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Abstract: Due to the rapid increase in the usage and demand of wiredeseisnetworks
(WSN), the limited frequency spectrum available for WSN laggpions will be extremely
crowded in the near future. More sensor devices also mearm mcharging/replacement
of batteries, which will cause significant impact on the globarbon footprint. In this
paper, we propose a relay-assisted cognitive radio serefaork (CRSN) that allocates
communication resources in an environmentally friendlynnea. We use shared band
amplify and forward relaying for cooperative communicatim the proposed CRSN.
We present a multi-objective optimization architecture fesource allocation in a green
cooperative cognitive radio sensor network (GC-CRSN). phaposed multi-objective
framework jointly performs relay assignment and power atmn in GC-CRSN, while
optimizing two conflicting objectives. The first objectiwto maximize the total throughput,
and the second objective is to minimize the total transmmisgower of CRSN. The proposed
relay assignment and power allocation problem is a noneomvixed-integer non-linear
optimization problem (NC-MINLP), which is generally noetérministic polynomial-time
(NP)-hard. We introduce a hybrid heuristic algorithm fasthroblem. The hybrid heuristic
includes an estimation-of-distribution algorithm (EDAQrfperforming power allocation
and iterative greedy schemes for constraint satisfactnohralay assignment. We analyze
the throughput and power consumption tradeoff in GC-CRSNlefailed analysis of the
performance of the proposed algorithm is presented witlsithelation results.
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1. Introduction

Wireless sensor networks (WSN) play an important role inyriadustrial [L], health R] and body
monitoring systems34], seismic vibration sensing], ad-hoc systemsg] and spectrum sensin@][
applications. Almost all modern applications and serviezpiire some form of sensors. Due to the
rapid increase in WSN applications and services, in thedéythe limited frequency spectrum available
for WSN applications will be extremely crowdef]] With the rapid growth and dense deployment of
WSN, in the field of information and communication technaés(ICTs) they play a significant role on
the global environmentd]. According to the International Telecommunication Uniaport [LO], the
primary sources of greenhouse gases are electricity geseraransport vehicles, buildings, electronic
waste (e.g., batteries, small electric cedis;) and agricultural by-products. A vast portion of electsici
is generated with thermal- or coal-operated turbines. Toegss of electricity generation is a major
contributor to the emissions of green house gases. Withaghid growth and demand of WSN, future
WSNSs’ will face three major challenges: (1) the wirelesscépen availability, (2) the demand for high
data rate transmission and (3) the reduction in greenhcasesgo cope with global warming.

Figure 1. WSN life cycle.
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A large portion of green house gases is composed of carbomddi¢CO,) emissions. For WSN,
the termgreenrefers to an energy-efficient and a low carbon deploymentogedation. For reducing
green house gases, particularly carbon dioxide emissaonsnergy-efficient resource allocation plays a
significant role and has a direct impact on the lifecycle ofNVShe lifecycle of WSN is shown in
Figure 1. WSN are composed of the following phases: sensor netwoskgde manufacturing,
transportation, deployment and recycling. Each phase tsa®le in global warming—e.g., sensor
network design and the manufacturing phase require highphisticated computing machines that
not only use ample amounts of electricity, but also produeetenic waste. Both the generation of
electricity and electronic waste has a direct impact onglalarming. The sensor network application,
e.g., multiple tracking, traffic monitoring, spectrum segsor any other commercial/military
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application, requires a dense deployment of sensors. Inépéoyment, maintenance and recycling
phases, the use of transportation is the major source oébadrming.

An energy efficient-design of WSN can reduce its contributmwvards global warming. Research in
green ICTs will enable the wireless system designers toldeand design cellular, ad-hoc and WSN
systems that will achieve user data rate demands with mimiqower usage and, thus, contribute to
reduction of green houses gaséd][ A combination of the intelligent design of future WSN with
emerging wireless technologies, such as cooperative comcation and cognitive radio, can help
in coping with the crowded spectrum, the demand for a higla date and global warming issues.
Cognitive radio is an interesting concept for solving thelgpem of spectrum availability by reusing the
under-utilized licensed frequency bandg][ Formally, a cognitive radio is defined a&, “a radio that
changes its transmitter parameters based on the intaragtib its environment”. The cognitive radio
has been mainly proposed to improve the spectrum utilizdtjoallowing (unlicensed) secondary users
(SUs) to use under-utilized licensed frequency bands. ERE1802.22 standard for Wireless Regional
Area Network (WRAN) addresses the cognitive radio techgwloy allowing access to white spaces
in the licensed TV band. In North America, the frequency eafay the IEEE 802.22 standard will be
54-862 MHz, while the 41-910 MHz band will be used in the iné&ional standard. In cognitive radio
networks, licensed users and unlicensed users are knowimaeryp and secondary users, respectively.
In [13-20], the authors use cognitive radio technology for wirelesassr networks. A detailed
architecture, topologies and potential applications ofjnitive radio sensor networks (CRSNS)
are presented inl[/]. The potential applications include indoor sensing, mmatia, multi-class
heterogeneous sensing, body area networks and real-tivil&ance.

