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Abstract: A hand biometric authentication method based on measurements of the user’s 
hand geometry and vascular pattern is proposed. To acquire the hand geometry, the 
thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the 
lengths and angles of the finger valleys, and the lengths and profiles of the fingers were 
used, and for the vascular pattern, the direction-based vascular-pattern extraction method 
was used, and thus, a new multimodal biometric approach is proposed. The proposed 
multimodal biometric system uses only one image to extract the feature points. This system 
can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry 
(the side view of the hand and the back of hand) and vascular-pattern recognition method 
performs at the score level. The results of our study showed that the equal error rate of the 
proposed system was 0.06%. 

Keywords: multimodal biometric; hand biometric; hand geometry; vascular-pattern 
recognition 

 

1. Introduction 

The rapidly growing biometric recognition industry [1] requires that its systems deliver  
high-security in applications such as computer systems and limited-access control areas. Biometrics is 
the term used in the computer sciences to refer to the field of mathematical analysis regarding unique 
human features. Hand biometrics is a relatively new type of biometric system. Various biometric 
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features of the hand can be extracted; these are: hand geometry [2–6], finger knuckle [7], vascular 
pattern of the fingers [8,9], and the vascular pattern of the hand [10–17]. The features of unimodal 
biometrics have many limitations, such as variation in an individual biometric feature. In order to overcome 
using unimodal biometrics, combinations of multimodal biometrics [18–21] are being widely developed. 

Table 1 presents the relation between the features for identification, the population involved together 
with results obtained, in terms of performance (FAR: False Acceptance Rate, FRR: False Rejection Rate, 
EER: Equal Error Rate). Best results in Table 1 are achieved by [21] and our work with multi-modal 
biometrics. Our work presents a new approach to achieve improved performance (EER = 0.06). 

Table 1. Comparative biometric example (dorsum hand geometry, dorsum hand vascular 
pattern and multi-model biometrics). 

Year [Ref.] Type Features Population size Performance [%] 
1999 [2] H Contour coordinates 53 FAR = 1, FRR = 6 
1999 [3] H Length, width, thickness and deviation  20 EER = 5 
2006 [4] H Width and Curvature  73 EER = 3.6 
2009 [5] H Fusion SVDD 86 EER = 1.5 

1995 [14] V Sequential correlation 20 FAR = 0, FRR = 7.9 
2004 [15] V Feature points of the vein patterns 32 EER = 2.3 
2004 [16] V FFT based phase correlation 25 FAR = 0.73, FRR = 4 
2005 [17] V Distance between feature points 48 FAR = 0, FRR = 0.9 
2009 [18] VK Vascular structures and knuckle shape 100 EER = 1.14 
2003 [19] PH Palm-print and Hand Geometry 100 FAR = 0, FRR = 1.41 
2003 [20] PH Palm-print and Hand Geometry 50 FAR = 0.1818, FRR = 1 
2010 [21] VF Vascular and geometry of finger 102 EER = 0.075 
Our work  VH Vascular and geometry of hand 100 EER = 0.06 

H: Hand geometry, V: Vascular, K: Knuckle shape, P: Palm-print, F: Finger geometry. 

Our study proposes a multimodal biometric approach integrating hand geometry and vascular 
patterns. Our proposed multimodal biometric system can be constructed as a low-cost device because 
our system uses only one image to extract the feature points. We perform multimodal biometrics by 
score-level fusion with z-score normalization, which results in improved recognition performance 
compared to that of unimodal biometrics consisting of each hand geometry (e.g., the side view of the 
hand and the back of hand) and vascular pattern. 

The rest of this paper is organized as follows: in Section 2, we discuss the hand biometric 
recognition system and we talk about the proposed hand biometric recognition technique. In Section 3, 
we discuss the experimental results. We conclude in Section 4. 

2. Experimental Section 

2.1. Hand Biometric Recognition System 

In this section, we discuss the hand biometric recognition system. A proposed user-authentication 
system using the side and back view of the hand is investigated. The implemented system is detailed in 
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Section 2.1.1. Details of the acquisition device are provided in 2.1.2. The image segmentation and 
preprocessing are illustrated in Section 2.1.3. 

