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Abstract: This paper proposes a new interpolation filter for deinterlacing, which is achieved
by enhancing the edge preserving ability of the conventional edge-based line average
methods. This filter consists of three steps: pre-processing step, fuzzy metric-based weight
assignation step, and rank-ordered marginal filter step. The proposed method is able to
interpolate the missing lines without introducing annoying articles. Simulation results show
that the images filtered with the proposed algorithm restrain less annoying pixels than the
ones acquired by other methods.
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1. Introduction

Interlaced scanning has been advanced from the early days of TV and still adopted for SDTV
and 1080i HDTV broadcast standards [1]. However, nearly all late model flat panel displays (LCD,
PDP, etc.) use progressive scanning formats. For these display devices, an entering interlaced video
signal has to be transformed to a progressive one, and thus a scanning format conversion that gives
compatibility between various video formats is required [2]. The super-resolution (SR) is a class of
techniques that enhance the resolution of an imaging system [3–8]. The deinterlacing only considers
vertical direction, while SR considers both of vertical and horizontal directions. Thus, the intra-field
deinterlacing is a special case of SR.
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Many deinterlacing methods have been proposed, including spatial methods [9–13] and motion-based
methods [14]. Although motion-based methods yield better subjective quality than spatial methods,
they require reliable motion models and the estimated trajectories must be sufficiently proper, which
generally causes excessive computational complexity. On the other hand, spatial methods have lower
computational complexity since they only demand the current frame, making them more suitable for
real-time applications. Therefore, in this paper, we focus on the spatial method.

Among spatial approaches, deinterlacing based on edge direction is the most outstanding and broadly
adopted method. These methods calculate edge information first and then decide edge direction to utilize
appropriate pixels for interpolation. Thus the edge information calculation and edge direction decision
are the key steps. However, conventional methods have yielded poor performance when edge direction
is not credible.

To shorten this issue, we propose a deinterlacing algorithm using rank-ordered fuzzy metric approach
to reduce artifacts in deinterlaced images. In our approach, the missing lines are calculated by weight
obtained using fuzzy metric (FM) from the existing neighbor pixels. The local FM infers the weight
of the edge information. Thus, we deinterlace the interlaced signal without calculating edge directions
as the traditional approaches do. After that, the rank-ordered differences statistic introduced in [15] is
accommodated to the fuzzy context utilizing the introduced FM.

The paper is arranged as follows. Section 2 introduces FM used in the weight assignation step.
After that, the proposed filtering technique is described. Section 3 shows simulation results including
performance comparison and computational complexity. Finally, conclusions are drawn in Section 4.

2. Proposed Method

2.1. Fuzzy Metric for Weight Assignment

A stationary FM, on a set S, is a fuzzy set of S × S satisfying the following conditions for all
p, q, r ∈ S [15]:

Rule1: FMS(p, q, t) > 0;
Rule2: FMS(p, q, t) = 1 if and only if p = q;
Rule3: FMS(p, q, t) = FMS(q, p, t);
Rule4: FMS(p, q, t) ≥ FMS(q, r, u) ∗ FMS(p, r, t+ u);

where Rule] is a FM of rule number ], ∗ is a continuous t-norm, FMS(p, q, t) stands for the degree of
nearness between p and q according to Rule2, FMS(p, q, t) is close to 0 when p is far from q. Let S be
the set {0, 1, . . . , 255}, then, the function FM : S × S → [0, 1] given by

FMS(p, q) =

(
min(p, q) + b

max(p, q) + b

)a
(1)

where b is a small positive value for preventing max(p, q) = 0 singularity. As the difference between
the components p and q become bigger, the value of FMS falls quickly. Thus, we assume FMS(p, q) is
the fuzzy distance between the image components p and q. Clearly, FM is F-founded and it meets
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0 ≤ b

Imax + b
≤ FMS(p, q) ≤ 1 (2)

for all p, q ∈ S, Imax is maximum pixel intensity, and Imax = 255 in this paper.

2.2. Deinterlacing Implementation

The proposed filter consists of three steps: (1) pre-processing step, (2) FM-based weight assignation
step, and (3) rank-ordered marginal filter step. To begin with, we conduct interpolation with three
missing pixels at location (–1, 0), (0, 0), and (1, 0), with vertical six-tap filters. After that, we evaluate
FM degree using the introduced FM equation. The obtained FM degree is used for assigning weights.
Finally, the missing pixel is calculated using the rank-ordered marginal filtering (ROMF) scheme.

Let us assume that I is an image and I(c,r) is the pixel intensity at a position of (c, r), c is column
number and r is raw number, and I(0,0) is the centered missing pixel to be processed. We denote W as a
filtering window centered on the pixel under processing of size N ×N,N = 3, 5, 7, . . . , which contains
n = N2 pixels. The pixels in W are symbolized as I(c,r), and c, r = −1, 0, 1 for N = 3 case.

