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Abstract: The goal of this paper is to solve the problem of dynamic obstacle avoidance

for a mobile platform using the stochastic optimal control framework to compute paths that

are optimal in terms of safety and energy efficiency under constraints. We propose a three-

dimensional extension of the Bayesian Occupancy Filter (BOF) (Couéet al. Int. J. Rob. Res.

2006, 25, 19–30) to deal with the noise in the sensor data, improving the perception stage.

We reduce the computational cost of the perception stage by estimating the velocity of each

obstacle using optical flow tracking and blob filtering. While several obstacle avoidance

systems have been presented in the literature addressing safety and optimality of the robot

motion separately, we have applied the approximate inference framework to this problem to

combine multiple goals, constraints and priors in a structured way. It is important to remark

that the problem involves obstacles that can be moving, therefore classical techniques based

on reactive control are not optimal from the point of view of energy consumption. Some

experimental results, including comparisons against classical algorithms that highlight the

advantages, are presented.
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1. Introduction

Autonomous vehicles have nowadays become popular for applications such as surveillance and

passenger transport. In both cases the safety and efficiencyof these systems is depending on the ability

of the autonomous navigation system to deal with unpredictable dynamic changes in the environment.

The autonomous navigation systems have been studied extensively in the literature [1,2]. Such

systems should be able to perform perception, localisation, planning and actuation. To perceive the

state of the environment the on-board sensors are used. The localisation stage is usually based on fusion

of sensory information and a priori map to determine the location of the vehicle within the global frame.

Once the vehicle’s location has been determined, the sequence of actions necessary to reach the goal

can be computed within the planning stage. The resulting plan has to satisfy various constraints such

as: holonomic constraints, safety, traffic rules, energy efficiency, etc. Finally, the actuation stage is

responsible for executing the plan.

The localisation stage can be greatly improved by using Global Positioning System (GPS) or its

enhanced version: the Differential GPS (DGPS) [3]. This provides a global reference for vehicle with

the accuracy of a few centimetres in the case of DGPS. However, when a GPS receiver is deployed in

urban environments with high buildings or underground tunnels, the signal can suffer multipath fading

or even Line-Of-Sight (LOS) blockage, which renders this sensor inoperative.

For autonomous vehicles to achieve safe operation, understanding safe operation as an obstacle

avoidance task that preserves the integrity of the robot andthe other objects or people in a dynamic

environment, a combination of a priory map with perception information that comes from sensor

fusion [4,5] is required. The vehicle can be then safely guided through amesh of connected way points.

Such maps are usually obtained in a semi-autonomous way [6] or using Simultaneous Localization and

Mapping (SLAM) techniques [4,7,8] to reduce the uncertainty of localisation and mapping processes by

doing both at the same time.

In addition to localisation, a robust autonomous mobile platform requires an obstacle avoidance

system. Such system ensures that a vehicle navigates safelyaround the obstacles while trying to reach

its goal. Obstacle avoidance can be divided into global and local approaches. While the former approach

assumes a complete model of the environment, such as the potential field methods, the local methods

require only partial observability of the environment at the cost of guaranteeing only local optimality.

However, computational cost is much lower for local methodsand they can be often implemented in

the form of reactive controllers. These reactive methods take control of the robot when an obstacle is

detected to prevent collision. They use the nearest portionof the environment modelled using the current

sensor observation. Some representative examples are Vector Field Histogram (VFH+) [9], Nearness

Diagram (ND) [10], Curvature-Velocity Method (CVM) [11], its improved version the Lane-Curvature

Method (LCM) [12] and the Beam-Curvature Method (BCM) [13].

One of the major drawbacks of the reactive methods is that they do not take into account the dynamic

changes of the environment and assume that all obstacles arestatic. Therefore, they can not predict

their motion. This is, however, an unrealistic assumption especially when the vehicle deals with a high

uncertainty over the position, shape and velocity of the obstacles and it is still a challenge for real

world applications [14,15]. It is also crucial to combine the available sensory input in a structured
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manner. In [16] the authors propose to formulate the planning problem as inference on a graphical

model. This framework allows to combine sensory information, constraints and multiple goals in the

form of task variables that may be represented in different spaces such as configuration space, end-

effector space (typical for reaching tasks) or even abstract spaces such as topology based representations

of the environment. Hierarchical task variables can be constructed to provide both low level control at

the level of dynamics and high level control at the level of task objectives.

