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Abstract: The goal of this paper is to solve the problem of dynamic albstavoidance
for a mobile platform using the stochastic optimal contrahfiework to compute paths that
are optimal in terms of safety and energy efficiency undesttamts. We propose a three-
dimensional extension of the Bayesian Occupancy FilterfB@ouéet al. Int. J. Rob. Res.
2006 25, 19-30) to deal with the noise in the sensor data, improviegperception stage.
We reduce the computational cost of the perception stagstimating the velocity of each
obstacle using optical flow tracking and blob filtering. V¢hd#everal obstacle avoidance
systems have been presented in the literature addressety aad optimality of the robot
motion separately, we have applied the approximate inéeréramework to this problem to
combine multiple goals, constraints and priors in a stmactwvay. It is important to remark
that the problem involves obstacles that can be movingetbes classical techniques based
on reactive control are not optimal from the point of view okegy consumption. Some
experimental results, including comparisons againsisatasalgorithms that highlight the
advantages, are presented.
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1. Introduction

Autonomous vehicles have nowadays become popular for aghigins such as surveillance and
passenger transport. In both cases the safety and effictéribgse systems is depending on the ability
of the autonomous navigation system to deal with unpreblietdynamic changes in the environment.

The autonomous navigation systems have been studied meignm the literature 1,2]. Such
systems should be able to perform perception, localisaptanning and actuation. To perceive the
state of the environment the on-board sensors are usedodaleshtion stage is usually based on fusion
of sensory information and a priori map to determine thetiocaof the vehicle within the global frame.
Once the vehicle’s location has been determined, the segquaactions necessary to reach the goal
can be computed within the planning stage. The resulting pés to satisfy various constraints such
as: holonomic constraints, safety, traffic rules, enerdigiehcy, etc. Finally, the actuation stage is
responsible for executing the plan.

The localisation stage can be greatly improved by using &lémsitioning System (GPS) or its
enhanced version: the Differential GPS (DGP3) [This provides a global reference for vehicle with
the accuracy of a few centimetres in the case of DGPS. Howedwmn a GPS receiver is deployed in
urban environments with high buildings or underground glsnthe signal can suffer multipath fading
or even Line-Of-Sight (LOS) blockage, which renders thissee inoperative.

For autonomous vehicles to achieve safe operation, urhelisiy safe operation as an obstacle
avoidance task that preserves the integrity of the robotthadther objects or people in a dynamic
environment, a combination of a priory map with perceptiafoimation that comes from sensor
fusion [4,5] is required. The vehicle can be then safely guided througiesh of connected way points.
Such maps are usually obtained in a semi-autonomous &yay pising Simultaneous Localization and
Mapping (SLAM) techniques4,7,8] to reduce the uncertainty of localisation and mapping esses by
doing both at the same time.

In addition to localisation, a robust autonomous mobilefptan requires an obstacle avoidance
system. Such system ensures that a vehicle navigates safelgd the obstacles while trying to reach
its goal. Obstacle avoidance can be divided into global eadllapproaches. While the former approach
assumes a complete model of the environment, such as thetipbfesld methods, the local methods
require only partial observability of the environment a¢ tost of guaranteeing only local optimality.
However, computational cost is much lower for local methadd they can be often implemented in
the form of reactive controllers. These reactive methoks tantrol of the robot when an obstacle is
detected to prevent collision. They use the nearest poofitme environment modelled using the current
sensor observation. Some representative examples arer \eetd Histogram (VFH+) 9], Nearness
Diagram (ND) [L0], Curvature-Velocity Method (CVM)11], its improved version the Lane-Curvature
Method (LCM) [12] and the Beam-Curvature Method (BCM)J.

