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Abstract: Due to the rapid increase in the usage and demand of wireless sensor networks

(WSN), the limited frequency spectrum available for WSN applications will be extremely

crowded in the near future. More sensor devices also mean more recharging/replacement

of batteries, which will cause significant impact on the global carbon footprint. In this

paper, we propose a relay-assisted cognitive radio sensor network (CRSN) that allocates

communication resources in an environmentally friendly manner. We use shared band

amplify and forward relaying for cooperative communication in the proposed CRSN.

We present a multi-objective optimization architecture for resource allocation in a green

cooperative cognitive radio sensor network (GC-CRSN). Theproposed multi-objective

framework jointly performs relay assignment and power allocation in GC-CRSN, while

optimizing two conflicting objectives. The first objective is to maximize the total throughput,

and the second objective is to minimize the total transmission power of CRSN. The proposed

relay assignment and power allocation problem is a non-convex mixed-integer non-linear

optimization problem (NC-MINLP), which is generally non-deterministic polynomial-time

(NP)-hard. We introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic

includes an estimation-of-distribution algorithm (EDA) for performing power allocation

and iterative greedy schemes for constraint satisfaction and relay assignment. We analyze

the throughput and power consumption tradeoff in GC-CRSN. Adetailed analysis of the

performance of the proposed algorithm is presented with thesimulation results.
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1. Introduction

Wireless sensor networks (WSN) play an important role in many industrial [1], health [2] and body

monitoring systems [3,4], seismic vibration sensing [5], ad-hoc systems [6] and spectrum sensing [7]

applications. Almost all modern applications and servicesrequire some form of sensors. Due to the

rapid increase in WSN applications and services, in the future, the limited frequency spectrum available

for WSN applications will be extremely crowded [8]. With the rapid growth and dense deployment of

WSN, in the field of information and communication technologies (ICTs) they play a significant role on

the global environment [9]. According to the International Telecommunication Unionreport [10], the

primary sources of greenhouse gases are electricity generation, transport vehicles, buildings, electronic

waste (e.g., batteries, small electric cells,etc.) and agricultural by-products. A vast portion of electricity

is generated with thermal- or coal-operated turbines. The process of electricity generation is a major

contributor to the emissions of green house gases. With the rapid growth and demand of WSN, future

WSNs’ will face three major challenges: (1) the wireless spectrum availability, (2) the demand for high

data rate transmission and (3) the reduction in greenhouse gases to cope with global warming.

Figure 1. WSN life cycle.

A large portion of green house gases is composed of carbon dioxide (CO2) emissions. For WSN,

the termgreenrefers to an energy-efficient and a low carbon deployment andoperation. For reducing

green house gases, particularly carbon dioxide emissions,an energy-efficient resource allocation plays a

significant role and has a direct impact on the lifecycle of WSN. The lifecycle of WSN is shown in

Figure 1. WSN are composed of the following phases: sensor network design, manufacturing,

transportation, deployment and recycling. Each phase has its role in global warming—e.g., sensor

network design and the manufacturing phase require highly sophisticated computing machines that

not only use ample amounts of electricity, but also produce electronic waste. Both the generation of

electricity and electronic waste has a direct impact on global warming. The sensor network application,

e.g., multiple tracking, traffic monitoring, spectrum sensing or any other commercial/military
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application, requires a dense deployment of sensors. In thedeployment, maintenance and recycling

phases, the use of transportation is the major source of global warming.

An energy efficient-design of WSN can reduce its contribution towards global warming. Research in

green ICTs will enable the wireless system designers to develop and design cellular, ad-hoc and WSN

systems that will achieve user data rate demands with minimum power usage and, thus, contribute to

reduction of green houses gases [11]. A combination of the intelligent design of future WSN with

emerging wireless technologies, such as cooperative communication and cognitive radio, can help

in coping with the crowded spectrum, the demand for a high data rate and global warming issues.

Cognitive radio is an interesting concept for solving the problem of spectrum availability by reusing the

under-utilized licensed frequency bands [12]. Formally, a cognitive radio is defined as [12], “a radio that

changes its transmitter parameters based on the interaction with its environment”. The cognitive radio

has been mainly proposed to improve the spectrum utilization by allowing (unlicensed) secondary users

(SUs) to use under-utilized licensed frequency bands. The IEEE 802.22 standard for Wireless Regional

Area Network (WRAN) addresses the cognitive radio technology by allowing access to white spaces

in the licensed TV band. In North America, the frequency range for the IEEE 802.22 standard will be

54–862 MHz, while the 41–910 MHz band will be used in the international standard. In cognitive radio

networks, licensed users and unlicensed users are known as primary and secondary users, respectively.

In [13–20], the authors use cognitive radio technology for wireless sensor networks. A detailed

architecture, topologies and potential applications of cognitive radio sensor networks (CRSNs)

are presented in [17]. The potential applications include indoor sensing, multimedia, multi-class

heterogeneous sensing, body area networks and real-time surveillance.

In the context of environmentally friendly cognitive radiosensor network, cooperative communication

can help in reducing the total transmission power and, thus,reducing the CO2 emissions. The relays play

an important role in many real-life wireless sensor networkapplications [21–26]. Experimental results

and WSN testbeds for cooperative communication also provide insight into the effect of relays on the

WSN lifetime. In [21], the authors experimentally show the performance of the amplify and forward

scheme in an orthogonal frequency-division multiplexing (OFDM)-based system. The results show

that the amplify and forward scheme is highly beneficial for power-aware wireless sensor networks.

