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Abstract: This paper, proposes a novel solution for a stereo vision machine based on the 
System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great 
convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by 
IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit 
Nios II microprocessor, which is a configurable soft IP core in charge of managing the 
image buffer and users’ configuration data. The Sum of Absolute Differences (SAD) 
algorithm is used for dense disparity map computation. The circuits of the algorithmic module 
are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the 
machine can process many different sizes of stereo pair images. The maximum image size 
is up to 512 K pixels. This machine is designed to focus on real time stereo vision 
applications. The stereo vision machine offers good performance and high efficiency in 
real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 
disparity maps can be obtained in one second with 5 × 5 matching window and maximum  
64 disparity pixels. 
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1. Introduction 

The major task of a stereo vision system is to reconstruct the 3D representation of the scene from 
the 2D images captured by those cameras which are fixed with their optical axes parallel and separated 
by a certain distance. The 3D information can be applied to complex tasks such as robot navigation 
systems, obstacle and lane detection, etc. [1,2]. 

Stereo matching algorithms have played an important role in stereo vision. They can be classified 
into either local or global methods of correspondence. Local methods match one window region 
centered at a pixel of interest in one image with a similar window region in the other image by searching 
along epipolar lines. The disparity is obtained by calculating the distance between two candidate 
window regions containing the most similarity. The performance of local stereo matching algorithms 
depends to a large extent on what similarity metric is selected. Typical similarity metrics are  
cross-correlation (CC), the sum of absolute differences (SAD), the sum of squared differences (SSD), 
the census transformation (CENS), etc. SSD and SAD find correspondences by minimizing the sum of 
squared or that of absolute differences in WxW windows.  

As it is well known, the stereo matching algorithm is computationally and data intensive because it 
has to perform an identical operation on a large amount of pixels. Consequently, a special hardware 
system is most often required. 

There are various examples of stereo vision algorithms implemented on FPGA in the literature. The 
circuit [3] is a stereovision system based on a Xilinx Virtex II using the SAD algorithm. The system 
can process images with a size of 270 × 270 at a frame rate of 30 fps. Paper [4] presents a FPGA-based 
stereo matching system that operates on 512 × 512 stereo images with a maximum disparity of 255 and 
achieves a frame rate of 25.6 fps running under a frequency of 286 MHz. In [5], a development system 
based on four Xilinx XCV2000E chips is used to implement a dense, phase correlation-based stereo system 
that runs at a frame rate of 30 fps for 256 × 360 pixels stereo pairs. Gardel et al. introduce in [6] their 
design, which can obtain 30,000 depth points from images of 2 Mpix at a frame rate of 50 frames per 
second under a 100 MHz working frequency. A real-time fuzzy hardware module based on a color 
SAD window-based technique is proposed in [7]. This module can theoretically provide accurate 
disparity map computation at a rate of nearly 440 frames per second without considering the memory 
delay and other factors of time consumption, thus giving a stereo image pair with a disparity range of 
80 pixels and 640 × 480 pixels resolution. The design in [8] is a 7 × 7 binary adaptive SAD based  
real-time stereo vision architecture with a depth range of 80, which is implemented on the Altera 
Cyclone II EP2C70 FPGA chip based on 800 × 600 color images and operates in real-time at a frame 
of 56 Hz. The architecture captures the 90 Megapixel/sec 12 bit signals of two cameras in real-time 
and does not require memories external to the FPGA. 

This paper proposes a new architecture that can solve the matching problem on variant image resolution 
of 256 × 256 to 695 × 555 pixels by using the SAD stereo matching algorithm. The hardware is based on 
SoPC technology and all circuits are implemented on a single Cyclone II FPGA chip. The Nios II 
processors, a configurable soft IP core, is added in this system to manage the buffer addresses of stereo 
images in SSRAM and to transfer the configuration data of users to other hardware modules through the 
Avalon bus interface. The disparity computation unit, modeled by the Matlab-based DSP Builder, is in 
charge of computing the SAD value of 5 × 5 pixel windows and extracting the disparity from the  
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64 candidates of SAD. The stereo matching controller, designed in the Verilog-HDL, is in charge of 
the update of the line buffer data in the on-chip dual-port RAM (DPRAM) and the write back 
disparities to the off-chip DDRII SDRAM. The whole system can produce 640 × 480 dense disparity 
maps at a frame rate of 23 fps under a 90 MHz working clock frequency. 

2. DSP Builder Design Flow 

DSP Builder integrates the algorithm development, simulation, and verification capabilities of 
MathWorks MATLAB and Simulink system-level design tools with the Altera Quartus II software and 
third-party synthesis and simulation tools. The DSP Builder works with the Simulink environment. 
The designer can combine Simulink blocks with the DSP Builder blocks to verify system level 
specifications and perform simulation. Figure 1 shows the DSP Builder system-level design flow. 