This paper extends our previous work recently sketched in [17]. We propose an obstacle avoidance

system that takes into account not only the safety of our vehicle around the dynamic obstacles but

also optimality of the motion in terms of additional constraints such as the energy consumption. We

demonstrate how dynamic obstacles are treated within our navigation system, and how the planning

stage can be improved by solving the problem within a stochastic optimal framework. We reduce the

energy consumption of our vehicle by, firstly, using a new probabilistic model of the environment inside

the perception stage, and secondly by optimising the trajectory using the Approximate Inference Control

(AICO). We compare our proposed method with the classical obstacle avoidance algorithms (VFH+,

CVM, LCM and BCM).

The rest of the paper is organized as follows: Section 2 showsthe proposed method; Section 3

describes the experiments and the actual results; and finally, in Section 4 we conclude and discuss the

future works.

2. Proposed Method

In this section we propose an extension of the method for avoiding dynamic obstacles in three

dimensions while minimising the energy consumption. To tackle this problem, we obtain a probabilistic

model of the dynamic environment, then we use this model to predict the motion of the obstacles inside

our perception stage, and finally, we employ optimal path planning using approximate inference to

improve the planning stage based on an energy consumption model.

2.1. Probabilistic Model of the Dynamic Environment

We use the Bayesian Occupancy Filter (BOF) [14] to compute a robust estimate of the position of the

obstacles. BOF has been successfully used to detect obstacles in a flat world, but it has not taken into

account the detection of obstacles in 3D. In order to add theheight into the BOF, we use the information

provided by our laser range sensor, mounted at an angle with respect the ground plane, as stated in

our previous work [18]. The height has been discretised at 3 levels,L1 (the wheel height),L2 (the

mid-body height) andL3 (the overhead height), converting the cells into cubes. In order to compute the

three-dimensional BOF, all the 3D points inside each cube are projected to the corresponding cell and

level. Figure1 shows the discretisation at three levels with respect to therobot.
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Figure 1. Discretisation levels.

The Bayesian Occupancy Filter can be implemented as a loop ofa prediction and estimation steps.

The authors of [14] suggest that prediction (Equation (1)) and the estimation (Equation (2)) steps can be

computed as follows:

P (etn|n
t, ut−1) ∝

∑

nt−1

P (nt|nt−1, ut−1)P (et−1

n |nt−1) (1)

P (etn|z
t, nt) ∝

S∑

m=1

(

S∏

s=1

P (zts|e
t
n, m)) (2)

where etn is the occupancy of the celln at time t, u is the command issued at timet − 1, z are

the observations andm is matching between a cell and an observation.P (nt|nt−1, ut−1) is then the

transition probability defined by the vehicle dynamics. Thestandard BOF framework has several issues

with the velocity estimation. Firstly, this framework assumes that the velocity of each grid cell is

constant [19]. Secondly, the discretisation has to be performed also in the velocity space, meaning that

a separate estimate for each pair of velocities(vx, vy) is required. This discretisation for a large range

of possible velocities together with calculations of static objects result in high computational costs. For

these reasons, other authors proposed object detection andclustering techniques to obtain the objects’

velocities [20] with an additional constraint that the position of the obstacle has to remain within a

bounded neighbourhood.

We have improved the system in terms of efficiency by adding a stage to detect the relative velocities

of the obstacles, without assuming constant velocity objects or discretised velocities. Figure2 shows the

flow diagram of our proposed model.

Firstly, we capture a frame using the laser data. This frame has the form of a zenith image of the

detected obstacles. We then estimate the movement of the obstacles between two frames by computing

the pyramidal implementation of Lukas Kanade optical flow algorithm [21]. Then, we introduce a blob

filtering stage in two steps: (1) we detect the boundaries of the objects and (2) we obtain the average

motion of all the cells inside each boundary. Each cell has toexceed certain occupancy threshold in

order to reduce the noise in the output of optical flow and the computational cost. This average value and

the time step are used to compute the relative velocities between the obstacles with respect to the robot’s

local frame of reference (along local axisx andy), while the velocity along thez axis is not taken into
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account due to the assumption that the robot moves on a plane.The result of the perception stage is a

dynamic occupancy grid providing an estimation of velocityand the occupation probability.