The first step of the ROMF method is vertical six-tap filter (STF). This fixed coefficient six-tap
Wiener filter is widely used to estimate the sub-pixels in video codec, such as MPEG-4, H.264/AVC,
and some deinterlacing methods [16]. The coefficients of this filter can be different such as
h = [1,−5, 20, 20,−5, 1]/32 or h = [3,−17, 78, 78,−17, 3]/128. In this paper, we chose the previous
one for our system under the assumption that h can calculate missing lines in the sub-pixel position
properly. The missing pixels at (c, 0) position, c = −1, 0, 1, are estimated using the adjacent pixels
at (c,−5), (c,−3), (c,−1), (c, 1), (c, 3), and (c, 5), and we denote them as I(c,−5), I(c,−3), I(c,−1),
I(c,1), I(c,3), and I(c,5), respectively. To interpolate the pixel more precisely, we must adapt the filter
to accommodate the new interpolation condition. Now, three pixels in the missing line ISTF

(−1,0), I
STF
(0,0),

and ISTF
(1,0) are approximately deinterlaced applying Equation (3); however, they are not the same with the

original missing pixel. Figure 1 shows the pixel positions with filter coefficients.

ISTF
(c,0) = h(1)I(c,−5) + h(2)I(c,−3) + h(3)I(c,−1) + h(4)I(c,1) + h(5)I(c,3) + h(6)I(c,5) (3)

Figure 1. The pixel positions with filter coefficients.
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For the ROMF, eight neighboring pixels, I(−1,−1), I(0,−1), I(1,−1), ISTF
(−1,0), I

STF
(1,0), I(−1,1), I(0,1) and I(1,1)

are employed to deinterlace the missing center pixel at (0,0). In this paper, we take FMS as the distance
function (note, however, that any other function such as Euclidean distance could be used). Therefore,
the distance between two pixels ISTF

(0,0) and I(c,r) is symbolized as FMS(I
STF
(0,0), I(c,r)). We denote W the set

of neighbors of ISTF
(0,0), that is, W = W − ISTF

(0,0).
The second step is to calculate eight FM using FMS(I

STF
(0,0), I(c,r)) where I(c,r) ∈ W . The proposed

deinterlacing solves the problem by looking for the most robust I(c,r) pixel. To compute ROMF,
the distance FMS(I

STF
(0,0), I(c,r)) are rearranged in an ascending order so that a group of non-negative real

values χm, where fixed a positive integer m ≤ n− 1, are obtained. Note that χm is not always different:
χ1 ≤ χ2 ≤ . . . ≤ χm ≤ . . . χn−1. Generally speaking, χj is the jth smallest FMS(I

STF
(0,0), I(c,r)) value,

and its associated I(c,r) is denoted as Iχj
. Finally, the proposed ROMF calculates the missing pixel IROMF

(0,0) :

IROMF
(0,0) =

1

2
ISTF
(0,0) +

1

2

∑m
j=−1 χj · Iχj∑m

j=−1 χj
(4)

where χj is assumed to be a weight factor. It can be observed from Equations (1) and (4) that, when Iχj

and ISTF
(0,0) have similar values, the weight factor χj becomes large. On the other hand, when the difference

between Iχj
and ISTF

(0,0) are large, χj becomes smaller. Thus, the missing line is deinterlaced based on the
similarity among their neighbor pixels, Iχj

, with allocated weights based on the FM.

3. Simulation Results

To evaluate the performance of the proposed algorithm, we present the simulation results in this
section. We considered twenty images and video sequences as the dataset, which are shown in Table 1.
The ten images starting with “A” to “G” are the test images, and the others (images starting with “K” to
“Z”) are the training images.

Table 1. Test and training sets classified by alphabetical order.

Test images (I) and video (V) sequences (images starting with “A” to “G”):

Airplane (I), Akiyo (V), Barbara (I), Bluesky (V), Boat (I),

Bus (V), City (V), Finger (I), Football (V), Girl (I)

Training images (I) and video (V) sequences (images start with “K” to “Z”):

Kimono (V), Lena (I), Man (I), Milkdrop (I), Mobile (V),

News (V), Peppers (I), Raven (V), Toys (V), Zelda (I)

We conducted simulation using MATLAB with an Intel(R) Core(TM) i5 CPU M460 @ 2.53 GHz
processor. We compared the proposed method with MELA [9], LABI [10], FEPD [11], MCAD [12]
and LSMD [13] methods. Note that the designed filter parameters a and b and the number of considered
neighbor pixels m play crucial roles, making it important to set them appropriately. One assumption is
that, as we mentioned in Section 2, parameter b is a small positive value for avoiding max(p, q) = 0

singularity. Thus we gave b = 1, which is the smallest intensity step. Figure 2 shows the average MSE
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performance of the proposed method according to various m values under the condition of b = 1 and
1 ≤ a ≤ 15. From Figure 2, m = 3 is determined to give the least MSE. Another parameter a = 10 is
determined under the condition of b = 1 and m = 3, as shown in Figure 3.