In the context of environmentally friendly cognitive radiensor network, cooperative communication
can help in reducing the total transmission power and, tteaksicing the C@emissions. The relays play
an important role in many real-life wireless sensor netwapglications 21-26]. Experimental results
and WSN testbeds for cooperative communication also peowisight into the effect of relays on the
WSN lifetime. In [21], the authors experimentally show the performance of thpliéynand forward
scheme in an orthogonal frequency-division multiplexi@fFDM)-based system. The results show
that the amplify and forward scheme is highly beneficial fowpr-aware wireless sensor networks.
In [22,23], the authors investigate the effect of relays in terrakémd underground WSN. In a terrestrial
WSN, reliable communication in a dense environment is vempdrtant. Terrestrial sensor nodes
must be able to effectively communicate data back to the btg@n. Underground WSNs consist
of a number of sensor nodes buried underground or in a cavere nsed to monitor underground
conditions. Additional sink nodes are located above grdonelay information from the sensor nodes
to the base station. The authors show that with limited bagewer (which cannot be recharged,
due to geographical constraint) in terrestrial and unaengd sensor nodes, energy (battery life) can be
conserved with the use of relays, a short transmission rangestwork data aggregation, eliminating
data redundancy, minimizing delays and using low duty-&ygerations. A dual-hop energy-efficient
cooperative spectrum sensing scheme with amplify-anggat relaying in CRSN is proposed ii][

In [4], the authors presented a relay-assisted human moniteyisigm in a body area network that
uses 802.15.3/802.15.4 for its monitoring applicatione performance analysis of dual-hop relaying
in CRSN is described in2[7]. In [28], the authors presented spectrum sensing and commumcatio
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protocols for a dual-hop sensor relay network operatindgi@\{HF-UHF band. Information theoretic
data gathering and the effect of relaying in CRSN are desdrib [29). In [30], a cognitive dual-hop
relaying base sensing-transmission protocol is propodad.31], the authors presented an optimal
solution for source-sum-power minimization in multi-sensingle-relay networks. Subspace-based
cooperative spectrum sensing and correlation-based rgerisr CRSN were proposed inl§]

and B2], respectively.

A relay-assisted WSN for volcanic monitoring is investegatn [24]. The challenges of a WSN
application for volcanic data collection include relial#leent detection, efficient data collection, high
data rates and sparse deployment of nodes. In the proposél ¥&8h sensor node is a T-mote sky
device equipped with an external omni-directional anteanseismometer, a microphone and a custom
hardware interface board. Some of the sensor nodes arepeguipth a single axis Geospace Industrial
GS-11 Geophone with a corner frequency of 4.5 Hz, while therotwo sensor nodes carried triaxial
Geospace Industries GS-1 seismometers with corner freqgseof 1 Hz. The custom hardware interface
board was designed with four Texas Instruments AD7710 gnalaligital converters to integrate with
the T-mote sky devices. Each sensor node draws power front afdkaline D-cell batteries. Sensor
nodes are placed approximately 200 to 400 meters apart facim @her. Sensor nodes relay data to a
gateway node. The gateway node, connected to a long-deskEare- Wave radio modem, transmits the
collected data to the base station. The authors inspecteditia for three weeks and observed that the
network sensed 230 eruptions and other volcanic eventsatiters also investigated the performance
of relays in volcanic events. A three-level wireless semsstwvork for oil well health monitoring is
proposed in26]. Relays are used to transfer the data from one level to ther ¢évels. An amplify and
forward base linear WSN to increase the coverage is propgoged). In [33], the authors present relay
scheduling in a time-slotted source relay destinationesgstvhere a sensor (the source) has the option
to have another sensor (the relay) help transmit its dathgaléstination. From an energy efficiency
perspective, it is shown by the authors that the source miaig\ae the same bit error rate (BER) for a
lower transmission power if it uses a relay, as compared fceatdransmission.

In sensor networks, the transmission power dissipated bg@es node to transmit each bit of data to a
receiver node is directly dependent on the distance bettireen. This use of multi-hop communication
may reduce overall energy consumption; some nodes can beaded and drain out their energy more
quickly (and die), as compared to some other nodes in theamketvl his may produce an undesirable
effect on the functionality of the networks, even causingnitwork to become inoperable. The use of
multiple relays that convey the same data with low power egluce the chances of WSN failure. The
major challenge is how to assign multiple relays efficiemtigt will increase the throughput of WSN
and reduce the power consumption. One open research questioRSN is the per-hop throughput
optimization. Increasing the number of hops will increase tlelay, complexity, deployment and
transportation costf].

1.1. Contributions and Organization

In this paper, we investigate dual-hop CRSN that jointly mazes the throughput and minimizes the
total transmission power by assigning multiple relays ®ukers. In the future, we will investigate the
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optimal number of hops in CRSN to jointly maximize the thrbpgt and minimize the total transmission
power (or minimize the C®emissions). We use a combination of shared-band non-regfersamplify
and forward relaying and cognitive radio to solve the probtd the crowded spectrum, the demand for
a high data rate and global warming.