In [22,23], the authors investigate the effect of relays in terrestrial and underground WSN. In a terrestrial

WSN, reliable communication in a dense environment is very important. Terrestrial sensor nodes

must be able to effectively communicate data back to the basestation. Underground WSNs consist

of a number of sensor nodes buried underground or in a cave or mine used to monitor underground

conditions. Additional sink nodes are located above groundto relay information from the sensor nodes

to the base station. The authors show that with limited battery power (which cannot be recharged,

due to geographical constraint) in terrestrial and underground sensor nodes, energy (battery life) can be

conserved with the use of relays, a short transmission range, in-network data aggregation, eliminating

data redundancy, minimizing delays and using low duty-cycle operations. A dual-hop energy-efficient

cooperative spectrum sensing scheme with amplify-and-forward relaying in CRSN is proposed in [7].

In [4], the authors presented a relay-assisted human monitoringsystem in a body area network that

uses 802.15.3/802.15.4 for its monitoring application. The performance analysis of dual-hop relaying

in CRSN is described in [27]. In [28], the authors presented spectrum sensing and communication
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protocols for a dual-hop sensor relay network operating in the VHF-UHF band. Information theoretic

data gathering and the effect of relaying in CRSN are described in [29]. In [30], a cognitive dual-hop

relaying base sensing-transmission protocol is proposed.In [31], the authors presented an optimal

solution for source-sum-power minimization in multi-sensor single-relay networks. Subspace-based

cooperative spectrum sensing and correlation-based sensing for CRSN were proposed in [18]

and [32], respectively.

A relay-assisted WSN for volcanic monitoring is investigated in [24]. The challenges of a WSN

application for volcanic data collection include reliableevent detection, efficient data collection, high

data rates and sparse deployment of nodes. In the proposed WSN, each sensor node is a T-mote sky

device equipped with an external omni-directional antenna, a seismometer, a microphone and a custom

hardware interface board. Some of the sensor nodes are equipped with a single axis Geospace Industrial

GS-11 Geophone with a corner frequency of 4.5 Hz, while the other two sensor nodes carried triaxial

Geospace Industries GS-1 seismometers with corner frequencies of 1 Hz. The custom hardware interface

board was designed with four Texas Instruments AD7710 analog to digital converters to integrate with

the T-mote sky devices. Each sensor node draws power from a pair of alkaline D-cell batteries. Sensor

nodes are placed approximately 200 to 400 meters apart from each other. Sensor nodes relay data to a

gateway node. The gateway node, connected to a long-distance Free- Wave radio modem, transmits the

collected data to the base station. The authors inspected the data for three weeks and observed that the

network sensed 230 eruptions and other volcanic events. Theauthors also investigated the performance

of relays in volcanic events. A three-level wireless sensornetwork for oil well health monitoring is

proposed in [26]. Relays are used to transfer the data from one level to the other levels. An amplify and

forward base linear WSN to increase the coverage is proposedin [25]. In [33], the authors present relay

scheduling in a time-slotted source relay destination system, where a sensor (the source) has the option

to have another sensor (the relay) help transmit its data to the destination. From an energy efficiency

perspective, it is shown by the authors that the source may achieve the same bit error rate (BER) for a

lower transmission power if it uses a relay, as compared to a direct transmission.

In sensor networks, the transmission power dissipated by a sender node to transmit each bit of data to a

receiver node is directly dependent on the distance betweenthem. This use of multi-hop communication

may reduce overall energy consumption; some nodes can be overloaded and drain out their energy more

quickly (and die), as compared to some other nodes in the network. This may produce an undesirable

effect on the functionality of the networks, even causing the network to become inoperable. The use of

multiple relays that convey the same data with low power can reduce the chances of WSN failure. The

major challenge is how to assign multiple relays efficientlythat will increase the throughput of WSN

and reduce the power consumption. One open research question of CRSN is the per-hop throughput

optimization. Increasing the number of hops will increase the delay, complexity, deployment and

transportation cost [34].

1.1. Contributions and Organization

In this paper, we investigate dual-hop CRSN that jointly maximizes the throughput and minimizes the

total transmission power by assigning multiple relays to the users. In the future, we will investigate the
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optimal number of hops in CRSN to jointly maximize the throughput and minimize the total transmission

power (or minimize the CO2 emissions). We use a combination of shared-band non-regenerative amplify

and forward relaying and cognitive radio to solve the problem of the crowded spectrum, the demand for

a high data rate and global warming.

Data rate maximization and power minimization are two conflicting objectives. Determining the

optimal set of decision variables for a single objective, e.g., CO2 emissions minimization, can result

in a non-optimal set with respect to other objectives, e.g.,sum-capacity (throughput) maximization. In

our formulation, we use the normalized weighted sum method (WSM) to combine these conflicting

objectives. In WSM, the weight of each objective is proportional to its importance, placed for

decision-making. A WSM [35] without normalization would result in a biased fitness function—e.g.,

if the value of one objective function is in the range [0, 1] and the value of second objective is in the

range [0,x] (where 1 < x ≤ ∞), then the second objective produces bias in the weighted fitness

function. In this work, we normalize all the objective values within the range [0, 1]. We formulate our

problem in a way that the range of the combined objective function is always within 0 and 1.

