(x1[n])| 

and |H(x2[n])| each half cycle in order to classify the different disturbances. This time window is a 

running window with size equal to a half period in order to satisfy the minimum duration of a sag, 

swell or interruption. In order to better explain the classification procedure, Figure 6 is presented. 

Figure 6(a) shows a sinusoidal wave with spikes, it is sampled at 6,000 Hz which corresponds to 50 

samples per half cycle. Then, this signal is passed through the HT blocks to give the signals |H(x1[n])| 

and |H(x2[n])|, as shown Figure 6(b). In order to reduce the dimensionality of the input data some 

reduction techniques have been reported [31,32]; in this work, for simplicity and without affecting the 

signal characteristics, the HT outputs are just decimated by 2; thus, the samples number per half cycle 

is 25 (Figure 6(c)). These samples that make up the PQD waveform are the inputs to the FFNN which 

has 50 inputs, 20 neurons in the hidden layer, and eight outputs (Figure 6(d)). The eight outputs are 

one per each disturbance (sag, swell, interruption, harmonic, flicker, notching, spike, and oscillatory 
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transient) since each neuron is set at one if the disturbance exists and to zero when there is no 

disturbance, yet, it is well known that the FFNN output is rarely one or zero; therefore, a threshold of 0.5 is 

also used to force the output to one or zero, respectively. Once the PQD is classified, its respective 

quantification parameters are computed. 

Figure 6. Procedure of classification. (a) Sinusoidal wave with spikes; (b) HT outputs;  

(c) Decimated HT outputs; (d) Proposed FFNN. 

 

3.3. Disturbance Quantification  

For quantifying the different PQD in the power line, the Vrms, THD, Vpeak, and CF indices are 

used. It is convenient to mention that they are the most commonly indices to evaluate the PQ [24,25]. 

In this work, the mathematical expressions proposed for computing the PQI are founded on the 

Parseval’s theorem for their direct evaluation through the HT.  

The RMS value or effective value of the discrete HT H[n] can be obtained as follows: 

L

nH
RMS

L

n

2

][
1

2
  (7)

where L is the samples number of the analyzed time window. 

On the other hand, the Vpeak corresponds to the maximum value of the signal in the analyzed 

interval; therefore, it is the maximum value of the summation of the instantaneous values of |H(x1[n])| 

and |H(x2[n])| according to Equation (8) in a time window. Likewise, the Vpeak of |H(x2[n])| shown in 

Equation (9) allows quantifying short duration disturbance as spikes, notching or oscillatory transients:  

    ][][max 21 nxHnxHVpeak   (8)

  ][max_ 22 nxHHVpeak   (9)

Another important PQI is the THD, which is a parameter defined as the RMS value of the harmonic 

content divided by the RMS value of the fundamental component, usually multiplied by 100 for a 

percentage result [1]. The THD is obtained with the RMS values of the decomposed signals according to  

Equation (10): 
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where RMS_H1 and RMS_H2 are the RMS values of the signals |H(x1[n])| and |H(x2[n])|, respectively. 

In the same way, the CF is a time-domain property that indicates how much distortion has the top of 

the sine wave and it is given by Equation (11): 

HRMS

Vpeak
CF

_
  (11)

where RMS_H is equal to the sum of RMS_H1 and RMS_H2. 

For quantifying and mainly knowing the exponential time constant in the oscillatory transients, the 

following mathematical expressions are used. First, the mathematical expression for modeling an 

oscillatory transient in a sinusoidal wave is: 

     )(2sin2sin][ 1 NnfBefnAnV Nn      (12) 

where A is amplitude of the nominal voltage, f is the frequency power system, f1 is the transient 

frequency, B is the amplitude of the transient, N is the number of shifted samples where the transient 

starts,  is the disturbance exponential time constant, and n = 0, 1, 2, ..L is the actual sample. Then, the 

proposed methodology separates the two terms of Equation (12) by means of the two filters; thus, the 

|H(x2[n])| obtained after the HT block corresponds to the envelope of the second term in Equation (12). 