One of the major drawbacks of the reactive methods is thgtdbenot take into account the dynamic
changes of the environment and assume that all obstaclegadi® Therefore, they can not predict
their motion. This is, however, an unrealistic assumptigpeeially when the vehicle deals with a high
uncertainty over the position, shape and velocity of thetasdes and it is still a challenge for real
world applications 14,15]. It is also crucial to combine the available sensory inputistructured
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manner. In 16] the authors propose to formulate the planning problem &sence on a graphical
model. This framework allows to combine sensory informaticonstraints and multiple goals in the
form of task variables that may be represented in differpates such as configuration space, end-
effector space (typical for reaching tasks) or even abistfzaces such as topology based representations
of the environment. Hierarchical task variables can be ttoa®d to provide both low level control at
the level of dynamics and high level control at the level sktabjectives.

This paper extends our previous work recently sketched7h [We propose an obstacle avoidance
system that takes into account not only the safety of ourcletdround the dynamic obstacles but
also optimality of the motion in terms of additional consgtta such as the energy consumption. We
demonstrate how dynamic obstacles are treated within ovigai@on system, and how the planning
stage can be improved by solving the problem within a stdahaptimal framework. We reduce the
energy consumption of our vehicle by, firstly, using a newbatulistic model of the environment inside
the perception stage, and secondly by optimising the ti@gasing the Approximate Inference Control
(AICO). We compare our proposed method with the classicataube avoidance algorithms (VFH+,
CVM, LCM and BCM).

The rest of the paper is organized as follows: Section 2 shbeproposed method; Section 3
describes the experiments and the actual results; andyfimabection 4 we conclude and discuss the
future works.

2. Proposed Method

In this section we propose an extension of the method fordawgpidynamic obstacles in three
dimensions while minimising the energy consumption. T&l&athis problem, we obtain a probabilistic
model of the dynamic environment, then we use this modeledipt the motion of the obstacles inside
our perception stage, and finally, we employ optimal patmmlag using approximate inference to
improve the planning stage based on an energy consumptidalmo

2.1. Probabilistic Model of the Dynamic Environment

We use the Bayesian Occupancy Filter (BOH][to compute a robust estimate of the position of the
obstacles. BOF has been successfully used to detect asstac flat world, but it has not taken into
account the detection of obstacles in 3D. In order to addhétght into the BOF, we use the information
provided by our laser range sensor, mounted at an angle esihect the ground plane, as stated in
our previous work 18]. The height has been discretised at 3 levéls,(the wheel height) /2 (the
mid-body height) and.3 (the overhead height), converting the cells into cubesrdieioto compute the
three-dimensional BOF, all the 3D points inside each cubeganjected to the corresponding cell and
level. Figurel shows the discretisation at three levels with respect todbet.
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Figure 1. Discretisation levels.

L3

The Bayesian Occupancy Filter can be implemented as a loagpoédiction and estimation steps.
The authors of14] suggest that prediction (Equatiob)) and the estimation (EquatioB)] steps can be
computed as follows:

P(ep|n,u™") oc 3 P(n'|n™" u™ ) P(e; n' ™) (1)
nt;1 .
P(e|e',n) o 3 ([ ] P(ztlerm) (2)

m=1 s=1

where ¢! is the occupancy of the cell at timet¢, u is the command issued at tinte— 1, = are
the observations and: is matching between a cell and an observatidhnf|n'~! u'~1) is then the
transition probability defined by the vehicle dynamics. Btendard BOF framework has several issues
with the velocity estimation. Firstly, this framework asses that the velocity of each grid cell is
constant 19]. Secondly, the discretisation has to be performed alshanvelocity space, meaning that
a separate estimate for each pair of velocities v,) is required. This discretisation for a large range
of possible velocities together with calculations of staibjects result in high computational costs. For
these reasons, other authors proposed object detectiodustdring techniques to obtain the objects’
velocities R0] with an additional constraint that the position of the @lo# has to remain within a
bounded neighbourhood.

We have improved the system in terms of efficiency by addinggesto detect the relative velocities
of the obstacles, without assuming constant velocity dbjecdiscretised velocities. FiguPeshows the
flow diagram of our proposed model.