According to the best knowledge of the authors, there is no joint multiple relay assignment and power

allocation scheme in the literature that deals with the analysis and optimization of the energy efficiency in

a shared band multi-user cognitive radio system. The motivation of this work is to fill the gap, especially

important for future green radio communications, with the aim of analyzing the shared-band multiple

relay assignment and power allocation problem that maximizes the data rate and minimizes the CO2

emissions. The main contributions of this paper are summarized as follows:

1. We propose a multi-objective optimization framework that jointly exploits the crowded spectrum,

the demand for a high data rate and global warming with the help of relay-assisted GC-CRSN.

The proposed multi-objective framework jointly performs multiple relay assignment and power

allocation in GC-CRSN, while optimizing two conflicting objectives. The first objective is to

maximize the total throughput, and the second objective is to minimize the total transmission

power of GC-CRSN.

2. For multiple relay assignment, we use a shared-band amplify and forward protocol. We also drive

an upper bound on the data rate of the shared band amplify and forward protocol. This upper

bound is useful for normalization in multi-objective optimization.

3. The proposed joint multiple relay assignment and power allocation problem is a non-convex

mixed-integer non-linear optimization problem (NC-MINLP), which is generally NP-hard. We

introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic is a combination of

the estimation-of-distribution algorithm (EDA) for performing power allocation and an iterative

greedy algorithm for constraint satisfaction and relay assignment.

4. In addition to applying the EDA to the constrained multi-objective optimization problem for

GC-CRSN, we also propose a modification in the EDA that greatly improves its performance.

5. A detailed analysis of the performance of the proposed algorithm is presented with the

simulation results.

We useA, a anda to represent matrix, vector and an element of a vector, respectively. Whenai ≥ 0

for all components,i, of a vector,a, we usea ≥ 0. Table1 presents the summary of notations and
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symbols used in this paper. The rest of the paper is organizedas follows. The system model is presented

in Section2. In Section3, we present our EDA and its improved version. Simulation results are presented

in Section4.

Table 1. Notations.

Symbol Definition

K Number of secondary users

M Number of primary users

L Number of relays

Im Interference threshold atmth PU

hs
l Channel between the source and thelth relay

hl
k Channel between thekth SU and thelth relay

pl Transmission power of thelth relay

pmax
l Maximum power of thelth relay

psk Transmission power of the source at thekth SU band

Ps Maximum available power of the source

gsm,k Channel between the source and themth PU in thek SU band

glm,k Channel between themth PU and thelth relay in thek SU band

ε binary assignment indicator

F () Fitness function as mentioned in Equation (7)

WH Upper limit of the EDA search window

WL Lower limit of the EDA search window

∆t The population at thetth iteration and|∆t| denotes the cardinality

ηt The set of best candidate solutions selected from set|∆t| at thetth iteration.

ρs The selection probability. The EDA selectsρs|∆t| individuals from the set|∆t| to

make up the setηt.

ITer The maximum number of iterations

2. System Model and Problem Formulation

We consider a two-hop wireless sensor network with one transmitter node (source),K receiver

nodes (also known as secondary users/nodes),L relay nodes andM primary users/nodes. Each relay,

transmitter, and receiver is equipped with a single antenna. We denote byhs
l , the channel from the source

to thelth relay,hl
k, the channel from thelth relay to thekth secondary user,gsm,k, the channel from the

source to themth primary user, andglm,k, the channel from thelth relay to themth primary user. We

denote bypl, the lth relay’s transmission power;pmax
l is the maximum power of thelth relay,psk, the

source power in thekth user band, andPs, the maximum source power,i.e.,
∑

k p
s
k ≤ Ps. In our system

model, each user will receive the data on a separate frequency band. Each relay will transmit and receive

in the same frequency band.
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We consider a half-duplex shared band amplify and forward (AF) protocol in which each symbol is

transmitted in two time slots; in the first time slot, by the source, and in the second time slot, by the

relays. In the first time slot, the signal received by thelth relay (after listening to thekth SU’s band) can

be written as
√
pskh

s
l s+Zl, where complex-valueds represents the transmitted symbol andZl represents

the complex-valued white Gaussian noise at thelth relay. The symbol value,s, is normalized, so that

E(|s|2) = 1 and No

2
are the power spectral density of the noiseZl. The noise power,N , in watts, in

each SU band can be written asN =
(
No

2

)
2W , whereW is the bandwidth of each SU band [36]. In the

second time slot, the relays amplify the received signal andre-transmit the amplified signal. The channel

capacity of thekth user for shared band, AF, is [37]:

Ck =
1

2
log

[
1 +

psk
N

(
|hs

k|2 + Ωk

)]
(1)

whereΩk =

(
(
∑

L

l=1
|hs

l
hl

k
|βl

√
pl)

2

1+
∑

L

l=1(|hl

k
|βl

√
pl)

2

)
andβl =

(√
psk|hs

l |2 + N
2

)−1

. Note that the capacity formula for the

shared band, AF, is not a concave function of the relay powers. This is due to the termΩk. We define as

a binary assignment indicator:

εlk =

{
1 if the lth relay is assigned to thekth user

0 otherwise

The channel capacity of thekth user for AF relaying with the binary assignment indicatoris:

Cε

k =
1

2
log

[
1 +

psk
N

(
|hs

k|2 + Ωε

k

)]
(2)

whereΩε

k =

(
(
∑

L

l=1
εl
k
|hs

l
hl

k
|βl

√
pl)

2

1+
∑

L

l=1
εl
k(|hl

k
|βl

√
pl)

2

)
.