Therefore and by considering N = 0, the |H(x2[n])| amplitude is directly related with the exponential term 

as follows: 
nBeH   |[n])(x| 2  (13)

In order to compute , Equation (13) is differentiated as shown in Equation (14) and arranged in 

Equation (15) which allow computing an instantaneous :  
nBeH  ' |[n])(x| 2  (14)

 |[n])(x|

' |[n])(x|

2

2

H

H
  (15)

For improving the computation of , the evaluation of the derivative in the actual sample n 

according to Equation (15) is obtained through an averaging discrete-difference filter as follows: 

 |1])-[n(x|

|[n])(x| -|2])-[n(x|

2

22

H

HH
  (16)

In short, Table 2 shows the kinds of disturbances analyzed by the smart sensor as well as a 

description of the quantification parameters of each disturbance such as magnitude M, period of 

notching and spike T, Vpeak, THD, flicker period TFL, flicker magnitude MFL, exponential time 

constant or mean lifetime . Regarding the flicker, its quantification parameters are related only with 

the tracking of voltage flicker; however, they can be used in others systems for correlating other 

variables such as the eye response to flicker perception of lamps or statistical measures of short and 

long-terms flicker severity. It is worth noticing that the disturbance duration t is also given by the 
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smart sensor when the disturbance has finished. Finally, the proposed smart sensor has a register block at 

the output, as shown Figure 4, which stores the quantified parameters of the last disturbance occurred. 

Table 2. Quantification parameters for power quality disturbances. 

Disturbance Condition Parameters Description 

Pure signal M (V)  
M is the RMS voltage given in Equation (7) during a time window 

tw equal to half cycle of fundamental frequency. 

Sag M (V), t (s)  

M is the RMS voltage obtained each tw during the entire sag, 

swell or interruption, respectively. 
Swell M (V), t (s)  

Interruption M (V), t (s)  

Notching 

T (s), 

Peak_H2 (V), 

t (s) The period T and amplitude Peak_H2 are estimated by means of a 

zero crossing and by Equation (9), respectively, each tw. 

Spike 

T (s),  

Peak_H2 (V),  

t (s) 

Harmonics 
THD (%), CF(-), 

t (s) 

The THD and CF indices are obtained each tw according to (10) 

and (11), respectively. 

Flicker 

TFL (s), 

MFL (V), 

t (s) 

The period TFL and amplitude MFL are estimated by means of a 

first zero crossing and by Equations (9) and (7), respectively.  

Oscillatory Transient 
Peak_H2 (V), 

 (-), t (s)  

The amplitude Peak_H2 and the instantaneous exponential time 

constant  are computed by Equations (9) and (16), respectively. 

Peak_H2 is given once that the transient is done. 

(-): Dimensionless. 

4. Experimentation and Results 

In this section, the validation and the experimental setup for evaluating the performance of the 

proposed smart sensor are presented.  

4.1. Training and Validation Stages 

In order to validate the proposed methodology, it has been tested with synthetic signals to have a 

priori knowledge of the true PQD values and thus, the difference or error between the true value and 

the obtained value can be estimated. Firstly, a database with 200 signals is built for each one of the 

eight PQD, plus 200 for pure signals; these signals are generated in concordance with the equations 

and the parameters variation shown in Table 3, some of them have been used in [6] and [9],whereas 

the others are proposed in this research. Figure 7 shows a signal of each disturbance generated as well 

as its respective behavior through the filters and HT. For each PQD, the 200 signals are divided into 

100 for training and 100 for validating the proposed methodology, respectively.  
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Figure 7. PQD generated. (a) Pure signal; (b) Sag; (c) Swell; (d) Interruption; (e) Flicker; 

(f) Transients; (g) Harmonics; (h) Notching; (i) Spikes. 