Data rate maximization and power minimization are two cotifig objectives. Determining the
optimal set of decision variables for a single objectivg,,eCO;, emissions minimization, can result
in a non-optimal set with respect to other objectives, sgm-capacity (throughput) maximization. In
our formulation, we use the normalized weighted sum metWg8NI) to combine these conflicting
objectives. In WSM, the weight of each objective is promorél to its importance, placed for
decision-making. A WSM35] without normalization would result in a biased fitness fimz—e.g.,
if the value of one objective function is in the range [0, 1flahe value of second objective is in the
range [0,z] (wherel < z < o0), then the second objective produces bias in the weightedsst
function. In this work, we normalize all the objective vaduaithin the range [0, 1]. We formulate our
problem in a way that the range of the combined objectivetfands always within O and 1.

According to the best knowledge of the authors, there is imb joultiple relay assignment and power
allocation scheme in the literature that deals with theyaisiand optimization of the energy efficiency in
a shared band multi-user cognitive radio system. The madivaf this work is to fill the gap, especially
important for future green radio communications, with tiva af analyzing the shared-band multiple
relay assignment and power allocation problem that maxmthe data rate and minimizes the £O
emissions. The main contributions of this paper are sunzedms follows:

1. We propose a multi-objective optimization frameworkt floantly exploits the crowded spectrum,
the demand for a high data rate and global warming with thp befrelay-assisted GC-CRSN.
The proposed multi-objective framework jointly performsiliiple relay assignment and power
allocation in GC-CRSN, while optimizing two conflicting @gjtives. The first objective is to
maximize the total throughput, and the second objective iminimize the total transmission
power of GC-CRSN.

2. For multiple relay assignment, we use a shared-band fnapldl forward protocol. We also drive
an upper bound on the data rate of the shared band amplifyam@rd protocol. This upper
bound is useful for normalization in multi-objective opteation.

3. The proposed joint multiple relay assignment and powiercalion problem is a non-convex
mixed-integer non-linear optimization problem (NC-MIN}.Rvhich is generally NP-hard. We
introduce a hybrid heuristic algorithm for this problem.eTybrid heuristic is a combination of
the estimation-of-distribution algorithm (EDA) for perfoing power allocation and an iterative
greedy algorithm for constraint satisfaction and relayggssent.

4. In addition to applying the EDA to the constrained mubjective optimization problem for
GC-CRSN, we also propose a modification in the EDA that gyeatproves its performance.

5. A detailed analysis of the performance of the proposedrdbgn is presented with the
simulation results.

We useA, a andato represent matrix, vector and an element of a vector, otispt). Whena; > 0
for all components;, of a vector,a, we usea > 0. Tablel presents the summary of notations and
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symbols used in this paper. The rest of the paper is orgaazéallows. The system model is presented
in Section?2. In Sectior3, we present our EDA and its improved version. Simulationltssre presented
in Section4.

Table 1. Notations.

Symbol | Definition

K Number of secondary users

M Number of primary users

L Number of relays

I, Interference threshold atth PU

h} Channel between the source and iherelay

hl Channel between theth SU and théth relay

n Transmission power of thigh relay

pr Maximum power of théth relay

2 Transmission power of the source at #th SU band

P, Maximum available power of the source

I Channel between the source andthi PU in thek SU band

G i Channel between theth PU and théth relay in thek SU band

5 binary assignment indicator

F() Fitness function as mentioned in Equatid (

Wy Upper limit of the EDA search window

Wi, Lower limit of the EDA search window

Ay The population at théth iteration andA,| denotes the cardinality

M The set of best candidate solutions selected from/sgtat thetth iteration.

Ps The selection probability. The EDA selegtgA,| individuals from the setA,| to
make up the sej;.

Ire, The maximum number of iterations

2. System Model and Problem Formulation

We consider a two-hop wireless sensor network with one mn#texr node (source)/ receiver
nodes (also known as secondary users/nodesgjay nodes and/ primary users/nodes. Each relay,
transmitter, and receiver is equipped with a single anteWeadenote by:;, the channel from the source
to thelth relay, !, the channel from thé&h relay to thekth secondary usey,, ., the channel from the
source to thenth primary user, an@ﬁmk, the channel from thé&h relay to themth primary user. We
denote byp;, thelth relay’s transmission powep;*** is the maximum power of th&h relay, p;, the
source power in théth user band, ané,, the maximum source powere., >, p; < P;. In our system
model, each user will receive the data on a separate fregioamel. Each relay will transmit and receive

in the same frequency band.
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We consider a half-duplex shared band amplify and forwareé) (grotocol in which each symbol is
transmitted in two time slots; in the first time slot, by theism®e, and in the second time slot, by the
relays. In the first time slot, the signal received by #ierelay (after listening to théth SU’s band) can
be written as,/p; hj's + Z;, where complex-valueslrepresents the transmitted symbol ddaepresents
the complex-valued white Gaussian noise at/therelay. The symbol values, is normalized, so that
E(|s]*) = 1 and£= are the power spectral density of the noige The noise power)V, in watts, in
each SU band can be written &s= (NT) 2W, wherelV is the bandwidth of each SU bangH]. In the
second time slot, the relays amplify the received signalrartdansmit the amplified signal. The channel
capacity of theith user for shared band, AF, i37]:

1 D <
C%zibgb+7§ﬂmﬁ+ﬂg] (1)

L spl 2 -1
where();, = <(Zl—1 1 h’“'ﬁlm>2) andg, = (, /D3| + %) . Note that the capacity formula for the

1+21L:1(|h2\5l\/171)
shared band, AF, is not a concave function of the relay pawéns is due to the terf,. We define as

a binary assignment indicator:

; { 1 ifthelth relay is assigned to thgh user

€ = .
0 otherwise

The channel capacity of thah user for AF relaying with the binary assignment indicasor

Cs, log {1+ (|h;]? + Q) (2)

L et bl 1By )
where(); = ( e )2 :
4375, Ek(|hk|51\/p7)

Our first objective is to maximize the sum-rate capacEf:1 Ck. To normalize the first objective
between 0 and 1, we will divide the sum-rate capacity witlhugiper boundz,ﬁ(z1 e,

Lemma 1. The decision variable-free upper bound of Equatiofl) is C***
3log [T+ % (Ini2 + 32, 1R 2]

Proof. Itis easy to see that} in Equation () is an increasing function of the source power. We can set
the source power to its maximum transmission powerWe will get an upper bound as:

N I S R O A YA s
C.=-=1 1 h
= o 1 (B
P, <|h5|2+ (Zlmfhmzm)z)]
NATE S (nsm)’

3)

<11 1+
— 10
5 g

Applying Cauchy-Schwartz inequality, we will get:

1g 1+5<|h |2 Zl‘h5| Zl(‘h ‘Bl\/_) )]
I (AN

1 _ 512 512
zilog 1+—< i +Z|h\>]

<

(4)




Sensor013 13 4891

Mathematically, we can write the normalized sum-rate as:

_ Zf:l Ch
> O
The second objective is to reduce the carbon footprint oy €@issions. The COemissions are

measured in grams. P is the power used in the transmission aXids a constant in grams/watt, then

the product ofP and X (i.e., PX) represents the CCemissions in grams. The value &fis different

for different types of material (fuel) used for electrictjgneration. There are three major sources of

fuel for electricity generation. These fuels are oil, gad aoal. The value oK for lignite/brown coal,

natural gas, crude oil and diesel oil is 940, 370, 640 and 8&Mhg/watt, respectively [l]. We define by

E;%* = Xp,, the CQ emissions due to thith relay, andz’? = Xp;, the CQ emissions due to the

source transmission power in thh user band. We will normalize the G@missions objective function

with E522 + EC22, whereELO? = 7, Xpe® and ES22 = X P,. We can write the objective of GO
emissions as:

()

1

ECOQ
= ECO2 (6)

whereEC02 =37 B + 37, ECP* and ESQ? = E12% + Egis.

The joint objective of the GC-CRSN problem is to maximize taga-rate—+e., F;—and minimize
the CQ emissions—e., Fy. For joint optimization, we need to transform the objedivg andF5, into
a joint minimization (or maximization) objective. Sincetbmbjectives are normalized and bounded

between 0 and 1, we can make the joint minimization objecsze

Fy

F:w1 (1—F1)+UJ2F2 (7)
Using EquationT), we can write the multi-objective optimization for GC-CR&s:

OP1 :

min F
&€,P1,Ps
subject to

K
Cl:y ef <1V
k

C2:

IN

P

[~

D (8)

k=1
K
C3:0<p < Zefp?”“x,w
k=1
C4: pilgmul® < L0, V(m, k)
L
C5: ) efplgh, i * < I, ¥ (m, k)
=1

C6:ef €{0,1}

In OP1, the constraint('1, assures that a relay can only be assigned to one secondaryCies
and C'3 are the power constraints. The constrairit8, ensures that if théth relay is not assigned



Sensor013 13 4892

to any secondary user, then the transmission power ofttheelay should be zero. Constraints4
and Cb, are the interference constraints. The objective functioW P1 is bounded by zero and
one. The formulation irO P1 is a multi-objective non-convex mixed-integer non-linpangramming
problem, which is generally NP-hard. In the next section,wi present a low-complexity hybrid
estimation-of-distribution algorithm (EDA) for the GC-GRI multi-objective optimization problem.

Algorithm 1 Pseudo code for a typical EDA.

1: Initialize the population with uniform probability distrution

2: while (true) do

3: Evaluate the population
Rank the population according to fitness
Select the best individuals
Estimate the probability distribution from best selectedividuals
Sample the probability model to generate new population
if Termination Criterion Satisfiethen

break

10: endif
11: end while

© ® N o g k&

3. Hybrid EDA Solution for the GC-CRSN Problem

In this section, we will present a hybrid scheme to solve ti@@@RSN multi-objective problem
as given inOP1. The proposed scheme is a combination of an evolutionampason-of-distribution
algorithm for power allocation and an iterative greedy saéor relay assignment. The iterative scheme
also ensures the feasibility of the optimization solution.