Our first objective is to maximize the sum-rate capacity,
∑K

k=1
Ck. To normalize the first objective

between 0 and 1, we will divide the sum-rate capacity with itsupper bound,
∑K

k=1
Cmax

k .

Lemma 1. The decision variable-free upper bound of Equation(1) is Cmax
k =

1

2
log
[
1 + Ps

N
(|hs

k|2 +
∑

l |hs
l |2)
]
.

Proof. It is easy to see thatCk in Equation (1) is an increasing function of the source power. We can set

the source power to its maximum transmission power,Ps. We will get an upper bound as:

Ck =
1

2
log

[
1 +

psk
N

(
|hs

k|2 +
(∑

l |hs
lh

l
k|βl

√
pl
)2

1 +
∑

l

(
|hl

k|βl

√
pl
)2

)]

<
1

2
log

[
1 +

Ps

N

(
|hs

k|2 +
(∑

l |hs
lh

l
k|βl

√
pl
)2

∑
l

(
|hl

k|βl

√
pl
)2

)] (3)

Applying Cauchy-Schwartz inequality, we will get:

≤ 1

2
log

[
1 +

Ps

N

(
|hs

k|2 +
∑

l |hs
l |2
∑

l

(
|hl

k|βl

√
pl
)2

∑
l

(
|hl

k|βl

√
pl
)2

)]

=
1

2
log

[
1 +

Ps

N

(
|hs

k|2 +
∑

l

|hs
l |2
)] (4)
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Mathematically, we can write the normalized sum-rate as:

F1 =

∑K

k=1
Ck∑K

k=1
Cmax

k

(5)

The second objective is to reduce the carbon footprint or CO2 emissions. The CO2 emissions are

measured in grams. IfP is the power used in the transmission andX is a constant in grams/watt, then

the product ofP andX (i.e., PX) represents the CO2 emissions in grams. The value ofX is different

for different types of material (fuel) used for electricitygeneration. There are three major sources of

fuel for electricity generation. These fuels are oil, gas and coal. The value ofX for lignite/brown coal,

natural gas, crude oil and diesel oil is 940, 370, 640 and 670 grams/watt, respectively [11]. We define by

ECO2

l = Xpl, the CO2 emissions due to thelth relay, andECO2

s,k = Xpsk, the CO2 emissions due to the

source transmission power in thekth user band. We will normalize the CO2 emissions objective function

with ECO2

lmax + ECO2

smax, whereECO2

lmax =
∑

l Xpmax
l andECO2

smax = XPs. We can write the objective of CO2
emissions as:

F2 =
ECO2

ECO2

max

(6)

whereECO2 =
∑

l E
CO2

l +
∑

k E
CO2

s,k andECO2

max = ECO2

lmax + ECO2

smax.

The joint objective of the GC-CRSN problem is to maximize thedata-rate—i.e., F1—and minimize

the CO2 emissions—i.e.,F2. For joint optimization, we need to transform the objectives,F1 andF2, into

a joint minimization (or maximization) objective. Since both objectives are normalized and bounded

between 0 and 1, we can make the joint minimization objectiveas:

F = w1 (1− F1) + w2F2 (7)

Using Equation (7), we can write the multi-objective optimization for GC-CRSN as:

OP1 :

min
ε,pl,ps

F

subject to

C1 :

K∑

k

εkl ≤ 1, ∀l

C2 :
K∑

k=1

psk ≤ Ps

C3 : 0 ≤ pl ≤
K∑

k=1

εkl p
max
l , ∀l

C4 : psk|gsm,k|2 ≤ Imax
m,k , ∀(m, k)

C5 :

L∑

l=1

εkl pl|glm,k|2 ≤ Imax
m,k , ∀(m, k)

C6 : εkl ∈ {0, 1}

(8)

In OP1, the constraint,C1, assures that a relay can only be assigned to one secondary user; C2

andC3 are the power constraints. The constraints,C3, ensures that if thelth relay is not assigned
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to any secondary user, then the transmission power of thelth relay should be zero. Constraints,C4

and C5, are the interference constraints. The objective functionin OP1 is bounded by zero and

one. The formulation inOP1 is a multi-objective non-convex mixed-integer non-linearprogramming

problem, which is generally NP-hard. In the next section, wewill present a low-complexity hybrid

estimation-of-distribution algorithm (EDA) for the GC-CRSN multi-objective optimization problem.

Algorithm 1 Pseudo code for a typical EDA.

1: Initialize the population with uniform probability distribution

2: while (true) do

3: Evaluate the population

4: Rank the population according to fitness

5: Select the best individuals

6: Estimate the probability distribution from best selected individuals

7: Sample the probability model to generate new population

8: if Termination Criterion Satisfiedthen
9: break

10: end if
11: end while

3. Hybrid EDA Solution for the GC-CRSN Problem

In this section, we will present a hybrid scheme to solve the GC-CRSN multi-objective problem

as given inOP1. The proposed scheme is a combination of an evolutionary estimation-of-distribution

algorithm for power allocation and an iterative greedy scheme for relay assignment. The iterative scheme

also ensures the feasibility of the optimization solution.