Firstly, we capture a frame using the laser data. This fraagethe form of a zenith image of the
detected obstacles. We then estimate the movement of thectdsbetween two frames by computing
the pyramidal implementation of Lukas Kanade optical flogoaithm [21]. Then, we introduce a blob
filtering stage in two steps: (1) we detect the boundarief®fabjects and (2) we obtain the average
motion of all the cells inside each boundary. Each cell hasxteed certain occupancy threshold in
order to reduce the noise in the output of optical flow and treputational cost. This average value and
the time step are used to compute the relative velocitiegdest the obstacles with respect to the robot’s
local frame of reference (along local axisandy), while the velocity along the axis is not taken into
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account due to the assumption that the robot moves on a pldreeresult of the perception stage is a
dynamic occupancy grid providing an estimation of veloeityl the occupation probability.

Figure 2. Probabilistic model of the dynamic environment.
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The output of our probabilistic model is illustrated in FigB. Left image shows the simulated
environment. Our robot is represented in blue colour andrtbeing obstacles are red. Right image
shows the sensing results. The blue circle is the robot atuhent time step, the grey circle shows the
predicted future position of the robot, moving obstaclesuastent time step are represented with green
dots, the predicted future positions of moving obstacleshown as yellow dots and static obstacles are
shown as blue dots. The occupancy probability value is gbyetne darkness value of each dot.

Figure 3. Simulated environment and sensing results.

(a) Simulated environment. (b) Sensing results.

2.2. Energy Consumption Model

In order to compare our method with classical obstacle arad algorithms in terms of energy, we
only take into account the power demand of the robot’s motdksassume that the rest of the equipment
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has constant energy consumption and therefore it cannob®ved any further. We also assume that
the power demands of the robot’s motors are based on ovemganertia, road grade, tyre friction, and
aerodynamic loss. This road-load methodology was maintpauced by 22]. The power demand (in
Watts) is the tractive power as defined by Equat@n (

1
P =mvla(l +¢) + gRa + gKg] + §PKDAF03 (3)

wherem is vehicle mass in metric tones (0.077 in our case3,vehicle speed (assuming no headwind)
in m/s, a is vehicle acceleration in n¥/sc is a mass factor accounting for the rotational masses and
assumed to be 0.28), g is acceleration due to gravity (9.8 fysR; is road grade (0.0 in our case),
K is rolling resistance, this value for radial tires can rafrgen 0.008 to 0.013 for a majority of the
on-road passenger car tires but can be larger dependingeopréssure, temperature, ground surface,
and speedd4,25 (a medium value in the range 0.009 is assumed2p]), p is air density & 1.2
kg/m?), K is aerodynamic drag coefficiert=(0.3 [22]) and Ay is the frontal area in square meters
(~ 1 m? in our case). These values are obtained based on the rederand the robot’s specifications,
assuming that the goal of this work is to obtain a comparig@mergy saving, and not the exact value in
each case.

The robot speed that we use to obtain the power demand isdeblay the kinematic model of the
robot based on the angular speed of the wheels for each tepe(E00 ms in our case). According
to this, we assume that the robot is moving with linear spesd/éen execution steps. On the other
hand, our planning and almost all the classical algorithmsat allow the robot to describe sharp turns
or spin.

2.3. Optimal Path Planning Using Approximate Inference

We have decided to formulate the path optimisation probleithimvthe Approximate Inference
Control (AICO) framework 16]. The state of the robot is defined by = (r,,r,), the position of
the robot on the ground plane,(r,) and its derivative in the dynamic case. The transition abality
is defined by a linear control process with Gaussian noise:

P(zy|me, we) = N (o1 | Ay + ar, Qe + BiH ' B (4)

given stater; where A;, a;, B; define the linear system that approximates the state titamgip; is the
covariance of the system noise aHldis the covariance of the uniform prior ovey. The controk; has
been integrated out to simplify the equation (referlt§]. Our goal is to compute a path that minimizes
the total expected cost from timgto the final timet:

T
C(l‘o;T, UO:T) = Z Cyp (l't) -+ cu(ut) (5)
t=0

wherec, () is the state dependent cost (defined by sum of angular welacit reciprocal distance to
static and dynamic obstacles) andu,) is the control cost (defined by Equatidd)). The problem can

now be described by a graphical model:
T T

p(@or, uor) o Plao) [ [P (ud) [ [P (@i, 2e—n) [ [Pl = 1]) (6)

t=0 t=1 t=0
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where P(u;) is the control prior reflecting the control cost af{w, = 1|z;) is the probability of
receiving low cost reflected by constantly observing a ramdariablew, = 1. The binary random
variable has the conditional probabiliB(w;, = 1|x;, us) = exp(C(xq.r, uo.r)). The costs” (xo.r, uo.r)

play the role of the neg-log-probability af; = 1, in accordance to the typical identification of energy
with neg-log-probability. The distance to obstacles istied as a separate task and it enters the
model through a task variablg that represents position in the task space (see Figurd-or more
details on how to couple the task variables with states,r refd16]. We compute the posterior
P(zo.r|we.r = 1) over the state trajectories to solve the path planning prollising the Gaussian
message passing algorithm. This involves combining thedot (., ,.,,), backward (z¢)us, ., —z,)

and cost messages() pw, -, (7)) to compute the posterior marginal belief:

b(xt) = Mgy 1y (‘/L‘t):uxwrl—wt (‘/L‘t):uwt%l‘t (xt) (7)

Figure 4. Graphical model of AICO in configuration and task space.
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The cost function in AICO is defined by task variables. Each tariable defines a task space and a
squared metric is used to compute the costinferred in tlisessgHowever, inference-based path planning
with the linearised motion model and the holonomic constrigidifficult and suffers from problems with
local minima due to the velocity constraints. The reasoelgind this is that the Gaussian distribution
over the state space can potentially assign probabilitysrt@astates that do not satisfy the holonomic
constraint, which either causes sideways slipping in thdehor if we constrain the Gaussian itself the
distribution becomes degenerate. For this reason, we haveded the orientation from the state and
we have added an additional cost term to penalise for angelacity instead. We assume that arbitrary
angular velocities can be executed but optimise for low &rgeelocities. This reduces the complexity
of the state space by turning the hard holonomic constnaiata soft constraint.

In order to achieve robustness and safety of our vehicle sgeaunethod that yields free paths which
tend to maximise the clearance between the vehicle and #taaes based on a Voronoi graph. The
aim of the global planning is to keep the vehicle at a safeadist from the surrounding obstacles. We
compute the initial path using graph search on the Voronaplgr This path is then used as AICO
initialisation and it helps to deal with local minima.

control

3. Implementation and Results

In this section we describe the implementation of our systedithe experimental results. The results
have been obtained from the real Seekur Jr. platform andrihdator provided by Mobilerobots.



Sensors 2013 13 2936

The results have been evaluated in two stages: firstly weiaieathe gain of using the probabilistic
model of the environment inside the perception stage of kesical algorithms (VFH+, CVM, LCM
and BCM). Secondly, we compare our whole dynamic obstaadédance system with the classical
algorithms.

3.1. Test-Bed

We have tested our system in an outdoor environment in thehn&arking of the Polytechnic School
at the University of Alcala (UAH). The overall area of theveonment is approximately 7& 70 m?
(Figure5(a). In addition, the surveying route has been marked in redwolThe route was a 330 m
long, and the blue rectangles represents the scenariog Wieesystem was tested.

Figure 5. Test environment.
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(a) Surveying route and test scenarios in real envi- (b) Voronoi Diagram.

ronment.

Figure 6. Seekur Jr. used in the experimentation.