 

Regarding the NN structure and training, a log-sigmoid activation function into the overall FFNN is 

used, the training goal is set at 10−6, and the training rule is the Levenberg-Marquardt algorithm; all the 

aforementioned is carried out offline using the MATLAB software; once the NN is built, trained, and 

validated their coefficients (weights and biases) are used into digital structures that computes Equation (6) 

as shown in [33]. In both the training and validation stages, the synthetic signals are processed by the two 

filters, HT, quantification, and FFNN blocks. The overall methodology is implemented and validated 
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using the MATLAB software. Since noise is present in all electrical power distribution networks, the 

proposed methodology is also tested in a noisy environment by adding Gaussian noise with a level of 

−20 dB using the noiseless signal as reference. 

Table 3. Power quality disturbances models. 

Power Quality 

Disturbance 
Equations Parameters Variation 

Pure signal [6,9] )2(sin)( fkAkv   - 

Interruption [6,9] )2sin())()(()( 21 fkkkukkuAkd    0.9 ≤ α ≤ 1 ; k1 <k2

Sag [6,9] )2sin())()(()( 21 fkkkukkuAkd    0.1 ≤ α ≤ 0.9 ; k1 <k2 

Swell [6,9] )2sin())()(()( 21 fkkkukkuAkd    0.1 ≤ α ≤ 0.8 ; k1 <k2 

Harmonics [6,9] 



M

m
mm fkhAkd

1

)2sin()(   
M: total number of 

harmonics 

0.05≤ Am ≤ 0.5, 2≤ hm≤ 40

Oscillatory 

Transients [6,9] 
)2sin()( )( 1 fkekd kk     -5 ≤ β ≤ 5 , 50≤ γ ≤ 100 

Flicker [6,9] )2sin()2sin()( fkkfAkd r   1 ≤ fr ≤ 10 , 0 < α ≤ 0.2

Notching (P)    )2sin( )( kkd   60 < β ≤ 240 , 0 < α ≤ 0.2 

Spikes (P)    )2sin( )( kkd   1< β ≤ 10 , 0 .1≤ α ≤ 0.5 

u (·): step function; · : floor function; |·|: absolute value; (P): Proposed. 

The obtained results of the overall methodology are separated into two tables. Table 4 shows the 

percentage of effectiveness for detecting and classifying PQD; on the other hand, Table 5 shows the 

quantification results. Regarding Table 4, the first column indicates the kind of PQD, the columns two 

and three indicate the percentages of effectiveness in noiseless and noisy conditions, respectively. For 

instance, the light-gray row in Table 4 that reads sag, 100, and 100 for noiseless and noisy conditions, 

respectively, means that the methodology accurately classifies all signals used in the validation stage. 

On the other hand, the quantification effectiveness of the proposed methodology is estimated through 

the mean squared error (MSE) which quantifies the difference between each value obtained by an 

estimator (the proposed methodology) and the real value for each signal as follows:  

 
2

1

ˆ
1 




n

I
ii yy

n
MSE  (17)

where ŷ  is the obtained value, y is the real value, and n is the number of signals. Table 5 shows the 

MSE results for each disturbance and its respective quantification parameters, as an example, the  

light-gray row in Table 5 depicts the quantification MSE under noiseless and noisy conditions, being 

the noiseless condition 0.1036, and the noisy condition 1.3833; being the last condition thirteen times 

higher than the former. 
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Table 4. Proposed methodology effectiveness for detection and classification in noiseless 

(NL) and noisy (N) conditions.  

Power Quality Disturbance 

Percentage of Effectiveness for Detection and 
Classification Stages (%) 

NL N 

Pure signal 100 99 

Interruption 100 100 

Sag 100 100 

Swell 100 100 

Harmonics 97 89 

Oscillatory Transients 99 93 

Flicker 98 92 

Notching 98 91 

Spikes 98 90 

Table 5. MSE for quantification of PQD in noiseless (NL) and noisy (N) conditions. 