Evolutionary algorithms (EAs) in general have been often used to solve multi-objective optimization

problems. EAs are inspired by the theory of biological evolution. The candidate solutions to a

multi-objective optimization problem are represented as individuals in the population. In EAs, the

objective function value of a candidate solution indicatesthe fitness of the individual, which is associated

with the concept of natural selection [38]. Unlike other EAs, such as the genetic algorithm (GA), in EDA,

the individuals are generated without the crossover and mutation operators. Instead, in EDA, a new

population is generated based on a probability distribution, which is estimated from the best-selected

individuals of the previous iterations [39].

Algorithm 1 presents a pseudo code of a typical evolutionary EDA. At the start of the EDA

algorithm, the population is generated by sampling the uniform probability distribution. After getting

the population, the algorithm evaluates each individual inthe population and ranks the population

according to the fitness of each individual. Then, the algorithm selects the best individual from the ranked

population with the help of the probability of selection. These selected individuals are used to estimate

the new probability distribution for the next iteration. The algorithm again samples the probability model

to generate the new population. The algorithm continues itsexecution until some predefined termination

criterion is satisfied. In the next section, we will describeEDA for the GC-CRSN problem.
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3.1. EDA for GC-CRSN Problem

In the implementation of EDA for the optimization problem inOP1, each individual can be

designated by an (L + K)-dimensional real-valued vector. First,L-dimensions are for relay powers,

and the nextK dimensions are for source power. We denote by∆t, the population at thetth iteration,

and |∆t| denotes its cardinality,ηt, the set of best candidate solutions selected from set|∆t| at thetth

iteration, andρs is the selection probability. The EDA selectsρs|∆t| individuals from the set|∆t| to make

up the setηt. In our implementation of EDA, each individual represents the transmission power of the

relays and source. We denote by a row vector,P = (p1, p2, · · · , pL, pL+1,, · · · , pL+K), as an individual

in the population, wherepi, i = 1, 2, · · · , L is the relay power vector andpi, i = L+1, L+2, · · · , L+K

is the source power vector. The transmission power of the each relay and source is bounded byWLow

andWHigh, whereWLow andWHigh are the lower and upper limit of the EDA search window.

In each iteration, the EDA maintains a population of individuals. Population∆t can be specified by

the following|∆t| × (L+K) matrix:

ΛEDA =




P 1

P 2

...

P |∆t|




=




p11 p12 · · · p1L+K

p21 p22 · · · p2L+K

...
...

...
...

p
|∆t|
1 p

|∆t|
2 · · · p

|∆t|
L+K




(9)

Each row of the matrix,ΛEDA, represent an individual. There are|∆t| individuals in the population, and

each individual hasL +K elements. A flow diagram of the EDA algorithm is shown in Figure 2. The

EDA applied to theOP1 problem can be described in the following steps: Step 0: Generate an initial

population,∆0. Each element of matrix,ΛEDA, is obtained from the following formula:

p
j
i = WLow + (WHigh −WLow)× rand,

∀i = 1, 2, · · · , L+K, j = 1, 2, · · · , |∆0|
(10)

where ’rand’ is a random number generated from a uniform distribution between 0 and 1. Initially, we

setWLow = 0, WHigh = pmax
l for relay powers andWLow = 0, WHigh = Ps for the source power. For

iterations,t = 1, 2, · · · ., ITer, follow Step 1 through Step 8:

Step 1: Evaluate the individuals in the current population,∆t−1, according to the fitness function,

f(). For OP1, we use the function as described in Equation (7) as the fitness function—i.e.,

F = w1 (1− F1) + w2F2. The best fitness function in any iteration is the function with the

minimum value. Sort the candidate solutions (individuals in the current population) according to their

fitness orders.

Step 2: Rank the candidate solutions (individuals in the current population) according to their

fitness orders.

Step 3: In this step, the algorithm determines the assignment variable,ε =
[
ε11, ε

2
1, · · · , εLK

]
, for each

individual heuristically. Step 1 does not guarantee a feasible solution. Feasibility check and constraint

satisfaction are also performed in step 3.
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Figure 2. EDA flow diagram with IGS-CSRA and IGS-CSSP.

We propose an iterative greedy scheme for constraint satisfaction and relay assignment (IGS-CSRA).

The IGS-CSRA ensures that the constraints C1, C3 and C5 are satisfied. We also propose an iterative

algorithm for the source power such that constraints C2 and C4 are satisfied. We call this method the

iterative greedy scheme for constraint satisfaction of source power (IGS-CSSP). The IGS-CSRA and

IGS-CSSP are shown in Figure2 and described in Sections3.2 and3.3. At the end of this step, the
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algorithm has a population, which comprises individuals with feasible relay and source power levels and

the associated assignment variablesε.

Step 4: If the convergence criterion (e.g., number of iterations) is satisfied, then terminate;

else, continue.

Step 5: Select the best|ηt−1| = ρs|∆t−1| candidate solutions (individuals) from the current

population,∆t−1. This selected population is used to compute the mean and standard deviation of the

selected individuals.

Step 6: Determine the mean, ’m’, and standard deviation,σ. Based on these estimates of ’m’ andσ,

update the search window bounds,WLow andWHigh, asWLow = m-σ andWHigh = m+σ.