Figure 2. Probabilistic model of the dynamic environment.

The output of our probabilistic model is illustrated in Figure 3. Left image shows the simulated

environment. Our robot is represented in blue colour and themoving obstacles are red. Right image

shows the sensing results. The blue circle is the robot at thecurrent time step, the grey circle shows the

predicted future position of the robot, moving obstacles atcurrent time step are represented with green

dots, the predicted future positions of moving obstacles are shown as yellow dots and static obstacles are

shown as blue dots. The occupancy probability value is givenby the darkness value of each dot.

Figure 3. Simulated environment and sensing results.

(a) Simulated environment. (b) Sensing results.

2.2. Energy Consumption Model

In order to compare our method with classical obstacle avoidance algorithms in terms of energy, we

only take into account the power demand of the robot’s motors. We assume that the rest of the equipment
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has constant energy consumption and therefore it cannot be improved any further. We also assume that

the power demands of the robot’s motors are based on overcoming inertia, road grade, tyre friction, and

aerodynamic loss. This road-load methodology was mainly introduced by [22]. The power demand (in

Watts) is the tractive power as defined by Equation (3):

P = mv[a(1 + ε) + gRG + gKR] +
1

2
ρKDAFv

3 (3)

wherem is vehicle mass in metric tones (0.077 in our case),v is vehicle speed (assuming no headwind)

in m/s, a is vehicle acceleration in m/s2, ε is a mass factor accounting for the rotational masses and

assumed to be 0.1 [23], g is acceleration due to gravity (9.8 m/s2), RG is road grade (0.0 in our case),

KR is rolling resistance, this value for radial tires can rangefrom 0.008 to 0.013 for a majority of the

on-road passenger car tires but can be larger depending on tire pressure, temperature, ground surface,

and speed [24,25] (a medium value in the range≈ 0.009 is assumed [22]), ρ is air density (≈ 1.2

kg/m3), KD is aerodynamic drag coefficient (≈ 0.3 [22]) andAF is the frontal area in square meters

(≈ 1 m2 in our case). These values are obtained based on the references and the robot’s specifications,

assuming that the goal of this work is to obtain a comparison of energy saving, and not the exact value in

each case.

The robot speed that we use to obtain the power demand is provided by the kinematic model of the

robot based on the angular speed of the wheels for each time step (100 ms in our case). According

to this, we assume that the robot is moving with linear speed between execution steps. On the other

hand, our planning and almost all the classical algorithms do not allow the robot to describe sharp turns

or spin.

2.3. Optimal Path Planning Using Approximate Inference

We have decided to formulate the path optimisation problem within the Approximate Inference

Control (AICO) framework [16]. The state of the robot is defined byxt = (rx, ry), the position of

the robot on the ground plane (rx, ry) and its derivative in the dynamic case. The transition probability

is defined by a linear control process with Gaussian noise:

P (xt+1|xt, ut) = N (xt+1|Atxt + at, Qt +BtH
−1BT

t ) (4)

given statext whereAt, at, Bt define the linear system that approximates the state transition, Qt is the

covariance of the system noise andHt is the covariance of the uniform prior overut. The controlut has

been integrated out to simplify the equation (refer to [16]). Our goal is to compute a path that minimizes

the total expected cost from timet0 to the final timetT :

C(x0:T , u0:T ) =

T∑

t=0

cx(xt) + cu(ut) (5)

wherecx(xt) is the state dependent cost (defined by sum of angular velocity and reciprocal distance to

static and dynamic obstacles) andcu(ut) is the control cost (defined by Equation (3)). The problem can

now be described by a graphical model:

p(x0:T , u0:T ) ∝ P (x0)

T∏

t=0

P (ut)

T∏

t=1

P (xt|ut−1, xt−1)