Evolutionary algorithms (EAS) in general have been oftegdus solve multi-objective optimization
problems. EAs are inspired by the theory of biological etiolu The candidate solutions to a
multi-objective optimization problem are represented rafividuals in the population. In EAs, the
objective function value of a candidate solution indicdkesfitness of the individual, which is associated
with the concept of natural selectioBd]. Unlike other EAs, such as the genetic algorithm (GA), in&sD
the individuals are generated without the crossover andtiont operators. Instead, in EDA, a new
population is generated based on a probability distrilntwhich is estimated from the best-selected
individuals of the previous iteration89.

Algorithm 1 presents a pseudo code of a typical evolutionary EDA. At tlzet ©f the EDA
algorithm, the population is generated by sampling theanmifprobability distribution. After getting
the population, the algorithm evaluates each individuathi@ population and ranks the population
according to the fitness of each individual. Then, the athoriselects the best individual from the ranked
population with the help of the probability of selection.€Be selected individuals are used to estimate
the new probability distribution for the next iteration. &&algorithm again samples the probability model
to generate the new population. The algorithm continuesxiggsution until some predefined termination
criterion is satisfied. In the next section, we will descrii@A for the GC-CRSN problem.



Sensor£013 13 4893

3.1. EDA for GC-CRSN Problem

In the implementation of EDA for the optimization problem {nP1, each individual can be
designated by an/(+ K)-dimensional real-valued vector. Firdt;dimensions are for relay powers,
and the next{ dimensions are for source power. We denoteyythe population at théh iteration,
and|A;| denotes its cardinality;;, the set of best candidate solutions selected from/sgtat thetth
iteration, anc; is the selection probability. The EDA selegtsA,| individuals from the setA,| to make
up the sety;,. In our implementation of EDA, each individual represeiis transmission power of the
relays and source. We denote by a row vectds: (p1, pa, -+ ,prL,Pr+1,, - - PL+k ), @S an individual
in the population, wherg;,: = 1,2, --- , Listhe relay power vectorang,: = L+1,L+2,--- | L+ K
is the source power vector. The transmission power of thie eglay and source is bounded By,
andWgn, WhereWp,,, andWy,,, are the lower and upper limit of the EDA search window.

In each iteration, the EDA maintains a population of indinats. Population\; can be specified by
the following|A;| x (L + K) matrix:

p! pr Pyt Phak
P? PPy o Phik

Appa = . = . . . ! 9)
pai) \ g

Each row of the matrix\gzp 4, represent an individual. There de®,| individuals in the population, and
each individual had + K elements. A flow diagram of the EDA algorithm is shown in Fegr The
EDA applied to theD P1 problem can be described in the following steps: Step 0: Géaan initial
population,A,. Each element of matrix\ zp 4, is obtained from the following formula:

p{ = WLow + (WHigh — WLOUJ) X T&nd,

(10)
Vi=1,2,- L+ K, j=1,2-- A

where 'rand’ is a random number generated from a unifornridigion between 0 and 1. Initially, we
setWiow = 0, Whign = p/*** for relay powers andV;,,, = 0, Wy, = P; for the source power. For
iterationst =1,2,--- ., Ir.,, follow Step 1 through Step 8:

Step 1: Evaluate the individuals in the current populatidn,;, according to the fitness function,
f). For OP1, we use the function as described in Equatigh &s the fitness functionte.,

F = w(1—-F)) + wyF5. The best fitness function in any iteration is the functiorthwihe
minimum value. Sort the candidate solutions (individual$he current population) according to their
fitness orders.

Step 2. Rank the candidate solutions (individuals in theresdr population) according to their
fitness orders.

Step 3: In this step, the algorithm determines the assighrearable,e = [e{, g2, ,z—:f(], for each
individual heuristically. Step 1 does not guarantee a Basolution. Feasibility check and constraint
satisfaction are also performed in step 3.
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Figure 2. EDA flow diagram with IGS-CSRA and IGS-CSSP.
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|
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\_ using new window size L __________________________ |

We propose an iterative greedy scheme for constraint aatish and relay assignment (IGS-CSRA).
The IGS-CSRA ensures that the constraints C1, C3 and C5 aiséesh We also propose an iterative
algorithm for the source power such that constraints C2 ahdr€ satisfied. We call this method the
iterative greedy scheme for constraint satisfaction ofe@power (IGS-CSSP). The IGS-CSRA and
IGS-CSSP are shown in Figugand described in Sectiords2 and3.3. At the end of this step, the
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algorithm has a population, which comprises individualdweasible relay and source power levels and
the associated assignment varialdes

Step 4: |If the convergence criterion (e.g., number of itersf) is satisfied, then terminate;
else, continue.

Step 5. Select the best, ;| = ps|A;_1| candidate solutions (individuals) from the current
population,A;_;. This selected population is used to compute the mean andasthdeviation of the
selected individuals.

Step 6: Determine the mean, 'm’, and standard deviatonBased on these estimates of 'm’ and
update the search window bounéig;,,., andW s, asWie,, = m-o andWy;,, = m+o.