Power Quality 
Disturbance 

Parameters Units 
MSE 

NL N 

Pure signal M Volt RMS 0.1492 1.7339 

Interruption 
M  Volt RMS  0.0002 0.0022 

t s 1.0746e–8 15.9184e–8 

Sag 
M  Volt RMS  0.1036 1.3833 

t s 0.2637e–6 2.9531e–6 

Swell 
M Volt RMS  0.1496 1.5578 

t s 0.2312e–6 2.9380e–6 

Harmonics 

THD % 0.0003 0.0029 

CF - 21.7617e–6 253.8832e–6 

t s 7.8870e–6 99.8392e–6 

Oscillatory Transients 

Peak_H2  Volt peak 0.0014 0.0163 

 - 0.7682 9.8955 

t s 1.4705e–10 18.4283e–10 

Flicker 

TFL s 0.0844e–6 0.8132e–6 

MFL Volt RMS  0.1398 1.6017 

t s 8.2753e–6 92.4175e–6 

Notching 

T  s 2.9290e−10 40.5973e–10 

Peak_H2 Volt peak  0.0003 0.0037 

t s 0.2369e–6 3.1097e–6 

Spikes 

T  s 6.2842e–10 60.8252e–10 

Peak_H2 Volt peak 0.0020 0.0264 

t s 0.2136e–6 3.2049e–6 
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4.2. Experimental Setup  

On the other hand, the proposed methodology implemented on the smart sensor is also tested under 

real operating conditions according to the experimental setup shown in Figure 8(a); the developed 

smart sensor is shown in Figure 8(b), which is implemented in a proprietary Spartan 3E XC3S1600 

FPGA platform [34] running at 48 MHz; Table 6 summarizes the resource usage of the FPGA.  

Figure 8. Smart sensor under real operating conditions. (a) Experimental setup;  

(b) Smart Sensor. 

 

Table 6. Resource usage of the FPGA.  

Resource Utilization Xilinx Spartan 3E XC3S1600E 

Slices 9440/14,752 (64%) 

Slice flip flops 15047/29,504 (51%) 
4-input LUTs 8605/29,504 (29%) 

Maximum operation frequency 54.127 MHz 

The experimental setup consists of an electric load (induction motor) of 1-hp (746 W) which is fed by a 

three-phase power electric system. Then, a proprietary PQD digital generator injects the disturbance to 

one phase, monitored by the smart sensor. In Table 7 the column for the generated PQD shows the 

kind of disturbance and its quantification parameters, as well as its used reference values, taking 20 runs of 

each PQD condition, showing as result the mean (μ), standard deviation (σ) and mean error. For instance, 

the light-gray row reads a sag condition with a real magnitude of 115.8, μ = 115.7942, σ = 0.0633, and 

an error of 0.0057 volts. In order to estimate the accuracy and precision of the smart sensor, a Fluke 

435-II was used as reference. The accuracy and precision for voltage-related parameters are estimated 

with Equations (18) and (19), respectively, as well as with the values of the pure signal in Table 7.  
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Table 7. Smart sensor performance under real operating conditions.  

Generated Power Quality Disturbances Smart Sensor Results 

Condition Parameters 
Reference 

values 
Units Mean (μ) 

Standard 

deviation (σ) 

Error 

(real-μ) 