T∏

t=0

P (wt = 1|xt) (6)
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whereP (ut) is the control prior reflecting the control cost andP (wt = 1|xt) is the probability of

receiving low cost reflected by constantly observing a random variablewt = 1. The binary random

variable has the conditional probabilityP (wt = 1|xt, ut) = exp(C(x0:T , u0:T )). The costsC(x0:T , u0:T )

play the role of the neg-log-probability ofwt = 1, in accordance to the typical identification of energy

with neg-log-probability. The distance to obstacles is treated as a separate task and it enters the

model through a task variableyt that represents position in the task space (see Figure4). For more

details on how to couple the task variables with states, refer to [16]. We compute the posterior

P (x0:T |w0:T = 1) over the state trajectories to solve the path planning problem using the Gaussian

message passing algorithm. This involves combining the forward (µxt−1→xt
), backward ((xt)µxt+1→xt

)

and cost messages ((xt)µwt→xt
(xt)) to compute the posterior marginal belief:

b(xt) = µxt−1→xt
(xt)µxt+1→xt

(xt)µwt→xt
(xt) (7)

Figure 4. Graphical model of AICO in configuration and task space.

The cost function in AICO is defined by task variables. Each task variable defines a task space and a

squared metric is used to compute the cost inferred in this space. However, inference-based path planning

with the linearised motion model and the holonomic constraint is difficult and suffers from problems with

local minima due to the velocity constraints. The reasoningbehind this is that the Gaussian distribution

over the state space can potentially assign probability mass to states that do not satisfy the holonomic

constraint, which either causes sideways slipping in the model or if we constrain the Gaussian itself the

distribution becomes degenerate. For this reason, we have excluded the orientation from the state and

we have added an additional cost term to penalise for angularvelocity instead. We assume that arbitrary

angular velocities can be executed but optimise for low angular velocities. This reduces the complexity

of the state space by turning the hard holonomic constraint into a soft constraint.

In order to achieve robustness and safety of our vehicle, we use a method that yields free paths which

tend to maximise the clearance between the vehicle and the obstacles based on a Voronoi graph. The

aim of the global planning is to keep the vehicle at a safe distance from the surrounding obstacles. We

compute the initial path using graph search on the Voronoi graph. This path is then used as AICO

initialisation and it helps to deal with local minima.

3. Implementation and Results

In this section we describe the implementation of our systemand the experimental results. The results

have been obtained from the real Seekur Jr. platform and the simulator provided by Mobilerobots.
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The results have been evaluated in two stages: firstly we evaluate the gain of using the probabilistic

model of the environment inside the perception stage of the classical algorithms (VFH+, CVM, LCM

and BCM). Secondly, we compare our whole dynamic obstacle avoidance system with the classical

algorithms.

3.1. Test-Bed

We have tested our system in an outdoor environment in the South Parking of the Polytechnic School

at the University of Alcalá (UAH). The overall area of the environment is approximately 70× 70 m2

(Figure5(a)). In addition, the surveying route has been marked in red colour. The route was a 330 m

long, and the blue rectangles represents the scenarios where the system was tested.

Figure 5. Test environment.

Scenario 1

Scenario 2

(a) Surveying route and test scenarios in real envi-

ronment.

(b) Voronoi Diagram.

Figure 6. Seekur Jr. used in the experimentation.

The robot used in the experimentation was a Seekur Jr. by Mobilerobots, with the following

configuration: MacBook Pro with Ubuntu 12.04 LTS operating system, Aria/MobileSim control
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software, RTK-GPS Maxor GGDT by JAVAD, low-cost GPS and stereo camera, two SICK LMS 151

outdoor lasers (the first one parallel to the ground and the other mounted at an angle to obtain the 3D

points cloud), bumpers, encoders in the wheels and one Inertial Measurement Unit (IMU) to reduce the

odometry errors in the turns. Seekur Jr. is shown in Figure6.

3.2. Results Using the Probabilistic Model of the Dynamic Environment

We have used four classical algorithms on the real platform and analysed the effect of using

our proposed probabilistic model. For simplicity we only take into account theL2 level of the

three-dimensional BOF estimation (at the height of main body of the Seekur). We have tested the robot

in two different scenarios and commanded it to reach a goal 7 meters away from its start position:

1. Parallel: For this test the robot is located in the middle of a5 meters wide corridor (Figure5(a):

Scenario 1). The obstacle starts moving along the corridor in the same direction as the robot but

with a delay and it tries to overtake the robot.