The robot used in the experimentation was a Seekur Jr. by Istobots, with the following
configuration: MacBook Pro with Ubuntu 12.04 LTS operatingtsem, Aria/MobileSim control
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software, RTK-GPS Maxor GGDT by JAVAD, low-cost GPS and etecamera, two SICK LMS 151
outdoor lasers (the first one parallel to the ground and therahounted at an angle to obtain the 3D
points cloud), bumpers, encoders in the wheels and onadhkr¢asurement Unit (IMU) to reduce the
odometry errors in the turns. Seekur Jr. is shown in Figure

3.2. Results Using the Probabilistic Model of the Dynamic Environment

We have used four classical algorithms on the real platformd analysed the effect of using
our proposed probabilistic model. For simplicity we onlkeainto account thel.2 level of the
three-dimensional BOF estimation (at the height of mainybaidhe Seekur). We have tested the robot
in two different scenarios and commanded it to reach a goatérm away from its start position:

1. Parallel: For this test the robot is located in the middle &fmeters wide corridor (Figurg(a)
Scenario 1). The obstacle starts moving along the corridtine same direction as the robot but
with a delay and it tries to overtake the robot.

2. Perpendicular: For this test the robot is located at thescoasls (Figuré(a)y Scenario 2). The
obstacle is moving along the main road perpendicular todhetis direction, blocking its path.

For all of these experiments, we have analysed the followargmeters:

Path curvature: The assumption is that the smoother thetipatower the energy consumption.

Acceleration ¢): the positive acceleration im{s—?2) ignoring energy regenerated from breaking.

Velocity (v): the absolute velocity of the robot imi—1).

Time (t): the time needed to reach the goal s (

Energy (): the energy consumption of the robot i) (

As an example, the top part of the Figuidand8 shows the path followed by the robot using the
VFH+ algorithm and VFH+ with our probabilistic model in thed scenarios. The yellow diamond is
the goal to achieve. The plots show that all paths obtainedusyproposed probabilistic method are
smoother with lower overall curvature.

Figures9 and 10 show the velocities and accelerations of the robot usingLii® and our
probabilistic model in both scenarios. The results show &hsb the accelerations and velocities over
time are much smoother and lower when using our probalilistidel of the environment.

Figure 11 shows the energy consumption of the robot using the VFH+rdhgo in both scenarios.
The results show that using our probabilistic model, therggneonsumption is reduced by 20%. A
summary of energy consumption is shown in Tahl&Ve can conclude that the use of our probabilistic
model of the environment in classical algorithms reducesetiergy consumption up to 45.5%.
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Figure 7. Path using VFH+ and AICO: parallel scenario.
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Figure 9. Velocities and accelerations using LCM and AICO: paraléargario.
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Figure 11. Energy consumption using VFH+ algorithm.
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(a) Parallel scenario. (b) Perpendicular scenario.

3.3. Results of the Dynamic Obstacle Avoidance System

The aim of this experiment is to show that our system compsédés paths reaching the goal
configuration optimally with respect to energy consumptidtere we show that the performance of
the reactive methods can be further improved by optimisigrhotion with respect to energy. The
inference based planner described in Sec®@&is initialized using the path computed from the Voronoi
graph of the environment including only static obstacldsem AICO computes the initial optimal path
from start to goal positions (Figufe?). Starting and goal positions are marked by the green andatsd
respectively. The covariance ellipses are overlaid.

Figure 12. Two examples of optimal paths computed using AICO in a s&tigronment.

We have used our probabilistic model of the environment teatethe position and velocity of
dynamic obstacles in the robot coordinate frame which we tia®n mapped into the global coordinate
frame. We use this information to predict the movement cdétwbstacles. AICO is then used to compute
the optimal trajectory around the initial path while usihg fprobabilistic model predictions about the
dynamic obstacles. A set of task variables has been usedfitee dbe optimality: position, power
demand (Equatior8)), turning velocity and collision avoidance. The collisiavoidance is achieved by
inferring cost for reciprocal distance to the closest atletaAlCO works under the assumption that the
full state of the world, including the motion of the obstagles known. This is, however, no longer true
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when the prediction made by our probabilistic model is inaate. We therefore update our prediction
using the new observations and discount the occupancy Ipititpaver time. We re-plan the path if the
prediction error reaches a threshold. The planner thexdfehaves similarly to a Kalman filter.