Step 7: Generate ney,_;| individuals on the basis of this new estimatéd,, and Wy;,, using
Equation (0). Combine these newly generategl ;| individuals with members of,_; to form a new
populationA;.

Step 8: Go to step 1 and repeat the steps.

From a practical point of view, the following observatiom&lssuggestions can help in implementing
the proposed EDA for relay assignment and power allocatioa green cooperative cognitive radio
sensor network. A good sensing mechanism is inevitable tmgaitive radio that will add robustness
to the system. We also need optimal parameter settings of f6Ddifferent geographical regions. A
good estimate of the initial population of EDA can also imse its convergence rate towards good
solutions. This increase in convergence rate eventuatlyedses the computational complexity of the
central controller. Now, we will explain iterative greedghe&mes that jointly assign relays and ensure
the feasibility of the solution.

3.2. Iterative Greedy Scheme for Constraint SatisfactiwhRelay Assignment (IGS-CSRA)

In this section, we present an iterative greedy scheme foistcaint satisfaction and relay
(IGS-CSRA). The IGS-CSRA scheme will be executed on each Hidvidual in the population.
IGS-CSRA illustrates the relay assignment for the EDA idlial indexed by j - P/ =
(pl, 1%, Pl i ). We denote by; = pl,i = 1,-- -, L, theith relay’s power level of thgth individual
in the population. The proposed algorithm has two stagesthénfirst stage, based on the channel
conditions, relays are assigned to the secondary userswiglatisfying the interference constraint. In
the second stage, the algorithm performs final assignmaetgrihe constraint that interference to the
primary users is satisfied.

For developing this greedy algorithm, we can view the proadiche channel from théth relay to
thekth secondary user and the channel from the source titttiielay as profit taken from investing one
unit of transmission power to relay We also view the channel from thith relay to its primary users as
loss. In particular, our algorithm views m@y; 1|2, |gi2|%, - - - . |g:.:]?) as loss incurred from investing
unit transmission power to relay
Stage 1: In this stage, the algorithm assigns each relayetsg¢bondary user that gives the maximum
profit to loss ratio. The profit is secondary users channel-gae., |k ;|| h; |—and loss is the maximum
channel gain from the secondary user to the primary usees—max|gii|?, |gi2l? -, |gim|?)-
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Mathematically, for each relay the algorithm temporarily assigns a secondary user:

hsz' hz
S (i) = arg max 2‘ ’HQ”“‘ -
keqt 2 kyMax(|gial?s 1gizl? - 5 1giml?)
whereS is anL-dimensional vector that stores this assignment. At theoétiage 1, relays are assigned

to the secondary users with the power: =1, --- , L.

Note that the relays’ power levels randomly generated b algorithm can violate the constraint
of limited interference to the primary users. In the nexgjstdahe algorithm refines the relay assignment
done in Stage 1 and adjusts the power level of each relay, atarterference to the primary users
Is satisfied.

Stage 2: At the start of the second stage, the algorithmssadjusting the relays’ power levels if there
is a violation of the primary users’ interference constrakairst, the algorithm examines for each relay
¢ whether its transmission power would still violate any iféeence constraint, even if all other relays’
power level were set to zero. fi violates any of the interference constraifif,5* , even under the
assumption that other relays’ transmission power levelsHiset to 0, then the algorithm first makes the
following adjustment:

e I Iy
p; = mMin (pzu ‘gi71|27 ‘gi72|2’ Tty |gz1\74‘2) ,V(Z, k)

With this power adjustment, each user individually guagastconstraint satisfaction of the primary
users’ interference constraint. After the power adjustimdre algorithm iterates over the secondary
users and completes the assignment of relays.

At the kth iteration, the algorithm determines the set of relayg, that are assigned to thgh
secondary user in Stage 1. Then, the algorithm checks wh#theelays in the seb, satisfy the
interference constraint at all the primary users. If thayslin the setV,, violate the interference
constraint at any primary user; then the algorithm iteedyivemoves the relay from the sdlt,, that
causes maximum interference to the primary users. Matheatigt this determines the relay with the
highest interference from the sat;, as:

i = arg maxly,
1€V

This relay removal process continues until the relays insttel,., satisfy the interference constraint.
When the algorithm has a set of relays that satisfy the iettenice constraint, then the algorithm
determines the capacity of theh user and it setgcy, = 1.

The algorithm executes till all the secondary users get @signed relays. In the next subsection,
we will present the iterative greedy scheme and constratrgfaction for source power.

3.3. Iterative Greedy Scheme and Constraint Satisfactio®burce Power (IGS-CSSP)

Now, we will describe IGS-CSSP. We denotefhy, = p/,Vi = L+ 1,L+2,--- , L + K, the source
power level at thétth user band in thgth sample drawn by the EDA. We denotelby a vector that will
be used for user indiceE;,, a set of users, ang a power control factor. The power control factor is used
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for source power adjustment. This adjustment will be dogratively until all the interference constraints
related to the source power are satisfied. The proposed I&520s also a two-stage algorithm.