2. Perpendicular: For this test the robot is located at the crossroads (Figure5(a): Scenario 2). The

obstacle is moving along the main road perpendicular to the robot’s direction, blocking its path.

For all of these experiments, we have analysed the followingparameters:

• Path curvature: The assumption is that the smoother the paththe lower the energy consumption.

• Acceleration (a): the positive acceleration in (ms−2) ignoring energy regenerated from breaking.

• Velocity (v): the absolute velocity of the robot in (ms−1).

• Time (t): the time needed to reach the goal in (s).

• Energy (E): the energy consumption of the robot in (J).

As an example, the top part of the Figures7 and8 shows the path followed by the robot using the

VFH+ algorithm and VFH+ with our probabilistic model in the two scenarios. The yellow diamond is

the goal to achieve. The plots show that all paths obtained byour proposed probabilistic method are

smoother with lower overall curvature.

Figures 9 and 10 show the velocities and accelerations of the robot using theLCM and our

probabilistic model in both scenarios. The results show that also the accelerations and velocities over

time are much smoother and lower when using our probabilistic model of the environment.

Figure11 shows the energy consumption of the robot using the VFH+ algorithm in both scenarios.

The results show that using our probabilistic model, the energy consumption is reduced by 20%. A

summary of energy consumption is shown in Table1. We can conclude that the use of our probabilistic

model of the environment in classical algorithms reduces the energy consumption up to 45.5%.
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Figure 7. Path using VFH+ and AICO: parallel scenario.
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Figure 8. Path using VFH+ and AICO: perpendicular scenario.
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Figure 9. Velocities and accelerations using LCM and AICO: parallel scenario.
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Figure 10. Velocities and accelerations using LCM and AICO: perpendicular scenario.
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Figure 11. Energy consumption using VFH+ algorithm.
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Total Energy Consumption: VFH+ = 0.21404 J
Total Energy Consumption: VFH+ and Prob. model = 0.1743 J (−18.564 %)
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(a) Parallel scenario.
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Total Energy Consumption: VFH+ = 0.12495 J
Total Energy Consumption: VFH+ and Prob. model = 0.088383 J (−29.2652 %)
Total Energy Consumption: AICO and Prob. model = 0.078974 J (−36.7954 %)

(b) Perpendicular scenario.

3.3. Results of the Dynamic Obstacle Avoidance System

The aim of this experiment is to show that our system computessafe paths reaching the goal

configuration optimally with respect to energy consumption. Here we show that the performance of

the reactive methods can be further improved by optimising the motion with respect to energy. The

inference based planner described in Section2.3is initialized using the path computed from the Voronoi

graph of the environment including only static obstacles. Then AICO computes the initial optimal path

from start to goal positions (Figure12). Starting and goal positions are marked by the green and reddots

respectively. The covariance ellipses are overlaid.

Figure 12. Two examples of optimal paths computed using AICO in a staticenvironment.

We have used our probabilistic model of the environment to detect the position and velocity of

dynamic obstacles in the robot coordinate frame which we have then mapped into the global coordinate

frame. We use this information to predict the movement of these obstacles. AICO is then used to compute

the optimal trajectory around the initial path while using the probabilistic model predictions about the

dynamic obstacles. A set of task variables has been used to define the optimality: position, power

demand (Equation (3)), turning velocity and collision avoidance. The collision avoidance is achieved by

inferring cost for reciprocal distance to the closest obstacle. AICO works under the assumption that the

full state of the world, including the motion of the obstacles, is known. This is, however, no longer true
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when the prediction made by our probabilistic model is inaccurate. We therefore update our prediction

using the new observations and discount the occupancy probability over time. We re-plan the path if the

prediction error reaches a threshold. The planner therefore behaves similarly to a Kalman filter.

Only small changes in the environment between two time stepsare expected. In such situations

AICO requires only small number of iterations to converge, which makes re-planning computationally

affordable. The replanning time (3 s on average) is however too long to be use as a reactive controller.

We have applied our proposed method to perform the task whileavoiding the obstacles and

minimizing energy consumption. AICO solves the finite horizon optimization problems, which means

that the duration of the trajectory needs to be specified a priori. It is not within the scope of this paper

to optimize for time, we have therefore set the trajectory duration to 20 s for parallel scenario and 35

s for perpendicular scenario, which are the respective average durations as computed using the reactive

methods with our probabilistic model.