Figure 1. DSP Builder System-Level Design Flow. 

 

The modules of our design mentioned in Section 4 are all modeled and simulated by Matlab/ 
Simulink. Researchers interested in those models can e-mail the author to ask for the mdl files. 
Usually, we model algorithm modules in Simulink, not the whole system. After automatic HDL 
generation, we can easily add the algorithm modules to the top-level design file of our system. We just 
need to add a *.qip file (Quartus II IP file) in the Quartus II project and instantiate an instance of the 
algorithm module in the top-level HDL file. 
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3. SoPC Architecture for SAD-Based Stereo Vision Machine 

The system proposed herein is divided into the main modules as shown in Figure 2: 

(a) Nios II processor system: It consists of a 32-bit Nios II processor core, a set of on-chip 
peripherals, on-chip memory and interfaces to off-chip memory. 

(b) Disparity Computation Unit (DCU): This unit uses SAD as the similarity metric. After 
receiving the data of the stereo images, it calculates 64 SAD values and the output disparity 
within 6 clock-periods. 

(c) Stereo Matching Controller (SMC): This unit involves two DMA engines. The first one reads 
data of the stereo images form SSRAM and writes them to two DPRAMs on the FPGA chip 
used as line buffers for the DCU. The second one reads disparities produced by the DCU and 
writes to the disparity table in the off-chip DDRII SDRAM. Two state machines are designed 
for the management of line buffers and the stereo matching processes. 

Figure 2. Proposed SoPC Architecture. 

 

The different modules of the system are interconnected with the Altera Avalon Memory-Mapped 
(Avalon-MM) interface applied for the read and write interfaces on master and slave components in a 
memory-mapped system [9]. The stereo images are stored in the off-chip SSRAM memory because it 
can offer a shorter read cycle than the DDRII SDRAM. The information about start address and 
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resolution of images is passed to special function registers of the DCU through the Avalon interface by 
the C code executing on the Nios II processor. The SMC starts to initialize the line buffer of Left/Right 
images after the start bit of the system is set by the processor. Pixel data are sent from the line buffer to 
the DCU continuously till the whole dense disparity map is established. 

4. Hardware Implementation of the Disparity Computation Unit 

The SAD algorithm has the advantage of computational efficiency. The SAD equation used for  
5 × 5 windows with a maximum disparity of 64 can be seen below: 

 (1)

where disp is the disparity value ranging from 0 to 63, PR (i, j) serves as the reference pixel in the right 
image and PL (i, j+disp) as the currently analyzed candidate pixel in the left image. 

The reference 5 × 5 window centered at Pr(i, j) is compared to 64 possible candidate windows to 
calculate 64 SAD values. There are 25 bytes of data for the right image and 340 bytes of data for the 
left image involved in the operation for the calculation of disparity(i, j), where disparity(i, j) means the 
disparity value of the pixel(i, j). It can be easily observed that different disparity calculations have 
many operations in common. For example, as show in Figure 3, the data involved with calculations of 
disparity(3,3) and disparity(3,4) differ from each other for only 10 bytes of data (5 bytes data of both 
the right and the left). We use two shift-taps to temporarily store the data used in calculating the 
disparity. The shift-tap for the right image has 25 taps and the other has 340 taps for the left. We 
propose two principles for feeding data to two shift-taps accordingly: 

(a) The system transfers 25 bytes to the right shift-tap and 340 bytes to the left for the first pixel in 
every line. 

(b) The system transfers 5 bytes of new data to the right and left shift-taps separately for the rest of 
the pixels in every line. 

Figure 3. The Data Difference between two 5 × 5 windows of the adjacent pixels.  

(a) 5 × 5 window of Pixel(3, 3) (b) 5 × 5 window of Pixel(3, 4) 

 

The block diagram of the DCU is shown in Figure 4. The two shift-taps receive image data from the 
buffer management unit in serial and feed to the 64 SAD processing element (SAD-PE) in parallel. 
The computation of the 5 × 5 SAD needs a 25 input parallel adder which costs too much logical 
elements in the FPGA, therefore we only arrange 32 parallel SAD calculators in the SAD-PE. Figure 5 
illustrates the layout plan of the parallel SAD calculator. The SAD-PE can calculate 32 SAD values 
within 5 clock cycles (25-input parallel adder has four pipeline stages inside). With an input switch 
signal, it can finish 64 SAD computations in six clock cycles. Four additional clock cycles should be 
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added for latching the 64 output SAD values separated. The Disparity Segregator (DS) module 
calculates the minimum SAD value using parallel comparators from 64 SAD values and outputs the 
index number as the disparity. Figures 6 and 7 are the detailed implementation of the DS module. All 
actions cost ten clock cycles in all. The real time consumption can be decreased by parallelizing the 
actions mentioned above.  