Stage 1: In the first stage, users are ranked according to ¢hannel conditions. Similar to the
IGS-CSRA, the maximum profit to loss ratio criterion is usedank the users. The profit is secondary
users channel gaing., |hs ;|| ki x|, and loss is the maximum channel gain from the secondarytosiee

primary usersi.e., max|g;1|* |gi2|* -, lgim|?). Mathematically:
: |Fus,il [ i |
['s (i) = arg max ik
kery,  Max(|gial®, [gizl? -+ 19i,m]?)

In the next stage, the power of each user will adjusted acuptd their ranks.
Stage 2: At the start of the second stage, the algorithnsstdjtisting the source power levels if there is
a violation of the primary users’ interference constraiising the expression:

Y
‘98,1‘2’|g&2|27 ’|98,M‘2 ’

ﬁs,k = min (ﬁs,k;

After source power adjustment with the interference camsty the algorithm verifies the power
constraint. If the source power constraint is not satisfieen the algorithm adjusts the source power
using power control factob, till the constraint is satisfied. The user with the worstrolel condition is
reduced first using the power control factér, This process will be executed for all users till we get a
feasible solution.

At the end of the algorithm, we shall have a feasible solutiSmce, we are using the half-duplex
amplify and forward protocol, both IGS-CSRA and IGS-CSSP exiecute independently.

3.4. Modified EDA (MEDA)

During the execution of EDA, the difference between thedearindow boundsiVy,.,, and Wi,
may diminish as the iterations proceeds. This may causeifet& get stuck in a local search space
and result in premature convergence. The premature cawveggnay occur if the difference between
Wiew and Wi,g, diminishes to an extremely small value. In that case, atyeftgure iteration, the
algorithm will generate nearly the same power levels. Is Haction, we will propose a modification
in the traditional EDA algorithm that can improve the EDAsrformance. The modification includes
the introduction of thresholds in EDA to avoid prematurevaygence. We name this algorithm the
Modified EDA (MEDA).

We suggest restoring tH& ., and Wy, to their initial values (Vo = 0, Wign = p*** for relay
powers andV ., = 0, W;g, = P, for source power) when the difference betwé€p,,, and Wy, is
less than a pre-specified threshojdli.e.:

if (Weigh — Wiow < 7y) then

Wiow = 0, Wigh = p"** — for relays
Wiow = 0, Whiigh = Ps — for source
end if



Sensor£013 13 4898

The above steps are illustrated in Fig@Brdn the next section, we present some experimental results,
which show the effect of threshold on the performance of EDA.

Figure 3. EDA thresholding.
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4. Numerical Results

In this section, we present simulation results to demotestne performance of the proposed EDA and
MEDA. The impact of network parameters (e.g., number of Sluspber of relays) is also investigated.

Table 2. Common Parameter Values.

Parameters | Values
P 1 Watts
P, 10 Watts
y 0.2

Ay 20

Tt 10

Ps 0.5

I7e, 5000

4.1. Simulation Setup and Common Parameters

In all the simulations, the channels between source, relagglestinations have independent complex
Gaussian distribution. Some common parameter values riaulation are shown in Tablg. In all
simulations, the channel gaih, is modeled as40]:

B
h= 0K, <%> (11)

whereK, is a constant that depends on the antenna characteristavarabe channel attenuatiehy,is
the reference distance for the antenna far fiélis, the distance between the transmitter and receiver,
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is the path loss constant addis the Rayleigh random variable. Since this formula is nditvia the
near field, in all the simulation results, we assume thiatgreater tham,. In all the resultsgd, = 20m,

K, =50 ands = 3. The PU’s protected distande,, is set to 10m. The secondary and primary users
are uniformly distributed. All the simulations are perfadwusing Monte Carlo runs.

For each PU, there is a PU protection area, wherein the shefthe cognitive radio signals must
be constrained. We define &s the radius of the protected circular area for each indaidRU. Given a
distanced,,, between the SU base station and il PU and the radiusy,,, of the protected circular
area of thenth PU, the channel from the source to théh PU in thekth SU band is given as:

Gk
= —————— 12
g k (dm . Rm)ﬂ ( )
whereg,, ;. is the small scale fading antlis the path loss exponent. For simplicity, throughout tiaiggr
and in simulation results, we assume that= Ry, = - - - = R,,.

We compare the results of EDA and MEDA with the standard owomtius genetic algorithm
(GA) [38]. The EDA, MEDA and GA use IGS-CSSP and IGS-CSRA for constraatisfaction. We
will use the the word “non-green communication” when wewsgt 1 andw; = 0. In all the simulation
results, we set the (M)EDA/GA parameters as, ps, Ir..) = (20,0.5,1000), whereA, ps, Ir., are the
population, selection probability and maximum iteraticespectively.