Pure signal M 127.2 Volt RMS 127.0021 0.0605 0.1979 

Interruption 
M 0 Volt RMS 0.0035 0.0524 −0.0035 

t  0.0333 s 0.0323 0.0059 0.0010 

Sag 
M 115.8 Volt RMS 115.7943 0.0633 0.0057 

t 0.1666 s 0.1680 0.0051 −0.0014 

Swell 
M 138.2 Volt RMS 138.1995 0.0685 0.0005 

t 0.1666 s 0.1671 0.0062 −0.0005 

Harmonics 

THD  6 % 5.9873 0.0480 0.0127 

CF 1.2 - 1.2049 0.0519 −0.0049 

t 1 s 0.9897 0.0548 0.0103 

Oscillatory 

Transients 

Peak_H2  12.72 Volt peak 12.7160 0.0608 0.0040 

 300 - 300.5209 0.0594 −0.5209 

t 0.0042 s 0.0040 0.0051 0.0002 

Flicker 

TFL 0.1 s 0.1084 0.0508 −0.0084 

MFL 133.56 Volt RMS 133.5469 0.1151 0.0131 

t 1 s 1.0111 0.0565 −0.0111 

Notching 

T 0.0055 s 0.0052 0.0022 0.0003 

Peak_H2 6.36 Volt peak 6.3815 0.0493 −0.0215 

t 0.1666 s 0.1639 0.0175 0.0027 

Spikes 

T 0.0083 s 0.0086 0.0024 −0.0003 

Peak_H2 15.26 Volt peak 15.2807 0.0652 −0.0207 

t 0.1666 s 0.1695 0.0174 −0.0029 

Therefore, the smart-sensor accuracy is estimated to be 99.84% with a precision of 99.95%: 

100
)(

100(%) 



ref

meanref

V

VV
Accuracy  (18)

100100(%) 
refV

Precision


 
(19)

where Vref is the voltage reference value, Vmean is the voltage mean value obtained of the measurements 

set, and σ is its standard deviation . 
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4.3. Real Signals  

To evaluate the performance of the proposed approach for real-world measurements, 40 real 

measurements of PQD from IEEE work group (P1159.3) are analyzed. Figure 9 shows just some real 

signals analyzed for different PQD as well as their respective behavior through the filters and HT. On the 

other hand, Table 8 presents in normalized way (according to the nominal voltage value) the quantification 

parameters obtained by the proposed approach for the signals shown in Figure 9. Regarding  

Figure 9(d,e), they show a signals with two PQD which occur at different times, their parameters of 

quantification are also presented in Table 8 by considering that the proposed approach first gives the 

parameters for the first disturbance and then the second one according to the detected PQD. 

Figure 9. Real signals of PQD. (a) Sag (overhead insulator failure); (b) Interruption 

(overloaded transformer); (c) Spikes (splice failure on the aerial cable); (d) Oscillatory 

transient and sag (terminator failure on the cable dip); (e) Two oscillatory transients (cable 

fault on the underground portion). 

 

Table 8. Classification and quantification results of the proposed approach under real signals.  

Real Signals of PQD PQD Classification 
PQD Quantification 

Parameters Results 

(a) Overhead insulator 

failure. 
Sag 

M 0.71193 

t 0.05833 

(b) Overloaded 

transformer. 
Interruption 

M 0.08594 

t 0.05816 

(c) Splice failure on the 

aerial cable. 
Spikes 

T 0.00861 

Peak_H2 0.30352 

t 0.09911 
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Table 8. Cont. 

(d) Terminator failure 
on the cable dip. 

Oscillatory transient 

Peak_H2  0.37721 

 250.741 

t 0.00759 

Sag 
M 0.54571 

t 0.09189 

(e) Cable fault on the 

underground portion. 

Oscillatory transient 1 

Peak_H2 0.25708 

 307.485 

t 0.00673 

Oscillatory transient 1 

Peak_H2  0.19113 

 917.251 

t 0.00274 

4.4. Analysis and Discussions 

From Table 4, it can be seen that the majority of PQD conditions are classified correctly. The worst 

classification errors occur for the harmonics condition under noiseless and noisy conditions; yet, the 

classification effectiveness is over 97% and 89%, respectively. This decrease in the classification 

effectiveness is due to the fact that the FFNN classifies the waveform and as it is well known the 

different combinations of harmonics constitute different waveforms. The best classification results 

(100%) are for pure signal, sag, swell, and interruption since the general waveform of these PQD 

rarely changes. On the other hand, the effectiveness of classification shown in Table 5 for noiseless 

and noisy condition through MSE indicates a high accuracy in all tests, since an MSE of almost a 

relative zero means that the smart sensor obtains results very similar to the real ones. In addition, the 

MSE in noisy conditions is almost ten times higher than in noiseless condition, as expected by adding 

20 dB of Gaussian noise. The highest errors obtained by the smart sensor are for the calculation of  
since it is computed through a derivative and although it is used an averaging discrete-difference filter 

its susceptibility to noise generate small variations in the result; yet, its mean error is below 0.2% 

according to the obtained results shown in Table 7.  

