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Abstract: Error factors in the encoded sun sensor (ESS) are analyzed and simulated. Based 
on the analysis results, an ESS error compensation model containing structural errors and 
fine-code algorithm errors is established, and the corresponding calibration method for 
model parameters is proposed. As external parameters, installation deviation between ESS 
and calibration equipment are introduced to the ESS calibration model, so that the model 
parameters can be calibrated accurately. The experimental results show that within 
plus/minus 60 degree of incident angle, the ESS measurement accuracy after compensation 
is three times higher on average than that before compensation. 
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1. Introduction 

The encoded sun sensor (ESS), an important attitude measurement component in the satellite 
attitude control system [1,2], is at present successfully applied in ninety percent of Chinese satellites 
for its simple structure and proven technology. However, its accuracy is limited by manufacturing 
tolerances of the components, assembly deviations and algorithm approximation errors in signal 
processing, etc. If an effective model cannot be found to compensate these errors, the measurement 
accuracy of a traditional ESS will not meet the increased demands of the spacecraft [3], so in this 
paper, error factors which reduce the accuracy of encoded sun sensors are analyzed. Accordingly an 
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error compensation model for an encoded sun sensor is established, and an accurate calibration method 
for model parameters is also proposed. 

2. Structure and Working Principle of ESS 

An encoded sun sensor is mainly made up of an optical sensing unit and signal processing circuits. 
The optical sensing unit usually includes optical components (such as a semi-cylindrical lens) with 
etched entrance slit, code dial and embedded photocell, as shown in Figure 1. Its working principle is: 
Sunlight is projected onto the code dial through entrance slit in different incident angles. There is a 
series of encoded rows on the code dial. Each row is etched with an opaque-transparent alternating 
grid. Photocells beneath each encoded row receive sunlight through the code dial and convert them 
into a current signal which is related with the incident angle of sunlight. These current signals are 
further processed by signal processing circuit into an angle output. 

Figure 1. Optical sensing unit of an encoder sun sensor. 

 

3. Error Analysis of ESS 

Each step of the imaging and signal processing has been investigated to find the possible error 
factors [4–6]. Simulation for two types of product has been done to estimate the degree of influence of 
the various error factors.  

3.1. Distance Deviation between Entrance Slit and Code Dial 

The encoded rows on code dial are etched according to the rule of y = H tan(α), where H is the 
distance between entrance slit and code dial. The ideal value of the distance is H, but there is always a 
deviation ΔH between ideal value and actual value due to limited manufacturing accuracy. Let y be the 
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position of sunlight on the code dial when incident angle (i.e., measurement angle) is α. The output 
angle of ESS can be expressed as α' = atan(y/H), while the actual incident angle of sunlight is  
α = atan(y/H'), which cause error as shown in Figure 2. 

Figure 2. Deviation of distance between entrance slit and code dial. 

 

Measurement errors caused by distance deviation ΔH for two types of product (designated as A and B) 
were analyzed by simulation. The distance H is 4.124 mm for product A and 6.584 mm for product B. 
The simulation is done under the following conditione: distance deviation ΔH is ±2 microns, and the 
range of measurement angle is (−62°~62°). Figure 3 shows the simulation result for product A. 

Figure 3. Measurement error caused by distance deviation ΔH. 

 

Simulated results are as follows: 

(1) Measurement errors caused by distance deviation ΔH will increase when the distance between 
the entrance slit and code dial decreases or the incident angle increases. 

(2) For Product A, measurement error will exceed 0.015° when the distance deviation exceeds two 
micron, as shown in Figure 3. For Product B, measurement error will exceed 0.008° when the 
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distance deviation exceeds two microns. It can be seen that the distance deviation ΔH will lead 
eventually to considerable measurement errors, so the distance deviation ΔH cannot be ignored. 