Step 7: Generate new|ηt−1| individuals on the basis of this new estimatedWLow andWHigh using

Equation (10). Combine these newly generated|ηt−1| individuals with members ofηl−1 to form a new

population,∆l.

Step 8: Go to step 1 and repeat the steps.

From a practical point of view, the following observations and suggestions can help in implementing

the proposed EDA for relay assignment and power allocation in a green cooperative cognitive radio

sensor network. A good sensing mechanism is inevitable for acognitive radio that will add robustness

to the system. We also need optimal parameter settings of EDAfor different geographical regions. A

good estimate of the initial population of EDA can also increase its convergence rate towards good

solutions. This increase in convergence rate eventually decreases the computational complexity of the

central controller. Now, we will explain iterative greedy schemes that jointly assign relays and ensure

the feasibility of the solution.

3.2. Iterative Greedy Scheme for Constraint Satisfaction and Relay Assignment (IGS-CSRA)

In this section, we present an iterative greedy scheme for constraint satisfaction and relay

(IGS-CSRA). The IGS-CSRA scheme will be executed on each EDAindividual in the population.

IGS-CSRA illustrates the relay assignment for the EDA individual indexed by j - P j =(
p
j
1, p

j
2, · · · , pjL+K

)
. We denote bỹpi = p

j
i , i = 1, · · · , L, theith relay’s power level of thejth individual

in the population. The proposed algorithm has two stages. Inthe first stage, based on the channel

conditions, relays are assigned to the secondary users without satisfying the interference constraint. In

the second stage, the algorithm performs final assignment under the constraint that interference to the

primary users is satisfied.

For developing this greedy algorithm, we can view the product of the channel from theith relay to

thekth secondary user and the channel from the source to theith relay as profit taken from investing one

unit of transmission power to relayi. We also view the channel from theith relay to its primary users as

loss. In particular, our algorithm views max(|gi,1|2, |gi,2|2, · · · , |gi,M |2) as loss incurred from investing

unit transmission power to relayi.

Stage 1: In this stage, the algorithm assigns each relay to the secondary user that gives the maximum

profit to loss ratio. The profit is secondary users channel gain—i.e., |hs,i||hi,k|—and loss is the maximum

channel gain from the secondary user to the primary users—i.e., max(|gi,1|2, |gi,2|2, · · · , |gi,M |2).
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Mathematically, for each relayi, the algorithm temporarily assigns a secondary user:

S (i) = arg max
k∈{1,2,··· ,K}

|hs,i||hi,k|
max(|gi,1|2, |gi,2|2, · · · , |gi,M |2)

whereS is anL-dimensional vector that stores this assignment. At the endof Stage 1, relays are assigned

to the secondary users with the powerp̃i, i = 1, · · · , L.

Note that the relays’ power levels randomly generated by theEDA algorithm can violate the constraint

of limited interference to the primary users. In the next stage, the algorithm refines the relay assignment

done in Stage 1 and adjusts the power level of each relay, so that interference to the primary users

is satisfied.

Stage 2: At the start of the second stage, the algorithm starts adjusting the relays’ power levels if there

is a violation of the primary users’ interference constraint. First, the algorithm examines for each relay

i whether its transmission power would still violate any interference constraint, even if all other relays’

power level were set to zero. If̃pi violates any of the interference constraint,Imax
m,k , even under the

assumption that other relays’ transmission power levels are all set to 0, then the algorithm first makes the

following adjustment:

p̃i = min

(
p̃i,

Imax
1,k

|gi,1|2
,
Imax
2,k

|gi,2|2
, · · · ,

Imax
M,k

|gi,M |2
)
, ∀(i, k)

With this power adjustment, each user individually guarantees constraint satisfaction of the primary

users’ interference constraint. After the power adjustment, the algorithm iterates over the secondary

users and completes the assignment of relays.

At the kth iteration, the algorithm determines the set of relays,Ψk, that are assigned to thekth

secondary user in Stage 1. Then, the algorithm checks whether the relays in the setΨk satisfy the

interference constraint at all the primary users. If the relays in the set,Ψk, violate the interference

constraint at any primary user; then the algorithm iteratively removes the relay from the set,Ψk, that

causes maximum interference to the primary users. Mathematically, this determines the relay with the

highest interference from the set,Ψk, as:

ĩ = arg max
i∈Ψk

IΨk

This relay removal process continues until the relays in theset,Ψk, satisfy the interference constraint.

When the algorithm has a set of relays that satisfy the interference constraint, then the algorithm

determines the capacity of thekth user and it setsεl∈Ψk
= 1.

The algorithm executes till all the secondary users get their assigned relays. In the next subsection,

we will present the iterative greedy scheme and constraint satisfaction for source power.

3.3. Iterative Greedy Scheme and Constraint Satisfaction for Source Power (IGS-CSSP)

Now, we will describe IGS-CSSP. We denote byp̃s,k = p
j
i , ∀i = L+ 1, L+ 2, · · · , L+K, the source

power level at thekth user band in thejth sample drawn by the EDA. We denote byΓs, a vector that will

be used for user indices,Γk, a set of users, andδ, a power control factor. The power control factor is used
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for source power adjustment. This adjustment will be done iteratively until all the interference constraints

related to the source power are satisfied. The proposed IGS-CSSP is also a two-stage algorithm.