Figures7 and8 show the results of the path optimization and demonstrate that optimizing the energy

consumption further decreases the curvature of the trajectory. Similarly, Figures9 and10 show that

the velocity and acceleration profiles are much smoother. Asa result, the energy consumption in both

scenarios was reduced by approximately 10% when compared with the best results achieved by the

reactive methods as shown in Table1.

Table 1. Summary of results for energy consumption. AICO is being compared with the

best reactive method for the given scenario.

Scenario Perception stage Total Energy Consumption (J) Reduction of Consumption (%)

VFH+

Parallel
Raw laser data 0.21404

–18.56%
Probabilistic model 0.1743

Perpendicular
Raw laser data 0.12495

–29.26%
Probabilistic model 0.088383

CVM

Parallel
Raw laser data 0.22615

–7.52%
Probabilistic model 0.20914

Perpendicular
Raw laser data 0.10458

–4.39%
Probabilistic model 0.099981

LCM

Parallel
Raw laser data 0.20125

+2.89%
Probabilistic model 0.20709

Perpendicular
Raw laser data 0.09097

–8.1295%
Probabilistic model 0.083575

BCM

Parallel
Raw laser data 0.20546

–7.29%
Probabilistic model 0.19047

Perpendicular
Raw laser data 0.16599

–45.5%
Probabilistic model 0.090454

AICO
Parallel Probabilistic model 0.14552 –16.51%

Perpendicular Probabilistic model 0.0789 –10.91%
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4. Conclusions and Future Works

In this paper, we have presented a method for avoiding dynamic obstacles, taking into account not

only the integrity of the system, but also the minimization of the energy consumption. We have proposed

a probabilistic model of the dynamic environment using: (1)an extension of the Bayesian Occupancy

Filter proposed by [14] to a three-dimensional method to detect the obstacles positions and (2) a method

to estimate the velocity of these obstacles using a trackingstage based on optical flow and a detection

stage based on blob filtering.

We have used the probabilistic model of the environment inside the perception stage of the four

classical methods: VFH+, BCM, CVM and LCM. Just by using a single level of the occupancy grid we

were already able to improve the perception stage of these avoidance systems. The results have shown

an improvement in energy consumption up to 45.5%. We have also shown that the resulting trajectories

as well as the velocity and acceleration profiles are much smoother when using our method.

We have implemented a Voronoi graph based global path planner which serves as an initialisation

method for our inference based local planner: AICO. Within AICO we combine multiple task variables to

obtain the optimal path based on obstacle clearance and energy consumption. This method shows further

qualitative improvement against the reactive methods withan improvement in energy consumption of

10.91% and 16.51% respect to the best results of reactive methods in perpendicular and parallel scenarios

respectively. The computational cost of using AICO is currently too high for it to be used in real-time

planning applications.

In the near future, we intend to improve the accuracy of the probabilistic model by refining the

discretisation. We also intend to improve the calculation of the probabilistic model to speed up the

algorithm to accommodate for higher number of cells. The planning algorithm can be improved by

solving the inference at multiple scales and by exploiting parallel computation. Furthermore, we will

address issues of coverage using topology based propertiessuch as winding numbers [26]. This will

allow us to reduce energy consumption by planning optimal route to survey an area such as a parking lot

when searching for a parking space.
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14. Coué, C.; Pradalier, C.; Laugier, C.; Fraichard, T.; Bessiere, P. Bayesian Occupancy Filtering for

multitarget tracking: An automotive application.Int. J. Rob. Res. 2006, 25, 19–30.

15. Fulgenzi, C.; Spalanzani, A.; Laugier, C. Dynamic obstacleavoidance in uncertain environment

combining PVOs and occupancy grid. InProceedings of ICRA 2007: IEEE International

Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.

16. Toussaint, M. Robot trajectory optimization using approximate inference. InProceedings of ICML

2009: the 26th International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June

2009.

17. Llamazares,́A.; Ivan, V.; Ocaña, M.; Vijayakumar, S. Dynamic obstacle avoidance minimizing

energy consumption. InProceedings of the IEEE Intelligent Vehicles Symposium and Workshop
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