4.2. Throughput and COEmissions Trade-Off

In Figure 4, we present the trade-off plot of sum-capacity and totahgmaission power(or
CO, emissions). The trade-off is calculated between the greennunication and without green
communication. Trade-off is presented as the percentagee@®e in sum-capacity and percentage
decrease in power consumption. The decrease in sum-ca@adtdecrease in power consumption
is calculated using the expressions:

Decrease in powee E€2 (w; = 1,wy = 0) — 13)
EC" (wy =2, wy =1 —1x)

Decrease in sum-capacity Y _ Cj, (wy = 1,w; = 0) —
k

14
> Cr(wr =z,wy =1—1z) (14)
k

where0) < = < 1. Figure4 shows the effect of green communication by changing theegabf
weightsw; and w,. The results show that whem, is more thanw;, there is more reduction in
CO, emissions (percentage decrease in power). The reducti@Dinemissions comes at the cost
of throughput reduction. From the results, we can obserae@®, emissions will decrease by 50- to
70-percent at the cost of 10- to 30-percent loss of througiymenw, > w;. This means that with
little sacrifices in throughput, there is a big gain in powHrne different weight settings are suitable for
different geographical conditions and regulatory pobci€he results also show that the performance of
EDA is better than GA.
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Figure 4. Power and sum-capacity trade-off with/, K, L, I™%*) = (1,10, 20, 1W).
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4.3. Performance of Proposed Schemes

Figure5 focuses on the method of applying thresholds on EDA, whidesgcribed in sectiod.4. We
ran an EDA with parameter(sM, I05E wi, wa, 5) =(1, 10mW, 0.5, 0.5, 5) for threshold values{f.3,
0.7, 0.9. Note that setting= 1 is equivalent to not applying the threshold at all. Settime threshold
closer to 1 means that the algorithm generates the populaban an almost identical distribution in
each iteration; that is, the algorithm does not take adgentd the natural selection. An interesting
issue is what values of the threshold facilitates the coatmrt. From Figurés, we can observe that the
performance of EDA is poor at= 0.9 and 0.7. We can interpret this as, at the threshold salfre= 0.9
and 0.7, which are close to 1.0, the algorithm does not ev@tyaficantly. Figures presents the effect
of selection probabilityp,, on the performance of EDA. The parameters @Y 75", w1, w2, ) = (1,
10mW, 0.5, 0.5, 5). From Figur6, we can observe that the performance of EDA is better if selec
probability, p, is not close to either 0 or 1. There will be no evolution ifesstion probabilityp,, is close
to 1, the EDA will behave like a random algorithm. On the otiend, if selection probability,, is close
to 0, the algorithm does not evolve significantly, becausemntore likely that EDA will get stuck in the
local optimum.

Figure 5. Effect of threshold parameter on EDA. The parameters are
(L, K, M, I wy,wy) = (10,10,1,1W,0.5,0.5).
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Figure 6. Effect of selection probabilityp, on EDA. The parameters are
(L, K, M, 757wy, wy) = (10,10,1,1W,0.5,0.5).
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Figures7 and8 present the fitnesss iterations plot for different numbers of relays and usdilse
fitness function was defined in Equatiof).(The parameters al(eM, I0GE wr, wa, 5) =(1, 10nW, 0.1,
0.9, 5) and (1, 1@W, 0.5, 0.5, 5), respectively. The value of threshglid set to 0.3. From the results,
we can observe that the performance of MEDA is better than BB& GA. This is because a simple
EDA and GA can get stuck in the local optimum after a few itersg. We can also note that fithess
values with less relays is better than fitness values withemeliays. This is because the assignment
takes more iterations for a large number of relays.

Figure 7. Iterationsvs Fitness plot with(w,, wy) = (0.5,0.5).
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Figures9, 10and11 present the impact of SUs, relays and PUs on the performdrice green sensor
network. The parameters af&’, L, M, I7%") = ({5, 10,20}, 10, 1,10mW), (20, {10.20,40},1,10n W)
and (10,10{1, 2, 3},10mW), respectively. In all simulationg, w;,w,,d) are set to (0.5,0.5, 5). We
observe that for a fixed number of secondary users, the fiofdbe objective function will always be
better with a lesser number of relays. This is because thgrement takes more iterations for a large
number of relays. In the simulation results, we also obs#ratthe objective function is better at a low

number of PUs. This is because the relay assignment needsigfy snore interference constraints as
the number of PUs increases.
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Figure 8. Iterationsvs. Fitness plot withw,, we) = (0.1,0.9).

Figure

Figure 10. Iterationsvs Fitness plot with(w,, wy) = (0.5,0.5).

Joint Objective (F)

0.9 MEDA, K =5
- — —MEDA,K=10
------ MEDA, K = 20
__ 08 i
5
[
2
8
L 07t :
o)
E
S
0.6} E

0.34

0.32f

0.3

Joint Objective (F)
o o
N N
I =)

. . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations

9. Iterationsvs. Fitness plot with(w,, we) = (0.5,0.5).
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Figure 11. Iterationsvs Fitness plot with(w,, wy) = (0.5,0.5).
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5. Conclusion

In this paper, we presented a multi-objective frameworkésiource allocation in green cooperative
cognitive radio sensor networks. The estimation-of-thstion algorithm with iterative greedy scheme
is used to solve the multi-objective optimization problefine simple underlying concept and ease of
implementation of the proposed algorithm make EDA a suitabhdidate for green resource allocation.
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