3.2. Misalignment between Entrance Slit and Center Line of Code Dial 

In an ideal condition, the entrance slit should be aligned with center line of the code dial, but due to 
assembly deviation between the semi-cylindrical lens and code dial, offset Δd and tilt Δφ between 
entrance slit and center line of code dial will inevitably occur, which cause errors as shown in Figure 4. 

Figure 4. Misalignment between entrance slit and code dial. 

 

Measurement errors caused by offset (Δd) and tilt (Δφ) deviation for product A and B are analyzed 
by simulation. The tilt deviation is set as ±0.01°. The offset deviation is set as ±1 micron. Figures 5–7 
show the simulation result for product A.  

Figure 5. Measurement error caused by offset deviation. 
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Figure 6. Measurement error caused by tilt deviation. 

 

Figure 7. Measurement error caused by tilt deviation when simulated at 0.5° intervals.  

 

Simulation results show the following: 

(1) Measurement errors caused by offset and tilt deviation increase when the distance between 
entrance slit and code dial decreases or the incident angle increases. 

(2) Offset deviation causes more significant measurement errors. For product A, the measurement 
error will exceed 0.014° when Δd reaches 1 μm, as shown in Figure 5. Therefore, the 
measurement error caused by offset deviation should not be ignored.  

(3) Tilt deviation has relatively less impact on the measurement errors. For product A, the measurement 
error is less than 0.005° at Δφ = 0.01°, as shown in Figure 6. For product B, the measurement error 
is much less. Meanwhile, the measurement error caused by Δφ varies with a period of 1° when the 
measurement angle is increased at 0.5° intervals in the simulation, as shown in Figure 7. 
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3.3. Algorithm Approximation Error in Signal Processing for Fine-Code 

The encoded code dial includes coarse-code rows and fine-code rows. The final output angle is the 
sum of coarse-code output and fine-code output. The resolution of the ESS depends on the amount of 
code rows. The more the amount of code rows, the higher the resolution, but the highest resolution of 
coarse-code rows is only about 0.5°, which is limited by the divergence angle of the sun (0.53°). To 
improve the resolution further, fine-code rows is added to the code dial. Fine-code rows are not 
designed by dividing the coarse-code rows into smaller granularity, but adopting the principal that the 
output signal from the fine-code rows is a specific function of the incident angle α. The output angle of 
the fine-code can be derived by further processing the output of all fine-code rows. Typically, there are 
seven coarse-code rows and four fine-code rows. The four fine-code rows have the same pattern, while 
there is a phase difference of θ0/4 between two adjacent rows. θ0 is the period of fine-code, which is 
usually designed as 2°. For coarse-code output, an accuracy of 0.5° can be guaranteed. So the signal 
processing error of fine-code is the primary contributor to the algorithm error of ESS. Ideally, the 
output current of quad fine-code rows (F1~F4) can be expressed as: 

 (1)

where, θ0 is period of the fine-code rows; a0 is the amplitude of the fine-code output current; α is the 
measured angle (i.e., the incident angle of sunlight). 

However, the actual output current of the quad fine-code rows does not follow the above formulas 
exactly [7]. Instead, they are periodic function similar to sine or cosine. It is well known that any 
periodic function can be expressed by Fourier series, so the actual output current of the quad fine-code 
rows can be expressed by Fourier series as: 

 (2)
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where, a0 is the DC component, and an is the amplitude of harmonic component. It can be seen that the 
ideal output current (Equation (1)) includes only fundamental frequency and DC component of the 
actual one showed in Equation (2). 

Figure 8. Working principle of fine-code processing circuit. 

 

The fine-code signal processing circuit is based on a four-quadrant chopper. The working principle 
is shown in Figure 8. First, the fundamental components from the four fine-code rows are added 
together to get a superposed signal (designated as F(t)). Then, the harmonic component in the 
superposed signal F(t) is eliminated by a filter to get the fundamental component. Finally, an output 
which is related with the measurement angle α can be achieved by zero crossing detection. 