Only small changes in the environment between two time stepsxpected. In such situations
AICO requires only small number of iterations to convergljoli makes re-planning computationally
affordable. The replanning time (3 s on average) is howealdng to be use as a reactive controller.

We have applied our proposed method to perform the task wduteding the obstacles and
minimizing energy consumption. AICO solves the finite hornoptimization problems, which means
that the duration of the trajectory needs to be specifiedaipti is not within the scope of this paper
to optimize for time, we have therefore set the trajectorsatan to 20 s for parallel scenario and 35
s for perpendicular scenario, which are the respectiveageedurations as computed using the reactive
methods with our probabilistic model.

Figures7 and8 show the results of the path optimization and demonstrateoibtimizing the energy
consumption further decreases the curvature of the taajectSimilarly, Figures9 and 10 show that
the velocity and acceleration profiles are much smoothera Assult, the energy consumption in both
scenarios was reduced by approximately 10% when compartdimeé best results achieved by the
reactive methods as shown in Talile

Table 1. Summary of results for energy consumption. AICO is being pared with the
best reactive method for the given scenario.

Scenario Perception stage | Total Energy Consumption (J) Reduction of Consumption (%4)
Raw laser data 0.21404
Parallel — -18.56%
Probabilistic model 0.1743
VFH+
. Raw laser data 0.12495
Perpendicular — —29.26%
Probabilistic model 0.088383
Raw laser data 0.22615
Parallel — —7.52%
Probabilistic model 0.20914
CVM
. Raw laser data 0.10458
Perpendicular —— -4.39%
Probabilistic model 0.099981
Raw laser data 0.20125
Parallel —— +2.89%
LCM Probabilistic model 0.20709
) Raw laser data 0.09097
Perpendicular — —-8.1295%
Probabilistic model 0.083575
Raw laser data 0.20546
Parallel — —7.29%
BCM Probabilistic model 0.19047
) Raw laser data 0.16599
Perpendicular — —-45.5%
Probabilistic model 0.090454
AICO Parallel Probabilistic model 0.14552 -16.51%
Perpendiculan Probabilistic model 0.0789 -10.91%
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4. Conclusions and Future Works

In this paper, we have presented a method for avoiding dynatystacles, taking into account not
only the integrity of the system, but also the minimizatiéth@ energy consumption. We have proposed
a probabilistic model of the dynamic environment using: gfh)extension of the Bayesian Occupancy
Filter proposed by14] to a three-dimensional method to detect the obstaclesiposiand (2) a method
to estimate the velocity of these obstacles using a trackiage based on optical flow and a detection
stage based on blob filtering.

We have used the probabilistic model of the environmendmshe perception stage of the four
classical methods: VFH+, BCM, CVM and LCM. Just by using ajirievel of the occupancy grid we
were already able to improve the perception stage of thesidawe systems. The results have shown
an improvement in energy consumption up to 45.5%. We haweshlswn that the resulting trajectories
as well as the velocity and acceleration profiles are muclofimeo when using our method.

We have implemented a Voronoi graph based global path ptamhieh serves as an initialisation
method for our inference based local planner: AICO. Withi&@@ we combine multiple task variables to
obtain the optimal path based on obstacle clearance angyecwmisumption. This method shows further
qualitative improvement against the reactive methods asthmprovement in energy consumption of
10.91% and 16.51% respect to the best results of reactiveoaietn perpendicular and parallel scenarios
respectively. The computational cost of using AICO is cotlsetoo high for it to be used in real-time
planning applications.

In the near future, we intend to improve the accuracy of thababilistic model by refining the
discretisation. We also intend to improve the calculatibthe probabilistic model to speed up the
algorithm to accommodate for higher number of cells. Thepiag algorithm can be improved by
solving the inference at multiple scales and by exploitiagaiel computation. Furthermore, we will
address issues of coverage using topology based propsuiibsas winding number26¢]. This will
allow us to reduce energy consumption by planning optimater¢o survey an area such as a parking lot
when searching for a parking space.
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