The detection and classification tasks are critical in PQ monitoring. First, the disturbance must be 

detected in order to be classified. Then, an accurate classification of the disturbance is necessary to 

assert that the computed quantification parameters are appropriate. In this work and regarding the real 

signals, the correctly detection and classification of the proposed approach are demonstrated with the 

results shown in Figure 9 and Table 8, even when there are two immediate disturbances as shown in 

Figures 9(d,e). Therefore, if the detection and classification are performed well the quantification 

parameters for the different disturbances are computed correctly. 

On the other hand, Table 9 shows a comparison of the main characteristics between the reported 

works in the literature and the one here proposed. Regarding the hardware implementation, most works 

are personal computer (PC)-based, which can compromise the online operation, and only this work and 

reference [15] present a SoC solution, yet the proposed smart sensor has a classification stage unlike 

the solution proposed in [15]; besides, it has the option to send the data for PC post-processing as done 

in other reported works and systems. The detection of PQD is already reported in [4,11]; however, 

their methodologies do not embrace a classification stage. On the contrary, the works [5,6,8] report 
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different techniques for PQD classification, yet, the noisy condition is not considered. Unlike the 

aforementioned works, the noisy condition in [7,9,10,12,13] is considered. It must be noticed that only 

this work presents quantification as PQI and also as specific disturbance-related parameters such as 

time delay constant of an oscillatory transient, the period and magnitude of a notching or flicker, and 

so on, whereas other works [14,15] present results as PQI only. 

Table 9. Main characteristics of previous works and of the proposed work. 

Work Used Technique 

Hardware Noise Condition Capabilities Results 

PC 

Based 

SoC 

Based 
Noiseless Noisy Detect Classify PQI 

Disturbance-

Related 

Parameters 

[4] Wavelet X  X  X    

[5] MRA X  X  X X   

[6] MRA with EN X  X  X X   

[7] S-transform X  X X X X   

[8] S-transform X  X  X X   

[9] S-transform X  X X X X   

[10] Kalman filter X  X X X X   

[11] 
Gabor–Wigner 

Transform 
X  X  X    

[12] HT X  X X X X   

[13] HHT X  X X X X   

[14] 
Mathematical 

morphology 
X  X X X X X  

[15] WT, FFT, CZT X X X X X  X  

Proposed HT X X X X X X X X 

5. Conclusions 

This work proposes a new smart sensor for online detection, classification, and quantification of 

PQD using only a voltage divider as a primary sensor, which results in a highly-portable instrument. 

The overall methodology is based on HT; first, the detection is carried out when there is any change in 

the HT envelope of a voltage’s nominal signal. Then, the FFNN classifies the waveform given by the 

HT in a half cycle. Finally, the PQI computed through the HT and Parseval’s theorem quantify the 

disturbance. All the aforementioned demonstrate the capabilities of HT as a powerful tool of easy 

implementation through filters for the detection, classification, and quantification of PQD. On the 

other hand, the obtained smart sensor results under synthetic and real operating conditions show its 

accuracy, precision, and immunity to noisy environments being evident its industrial applicability. 

Besides, the fact that the smart sensor develops the three tasks for PQ analysis makes it more attractive 

than having different systems or techniques for each task of detecting, classifying, and quantifying 

PQD unlike other reported works.  
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The proposed smart sensor is based on FPGA technology which provides high computation 

performance for online operation of the proposed methodology, as well as a low-cost, portable and 

efficient SoC solution. This implementation shows that an FPGA platform is a suitable solution for 

smart processing units in developing smart sensors. On other hand, the proposed methodology, as well 

as the developed smart sensor, can be utilized for further research development in the area of power 

quality monitoring by adding control tasks for each PQ disturbance as well as in studies of the PQD 

repercussion in divers susceptible loads or electric systems. Besides, the smart sensor can be integrated 

in other systems or instruments for many other applications such as protection systems, data loggers, 

control systems, and so on. Finally, the proposed methodology can be used as reference to develop 

other approaches to detect, classify, and quantify combined PQD. 
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