If the output current of the quad fine-code rows is ideal, as shown in Equation (1), the fundamental 
component F11(t) of superposed signal F(t) should be in the following form: 

 (3)

The relation between the zero-crossing phase ωt0 of the F11(t) and measurement angle α can be 
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It can be seen that ωt0 is proportional to α, and there is a fixed phase difference of 3π/4. The phase 
difference can be compensated by a properly configured gate circuit. The proportional relationship 
between ωt0 and α is the theoretical base for the fine-code signal processing circuit. 

The analysis above is based on the assumption that the output current of the quad fine-code rows is 
ideal, but from the actual output current shown in Equation (2), it is known that besides the fundamental 
component and the DC component, there are harmonic components. Among these harmonic components, 
even harmonics that have nothing to do with the measurement angle, while odd harmonics can bring 
errors to the measurement. Especially, the third harmonic can bring about a significant error because 
its amplitude is highest among the odd harmonics. Taking the third harmonic component into 
consideration, the corresponding fundamental component of superposed signal F(t) becomes: 

 (5)

where a1 is amplitude of fundamental component, and a3 is amplitude of third harmonic component. 
During the zero-crossing detection process, there is F11(t) = 0. That is: 

 (6)

Compared with Equation (3), the fine-code algorithm error ε caused by the third harmonic can be 
deduced and expressed as: 

 (7)
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(1) Structural errors: these include distance deviations between entrance slit and code dial and offset 
and tilt deviations between the entrance slit and center line of the code dial. These errors belong 
to the system error class and are invariable. A model can be established to compensate them. 

(2) Algorithm approximation errors of the fine-code: the errors are invariable too. A model can be 
deduced to compensate for them. 

(3) Errors introduced by the etching process and non-uniform response of the photocell: the impact 
of this kind of error is insignificant. Furthermore, to establish a simple model is not easy 
because they are random errors. 

4. Error Compensation Model for ESS 

Based on the result of error analysis, the following compensation model for ESS is established. 
According to the fine-code algorithm error in Equation (8) and the phase error of fine-code output current, 
the fine-code algorithm error can be fitted by a sine function with parameters k and t as follows:  

 (9)

where α2 is fine-code output angle, and  is fine-code output angle after compensation. is the incident 

angle of sunlight, k is the amplitude of the fine-code error, and t is the phase of the fine-code error. 
As analyzed in Sections 3.1 and 3.2, structural errors mainly come from deviations in 
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output in the code dial reference frame). 
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 (13) 

where, . α1 is the output angle of coarse-code.  is output angle of fine-code after 
compensation.  is the final output angle of ESS after compensation. 

5. Calibration of Parameters of the Error Compensation Model 

After the error compensation model is established, the model parameters can be calibrated with the 
equipment shown in Figure 9. The ESS is mounted on the inner-frame of a turntable, and sunlight is 
provided by a sun emulator. Rotating the inner-frame and external frame of the turn-table by angles  
α and β respectively have the same effect as sunlight projecting onto the ESS with an incident angle  
α and incoming angle β. Here, the incoming angle is the intersection angle between the sunlight and 
the YZ plane of the ESS. Measurement results will be sent to a computer for processing. The turntable 
will be rotated to m sets of predefined calibration angles. These m sets of angles (αi = 1~m, βi = 1~m) and 
its corresponding ESS outputs αci = 1~m form an array of calibration data [8,9]. 

Figure 9. Setup of calibration system. 

 

For convenience, the turntable reference frame Or-XrYrZr is defined in the following way: when 
the turntable is at the zero position, the inner-frame rotation axis is Xr, and the external-frame rotation 
axis is Yr. Axis Zr is defined by the right-hand rule. The ESS reference frame O-XYZ is defined in the 
following way: the center of the code dial is O, axis X is perpendicular to the code row direction; axis 
Y is parallel to the code row direction; and axis Z is defined by the right-hand rule. 