Figure 4. Block Diagram of the Disparity Computation Unit. 

 

Figure 5. Layout Plan of the Parallel SAD Calculator. 

 

In front of every absolute difference (AD) calculator, there is a multiplexer which separates the  
266 bytes left image data into two groups with the offset of 32 × 5 = 160 bytes. As an example, if the 
In1A is PL(0,0) which is the first pixel of the 5 × 5 window centered at PL(2,2), then the In1B should 
be assigned to PL(0,32) which is the first pixel of the 5 × 5 window centered at PL(2,34). Under the 
control of the SW signal, we use 32 SAD processing modules to determine the 64 SAD values 
separated in six clock cycles. 
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Figure 6. Basic Comparison Element of the DS Module. 

 

The basic comparison element (BCE) compares two input SAD values and produces a comparison 
bit served as a select signal for a multiplexer. The multiplexer outputs the minimum SAD involved in 
the comparison in the next stage. 63 BCEs constitute the disparity segregator as shown in Figure 7. 

Figure 7. Diagram of the Disparity Segregator. 

 

5. Design Principle of the Stereo Matching Controller 

The controller is the commander of the stereo matching processing machine with three main 
functions listed below: 

(a) Line buffer management. 
(b) Disparity writes back. 
(c) Stereo matching process control. 

5.1. Line Buffer Management 

There are two DPRAMs placing in the FPGA. Each has 1,024 × 16 = 16,384 bytes of memory 
space, acting as line buffers for stereo pairs. The controller initializes and updates the line buffers 
using the data read from the image frame buffers in the off-chip SSRAM connected by the  
Avalon-MM read master interface. The line buffers always store 16 lines of image data under the 
condition that the maximum amount of pixels per line is lower than 1,024. The direct mapping method 
is used to locate the pixel address in the line buffer. The mapping formula is shown as follows:  

SAD0/13bit

SAD1/13bit MiniSAD
/13bit

Select Bit
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 (2)

where J is the pixel address in the line buffer, X and Y are the pixel coordinates of the image, Linepixel 
is the number of horizontal pixels. 

The line buffer management process will be explained through the Finite State Machine (FSM) in 
Figure 8 and Table 1. There are 9 states that build the finite state machine for line buffer management 
in the SMC. The FSM of the line buffer management is activated by two signals, the start signal of the 
system and the update signal of the SMC. With the set action of the start signal, the FSM reads 16 lines 
of pixels at the beginning of the stereo images separately for initializing the two line buffers fully. 
After initialization of the line buffers, the FSM comes into idle state. The update signal activates the 
FSM into the updating buffer state. The FSM reads one word (4 byte pixel data) from every image in 
the SSRAM and replaces the oldest 4 pixels in line buffers, and then becomes idle again. 

Figure 8. Finite State Machine of the Line Buffer Management. 

 

Table 1. List of States. 

No. States Remark Condition 
1 IDLE Idle Reset = 1 
2 A Initialization line buffer of right image with 16 lines of pixels Start = 1, State = idle 
3 B Initialization line buffer of left image with 16 lines of pixels Init_done = 1, State = WAIT_A 
4 C Update line buffer of right image 1 pixel data Update = 1, State = idle 
5 D Update line buffer of left image 1 pixel data  Update_done =1, State = WAIT_C 
6 WAIT_A Waiting for Initialization line buffer of right image Start_read = 1, State = A 
7 WAIT_B Waiting for Initialization line buffer of left image Start_read = 1, State = B 
8 WAIT_C Waiting for updating line buffer of right image Start_read = 1, State = C 
9 WAIT_D Waiting for updating line buffer of left image Start_read = 1, State = D 

( mod16)*J Y LinePixel X= +
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5.2. Disparity Write Back 

When the system finishes the computation of the disparity of a pixel, a direct memory access 
controller is invoked to write it to the disparity table. For fear of conflicting with the reading action on 
the SSRAM caused by the line buffer update event, the dense disparity table is located in the off-chip 
DDRII SDRAM. The write back address is generated by the Equation (3): 

 (3)

where Addr is the write back address, D_ADDR is the base address in the DDRII of the disparity table 
input by the Nios II processor, X and Y are the pixel coordinates, Linepixel is the number of horizontal 
pixels, the multiplication by 2 indicates every disparity value is occupying two bytes of memory. 

5.3. Stereo Matching Process Control 

This is the most significant function among other blocks in the whole system. The process control is 
performed by a FSM involving only six states. Each state has different tasks. In the following list, the 
details of the tasks performed in each of the states are described. Figure 9 is the FSM diagram of stereo 
matching process control. 

(a) After system reset, the FSM enters into the IDLE state automatically. In this state, all variables 
are initialized.  