Stage 1: In the first stage, users are ranked according to their channel conditions. Similar to the

IGS-CSRA, the maximum profit to loss ratio criterion is used to rank the users. The profit is secondary

users channel gain,i.e., |hs,i||hi,k|, and loss is the maximum channel gain from the secondary userto the

primary users,i.e., max(|gi,1|2, |gi,2|2, · · · , |gi,M |2). Mathematically:

Γs (i) = arg max
k∈Γk

|hs,i||hi,k|
max(|gi,1|2, |gi,2|2, · · · , |gi,M |2)

In the next stage, the power of each user will adjusted according to their ranks.

Stage 2: At the start of the second stage, the algorithm starts adjusting the source power levels if there is

a violation of the primary users’ interference constraint,using the expression:

p̃s,k = min

(
p̃s,k,

Imax
1,k

|gs,1|2
,
Imax
2,k

|gs,2|2
, · · · ,

Imax
M,k

|gs,M |2
)
, ∀k

After source power adjustment with the interference constraint, the algorithm verifies the power

constraint. If the source power constraint is not satisfied,then the algorithm adjusts the source power

using power control factor,δ, till the constraint is satisfied. The user with the worst channel condition is

reduced first using the power control factor,δ. This process will be executed for all users till we get a

feasible solution.

At the end of the algorithm, we shall have a feasible solution. Since, we are using the half-duplex

amplify and forward protocol, both IGS-CSRA and IGS-CSSP will execute independently.

3.4. Modified EDA (MEDA)

During the execution of EDA, the difference between the search window bounds,WLow andWHigh,

may diminish as the iterations proceeds. This may cause the EDA to get stuck in a local search space

and result in premature convergence. The premature convergence may occur if the difference between

WLow andWHigh diminishes to an extremely small value. In that case, at every future iteration, the

algorithm will generate nearly the same power levels. In this section, we will propose a modification

in the traditional EDA algorithm that can improve the EDA’s performance. The modification includes

the introduction of thresholds in EDA to avoid premature convergence. We name this algorithm the

Modified EDA (MEDA).

We suggest restoring theWLow andWHigh to their initial values (WLow = 0,WHigh = pmax
l for relay

powers andWLow = 0,WHigh = Ps for source power) when the difference betweenWLow andWHigh is

less than a pre-specified threshold,γ, i.e.:

if (WHigh −WLow ≤ γ) then

WLow = 0,WHigh = pmax
l → for relays

WLow = 0,WHigh = Ps → for source

end if
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The above steps are illustrated in Figure3. In the next section, we present some experimental results,

which show the effect of threshold on the performance of EDA.

Figure 3. EDA thresholding.

c

4. Numerical Results

In this section, we present simulation results to demonstrate the performance of the proposed EDA and

MEDA. The impact of network parameters (e.g., number of SUs,number of relays) is also investigated.

Table 2. Common Parameter Values.

Parameters Values

pmax
l 1 Watts

Ps 10 Watts

γ 0.2

∆t 20

ηt 10

ρs 0.5

ITer 5000

4.1. Simulation Setup and Common Parameters

In all the simulations, the channels between source, relaysand destinations have independent complex

Gaussian distribution. Some common parameter values for simulation are shown in Table2. In all

simulations, the channel gain,h, is modeled as [40]:

h = ΦKo

(
do

d

)β

(11)

whereKo is a constant that depends on the antenna characteristic andaverage channel attenuation,do is

the reference distance for the antenna far field,d is the distance between the transmitter and receiver,β
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is the path loss constant andΦ is the Rayleigh random variable. Since this formula is not valid in the

near field, in all the simulation results, we assume thatd is greater thando. In all the results,do = 20m,

Ko = 50 andβ = 3. The PU’s protected distanceRm is set to 10m. The secondary and primary users

are uniformly distributed. All the simulations are performed using Monte Carlo runs.

For each PU, there is a PU protection area, wherein the strengths of the cognitive radio signals must

be constrained. We define asR, the radius of the protected circular area for each individual PU. Given a

distance,dm, between the SU base station and themth PU and the radius,Rm, of the protected circular

area of themth PU, the channel from the source to themth PU in thekth SU band is given as:

gsm,k =
g̃sm,k

(dm −Rm)
β

(12)

whereg̃sm,k is the small scale fading andβ is the path loss exponent. For simplicity, throughout this paper

and in simulation results, we assume thatR1 = R2 = · · · = RM .

We compare the results of EDA and MEDA with the standard continuous genetic algorithm

(GA) [38]. The EDA, MEDA and GA use IGS-CSSP and IGS-CSRA for constraint satisfaction. We

will use the the word “non-green communication” when we setw1 = 1 andw2 = 0. In all the simulation

results, we set the (M)EDA/GA parameters as(∆t, ρs, ITer) = (20, 0.5, 1000), where∆t, ρs, ITer are the

population, selection probability and maximum iteration,respectively.