Figure 2. Performance of the proposed method in terms of MSE as a value of m under the
condition of b = 1, for 1 ≤ a ≤ 15.
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Figure 3. Performance of the proposed method in terms of MSE as a value of a under the
condition of b = 1 and m = 3.
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The PSNR metric in decibels (dB) was selected to evaluate the performance. Table 2 shows the
comparison results of the PSNR performance of the proposed method to the benchmarks. After the
experiments, it is obvious that the proposed method outperforms other methods by 0.959 (MELA),
1.199 (LABI), 2.414 (FEPD), 1.541 (MCAD), and 1.377 (LSMD) dB in terms of average PSNR.
For Akiyo and Bus image, MELA showed a better PSNR performance of 0.107 dB and 0.035 dB.
However, the proposed method showed the best PSNR performance for the other images.

Table 3 shows the CPU time per image. As we can see, the proposed method has more complexity
than MELA. However, the proposed technique reduces the average CPU time up to 93.74%, 96.89%,
95.57%, and 79.52% when compared with LABI, FEPD, MCAD, and LSMD, respectively.
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Table 2. Comparison of the average PSNR for 10 test images and video sequences among
different deinterlacing methods.

MELA LABI FEPD MCAD LSMD ROMF Ranking

airplane 35.088 35.345 34.385 35.085 35.660 36.084 1

akiyo 40.205 38.841 37.255 39.726 38.149 40.098 2

barbara 32.018 31.930 28.879 25.929 29.414 33.562 1

bluesky 37.900 37.798 37.510 38.107 39.373 39.547 1

boat 35.186 35.277 33.074 35.342 33.762 36.034 1

bus 28.654 28.217 28.104 28.262 28.095 28.619 2

city 31.460 31.497 31.258 31.527 31.656 31.726 1

finger 31.323 31.362 30.679 31.810 32.085 32.946 1

football 35.057 34.475 33.308 35.034 34.763 35.791 1

girl 41.793 41.535 39.676 42.038 41.545 43.861 1

avg. 34.868 34.628 33.413 34.286 34.450 35.827 1

Table 3. Comparison of the average CPU time for 10 test images and video sequences among
different deinterlacing methods.

MELA LABI FEPD MCAD LSMD ROMF Ranking

airplane 0.547 14.698 28.491 22.547 4.286 1.231 4

akiyo 0.207 5.694 10.947 7.861 1.838 0.596 4

barbara 0.490 14.154 29.527 20.609 4.409 0.787 4

bluesky 3.076 123.768 228.331 159.369 34.895 6.067 4

boat 0.470 13.490 28.727 20.191 4.076 1.107 4

bus 0.164 5.406 10.919 8.846 2.304 0.703 4

city 1.358 48.484 105.553 73.752 16.502 2.590 4

finger 0.397 12.349 29.005 20.315 4.036 1.057 4

football 0.203 5.057 12.676 7.755 1.668 0.794 4

girl 0.433 12.305 30.801 19.886 4.070 1.065 4

avg. 0.734 25.54 51.498 36.113 7.809 1.599 4

The Barbara image in Figure 4 has many low and high-angle directions that the previous methods
may miss. Figure 4(a–g) shows poor performance because only a limited number of edge directions
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were utilized, which does not compensate for inaccurate edge information. Figure 4(h,i) shows better
results than the other conventional methods. However, the diagonal edge reconstruction is not sufficient.
The proposed method, however, performs well for this case as shown in Figure 4(j). Figure 5 shows the
results for the Boat image. The result for this image also shows that the proposed method is superior to
other methods.

Figure 4. Comparison of subjective qualities in Barbara image: (a) original Barbara;
(b) MELA; (c) LABI; (d) FEPD; (e) MCAD; (f) LSMD; and (g) ROMF.

(a)

(b) (c) (d)

(e) (f) (g)
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Figure 5. Comparison of subjective qualities in Boat image: (a) original Boat; (b) MELA;
(c) LABI; (d) FEPD; (e) MCAD; (f) LSMD; and (g) ROMF.

(a)

(b) (c) (d)

(e) (f) (g)

4. Conclusions

This paper presented an effective spatial deinterlacing method, which is achieved by improving the
edge preserving ability of the conventional edge-based line average method. This filter consists of three
steps: pre-determined six-tap filter based pre-processing step, FM-based weight assignation step, and
rank-ordered marginal filter step. The experimental results indicated that ROMF has achieved these two
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goals and has promising performance subjectively and objectively. Meanwhile, ROMF has merits of low
complexity for real-time application.
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