(b) After two line buffers are initialized with 16 lines of pixels, the FSM transfers into the 
INIT_SHIFTTAP state. Twenty five data bytes of the right line buffer and 340 data bytes of the 
left line buffer are read out and sent into the shift-taps concurrently in this state, and then the 
state comes into the CALCULATE_DISP state. 

(c) In the CALCULATE_DISP state, the stereo machine spends two clock cycles setting switch 
signal and sending an activation signal to awake the latching data module. The latching data 
module is in charge of latching the 64 SAD values and finds the disparity from them, then 
writing it to the DDRII SDRAM. The module is executed concurrently with this FSM, 
therefore the time consumed by waiting for computing the disparity is decreased from  
10 clocks to 2 clocks. 

(d) In the UPDATE_COORDINATE state, the variables X and Y, the currently processed pixels’ 
coordinate, are updated. There are three conditions for state transition in this state: (1) if X is 
smaller than the number of horizontal pixels, the next state is FEEDING_SHIFTTAP; (2) if X 
is equal to the number of horizontal pixels and Y is smaller than the number of vertical pixels, 
the next state is INIT_SHIFTTAP; (3) if X is equal to the number of horizontal pixels and Y 
equal to the number of vertical pixels, the next state is DONE.  

(e) The task of the FEEDING_SHIFTTAP state is reading 5 bytes of new pixel data from each line 
buffer and sending them into the shift-taps, and then changing to the CALCULATE_DISP state. 

(f) The DONE state is indicating that the whole dense disparity map is generated. 

_ 2*( * )Addr D ADDR Y LinePixel X= + +
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Figure 9. Finite State Machine of the Stereo Matching Process Control. 

 

6. Results and Discussion 

The stereo matching circuit has been realized by using an Altera Cyclone II EP2C70F672C6N 
device which is assembled on the Altera DSP Development kit Cyclone II Edition Board as shown in 
Figure 10. It is clocked with an external crystal of 100 MHz frequency.  

Figure 10. The DSP Development Kit, Cyclone II Edition Boar. 

 

Figure 11 is a screenshot of the Nios II system designed in the SOPC Builder of Quartus II 
software. In Figure 11, the item named “stereo_dma_0” shows as an IP package including the module 
DCU and SMC mentioned in part 4 and part 5. The item “pcounter” is a performance counter unit used 
to measure the consumption time for processing a disparity map. The Performance counter, the only 
mechanism available with the Nios II development kits, provides measurements with little intrusion [10]. 
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Table 4. Comparison of Stereo Matching Implementations. 

Authors Frame Rate Image Size Max. Disp Algorithm Window Size Platform 
Motten et al. [8] 56 fps 800 × 600 80 SAD 7 × 7 1FPGA 
Proposed impl. 23 fps 640 × 480 64 SAD 5 × 5 1 FPGA 

Software impl. [11] 2.55 fps 320 × 240 100 SAD 3 × 3 PC 
Kalomiros et al. [12] 162 fps 640 × 480 64 SAD 3 × 3 1FPGA + PC 
Niitsuma et al. [13] 30 fps 640 × 480 27 SAD 7 × 7 1 FPGA 
Miyajima et al. [14] 18.9 fps 640 × 480 80 SAD 7 × 7 1FPGA + PC 

In [11], the author implements a 3 × 3 SAD stereo matching software by using Intel’s OpenCV 
library. The test platform is an Intel Pentium 4 with 3GHz clock frequency and 1GB memory. The 
processing time for one disparity map is 391 ms. This is 34 times slower than the proposed system. 
Kalomiros [12], whose SAD system can achieve 162 fps with assistance of a host computer, compares 
the SAD algorithm with dynamic programming algorithm. The system in paper [13] is designed for the 
detection of moving objects via using a stereo vision method, and it can get 30 images (640 × 480 pixels) 
in one second, but its maximum disparity of 27 is not seen as sufficient for many stereo vision applications. 

7. Conclusions  

An efficient hardware implementation of a real-time stereo matching processing machine is 
proposed by using an FPGA for the calculation of disparity maps. It takes full advantage of the 
convenience of IP reuse based on a SoPC architecture. It performs enough for stereo vision 
applications by means of a large disparity range. The frame rate could enable real time performance 
under the resolution of 640 × 480. The memory size is suitable for much higher resolution stereo pair 
images. The results for our system are very promising and may improve in the future. The system has 
been implemented on static image input from C code in the Nios II processor. We plan to incorporate 
live stereo video streams and combine the algorithm with pre- and post-processing stages to make it 
more suitable for the operation in robot auto- navigation and visual servo applications.  

Furthermore, the main weakness of the SAD algorithm becomes evident in the FPGA implementation. 
As shown in Figure 12, SAD disparity maps in most cases have noise spots, especially in image areas 
of low light intensity. So we also intend to apply other robust stereo matching algorithms in our 
system, such as CENS, dynamic programming and Belief-Propagation, in our future works. 
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