4.2. Throughput and CO2 Emissions Trade-Off

In Figure 4, we present the trade-off plot of sum-capacity and total transmission power(or

CO2 emissions). The trade-off is calculated between the green communication and without green

communication. Trade-off is presented as the percentage decrease in sum-capacity and percentage

decrease in power consumption. The decrease in sum-capacity and decrease in power consumption

is calculated using the expressions:

Decrease in power= ECO2 (w1 = 1, w2 = 0)−
ECO2 (w1 = x, w2 = 1− x)

(13)

Decrease in sum-capacity=
∑

k

Ck (w1 = 1, w2 = 0)−
∑

k

Ck (w1 = x, w2 = 1− x)
(14)

where0 < x < 1. Figure 4 shows the effect of green communication by changing the values of

weightsw1 and w2. The results show that whenw2 is more thanw1, there is more reduction in

CO2 emissions (percentage decrease in power). The reduction inCO2 emissions comes at the cost

of throughput reduction. From the results, we can observe that CO2 emissions will decrease by 50- to

70-percent at the cost of 10- to 30-percent loss of throughput whenw2 ≥ w1. This means that with

little sacrifices in throughput, there is a big gain in power.The different weight settings are suitable for

different geographical conditions and regulatory policies. The results also show that the performance of

EDA is better than GA.
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Figure 4. Power and sum-capacity trade-off with
(
M,K,L, Imax

m,k

)
= (1, 10, 20, 1W ).
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4.3. Performance of Proposed Schemes

Figure5 focuses on the method of applying thresholds on EDA, which isdescribed in section3.4. We

ran an EDA with parameters
(
M, Imax

m,k , w1, w2, δ
)

= (1, 10mW , 0.5, 0.5, 5) for threshold values ={0.3,

0.7, 0.9}. Note that settingγ= 1 is equivalent to not applying the threshold at all. Setting the threshold

closer to 1 means that the algorithm generates the population from an almost identical distribution in

each iteration; that is, the algorithm does not take advantage of the natural selection. An interesting

issue is what values of the threshold facilitates the computation. From Figure5, we can observe that the

performance of EDA is poor atγ = 0.9 and 0.7. We can interpret this as, at the threshold values ofγ = 0.9

and 0.7, which are close to 1.0, the algorithm does not evolvesignificantly. Figure6 presents the effect

of selection probability,ρs, on the performance of EDA. The parameters are
(
M, Imax

m,k , w1, w2, δ
)

= (1,

10mW , 0.5, 0.5, 5). From Figure6, we can observe that the performance of EDA is better if selection

probability,ρs, is not close to either 0 or 1. There will be no evolution if selection probability,ρs, is close

to 1, the EDA will behave like a random algorithm. On the otherhand, if selection probability,ρs, is close

to 0, the algorithm does not evolve significantly, because itis more likely that EDA will get stuck in the

local optimum.

Figure 5. Effect of threshold parameter on EDA. The parameters are(
L,K,M, Imax

m,k , w1, w2

)
= (10, 10, 1, 1W, 0.5, 0.5).
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Figure 6. Effect of selection probability ρs on EDA. The parameters are(
L,K,M, Imax

m,k , w1, w2

)
= (10, 10, 1, 1W, 0.5, 0.5).
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Figures7 and8 present the fitnessvs. iterations plot for different numbers of relays and users.The

fitness function was defined in Equation (7). The parameters are
(
M, Imax

m,k , w1, w2, δ
)

= (1, 10mW , 0.1,

0.9, 5) and (1, 10mW , 0.5, 0.5, 5), respectively. The value of thresholdγ is set to 0.3. From the results,

we can observe that the performance of MEDA is better than EDAand GA. This is because a simple

EDA and GA can get stuck in the local optimum after a few iterations. We can also note that fitness

values with less relays is better than fitness values with more relays. This is because the assignment

takes more iterations for a large number of relays.

Figure 7. Iterationsvs. Fitness plot with(w1, w2) = (0.5, 0.5).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iterations

Jo
in

t O
bj

ec
tiv

e 
(F

)

 

 
EDA
MEDA
GA

100 200 300 400 500
0.45

0.5

0.55

 

 

Figures9, 10and11present the impact of SUs, relays and PUs on the performance of the green sensor

network. The parameters are
(
K,L,M, Imax

m,k

)
= ({5, 10, 20}, 10, 1,10mW ), (20,{10.20, 40},1,10mW )

and (10,10,{1, 2, 3},10mW ), respectively. In all simulations,(, w1, w2, δ) are set to (0.5,0.5, 5). We

observe that for a fixed number of secondary users, the fitnessof the objective function will always be

better with a lesser number of relays. This is because the assignment takes more iterations for a large

number of relays. In the simulation results, we also observethat the objective function is better at a low

number of PUs. This is because the relay assignment needs to satisfy more interference constraints as

the number of PUs increases.
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Figure 8. Iterationsvs. Fitness plot with(w1, w2) = (0.1, 0.9).
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Figure 9. Iterationsvs. Fitness plot with(w1, w2) = (0.5, 0.5).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Jo
in

t O
bj

ec
tiv

e 
(F

)

 

 

MEDA, K = 5
MEDA, K = 10
MEDA, K = 20

Figure 10. Iterationsvs. Fitness plot with(w1, w2) = (0.5, 0.5).
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Figure 11. Iterationsvs. Fitness plot with(w1, w2) = (0.5, 0.5).
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5. Conclusion

In this paper, we presented a multi-objective framework forresource allocation in green cooperative

cognitive radio sensor networks. The estimation-of-distribution algorithm with iterative greedy scheme

is used to solve the multi-objective optimization problem.The simple underlying concept and ease of

implementation of the proposed algorithm make EDA a suitable candidate for green resource allocation.
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