Suppose the installation deviation is zero in the calibration system, that is: (a) verticality deviation 
between the optical axis of the solar simulator and the turntable reference frame Or-XrYrZr is zero;  
(b) deviation between O-XYZ and Or-XrYrZr is zero. Then, the incoming angle β has no relation with 
the incident angle α and can have any value. A series of predetermined calibration angles can be 
generated merely by rotating the inner frame at certain intervals, but in reality, installation deviation is 
unavoidable and incoming angle β and incident angle α are related. The calibration data has to be acquired 
for different incoming angles in order to guarantee the accuracy of parameter calibration. Furthermore, 
all calibration data should be acquired at the same initial zero position of the turntable [10,11]. 
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parameter calibration. As a result, these external installation errors have to be taken into account to 
establish the integrated ESS calibration model as shown in Figure 10. 

Figure 10. Parameters in the ESS calibration model. 

 

The accurate calibration model for ESS can be expressed as a function containing installation 
deviation parameters V0 and Rrs as well as error compensation model parameters a, b, c, d, k and t: 

 (14)
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 (15)

It can be seen that the Equation (15) is an over-determined equation system involving eighteen 
parameters. The equation can only be solved by optimization. In the paper, s Nonlinear Least Squares 
iteration algorithm is used to solve the parameters. The detailed procedure is as follows: 

Equation (15) can be expressed in the following vector form: 

 (16)

where Δα is a vector made up of . ΔP is the deviation vector of the optimized parameters 
mentioned above. A is a partial derivative vector. Its expression is: 

 (17)

Based on the nonlinear least squares iteration algorithm, the following iteration equation can be 
established: 
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6. Experimental Results 
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Table 4. Model parameters calibrated for one product of type B. 

a b c d k t r1 r2 r3 
6.5912 −0.0005 −0.0006 6.5759 0.0357 2.4558 1.0000 0.0004 0.0014 

r4 r5 r6 r7 r8 r9 e1 e2 e3 
−0.0004 1.0000 −0.0003 −0.0014 0.0003 1.0000 −0.0066 0.0001 1.0000 

Experimental results show the following: 

(1) From Table 1, it can be seen that accuracy improvement is greater within ～30° 60° than that 
within ±30°, and the accuracy improvement for product A is greater than that for Product B. 
This is because measurement errors caused by structural errors increase when H decreases or 
the incident angle increases as analyzed in Section 3. 

(2) From Table 2, it can be seen that the compensation effect with a 0.25° sampling interval is 
better than that with a 1°sampling interval, but the improvement is limited. It agrees with our 
theoretical analysis, and here are reasons for that: 

(a) Because the fine-code algorithm compensation equation is a sine function with a period 
of 0.5°, the compensation effect is improved when the calibration data is sampled at an 
interval shorter than the period of 0.5°. 
(b) The solved parameter k is generally less than 0.03, which indicates that the impact of 
the fine-code algorithm error is relatively minor, so there is a limit on the improvement. 

(3) From Table 2, it can be seen that the error compensation parameters calibrated under different 
installation deviations are almost identical, which indicates that the calibration model and 
method proposed in the paper effectively avoid the impact of installation deviations of the 
calibration equipment. 

(4) From Table 1, it can also be seen that after compensation, the ESS measurement accuracy is 
improved by three times on average within ±60° of the incidence angle. 

7. Conclusion 

Various kinds of error in ESS are analyzed in this paper. The result shows that the structural errors 
which occurred during the manufacturing and assembly processes, together with the algorithm 
approximation errors of the fine-code, are the major factors which limit the measurement accuracy of 
ESS units. Based on the analyzed results, an error compensation model is established to compensate 
the errors mentioned above. 

In addition, an accurate parameter calibration method is also proposed. To avoid the impact of 
installation deviations of the calibration system on the accuracy of parameter calibration, an accurate 
calibration model of ESS is established which takes the installation deviation of calibration equipment 
into consideration. The experimental results show that after compensation, the ESS measurement 
accuracy is improved by three times on average within ±60° of the incidence angle. The technology 
described in the paper has been successfully applied to sun sensor products of a certain research 
institute in China. 
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