2.1.1. Overview 

The block diagram of the implemented system is shown in Figure 1. First, a hand image is obtained 
from an acquisition device consisting of camera equipped with an infrared (IR) Light-Emitting Diode 
(LED), IR filter, mirror, and support for the hand, as shown in Figure 2. The camera video signal 
(analog output) is converted into an image (digital signal) through a grabber board. To extract hand 
geometric features and hand vascular patterns from the acquired image, we perform hand segmentation 
by a predetermined area between the side view of the hand and the back of hand. The next step is to 
search the region of interest (ROI) for the vascular pattern. The vascular pattern is separated from the 
back of the hand. The extracted sub-image is composed of the three (side view of the hand, the back of 
hand, and the vascular pattern). Then, feature points are extracted after preprocessing. The matching is 
calculated using feature points between the data base (DB) and those of the sub-image. The matching 
score of the side view of the hand, the back of hand, and the vascular pattern is calculated using the 
Euclidean distance, the distance measure for polygonal curves, and template matching. Finally, we 
combine these three scores using score-level fusion based on z-score normalization. 

Figure 1. Block diagram of the implemented system. 
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Figure 2. Acquisition of a sample image of the back of a hand. 

 

2.1.2. Acquisition Device 

An acquisition system has been developed for the collection of the side- and back-of-the-hand data 
and the vascular-pattern-of-the-hand data to acquire a single image. An acquisition device as shown in 
Figure 2 is constructed. That device is illuminated by a fixed light source located above the hand. The 
resolution of the acquired image is 640 × 480 pixels. 

The acquisition of a sample image is shown in Figure 2. For the work on hand-based biometric 
identification, an IR LED (840~850 nm) was used. An input image is captured in an IR environment to 
acquire the hand vascular pattern. To prevent movement of the hand a fixed support device was used. 
In order to take the side-of-the-hand image, a mirror was installed. A camera with a Charge-Coupled 
Device (CCD) sensor (1/3 type B/W) changes light signals into electrical signals. The light signals 
contain visible light (400–700 nm) and the near-infrared region. An IR filter (850 nm) removes the 
unwanted light wavelengths and is used to extract vein patterns. 

2.1.3. Image Segmentation and Preprocessing 

First, for hand recognition, the hand image is captured, and then preprocessing is performed. 
Preprocessing is conducted in two steps: (1) the gray image is transformed into a black and white one 
where the background is eliminated. The preprocessing for the side view of the hand is shown in 
Figure 3(a). The preprocessing for the back-of-the-hand data is shown in Figure 3(b). And, (2), the 
noise is removed in order to begin the vascular-pattern extraction (VPE) algorithm, as shown in  
Figure 3(c). Figure 3(a.1),(b.1),(c.2) show the Gaussian filter for noise removal. Figure 3(a.2),(b.2) 
show the threshold. Figure 3(a.3),(b.3) show the median filter for noise reduction of the threshold 
image. Figure 3(c.3) shows the high-pass filter for emphasizing the vascular patterns. 
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Figure 3. Preprocessing for hand recognition. (a) the side view of the hand, (a.1) Gaussian 
filter, (a.2) threshold, (a.3) median filter; (b) the back-of-the-hand view, (b.1) Gaussian 
filter, (b.2) threshold, (b.3) median filter; (c) the region of interest (ROI) of vascular,  
(c.1) vascular image, (c.2) Gaussian filter, and (c.3) high-pass filter. 

 

The Gaussian smoothing can be performed using standard convolution methods. The image has M 
rows and N columns, and the kernel has m rows and n columns. We use a suitable integer-valued 
convolution kernel that approximates a Gaussian with a σ of 1. Gaussian filtering is shown in Figure 4. 

Figure 4. Gaussian filter. (a) Vascular image; (b) Image after Gaussian filter. 

 

The 2D Gaussian is expressed as: 
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The median filter is to compare these results to a threshold value. The input data is thereby 
converted to a binary value (0,1). The images of Vascular, Median filter are shown in Figure 5. 
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Figure 5. Median filter. (a) Threshold image; (b) Image after Median filter. 

 

The median filter is expressed as: 
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The next step after preprocessing is the extraction of the feature points. The extraction of the 
feature-points process includes the thickness of the side view of the hand, the K-curvature [22,23], and 
the vascular pattern. 

2.2. Proposed Hand Biometric Recognition Technique 

This section addresses the algorithm used for hand biometric recognition. We detail the extraction 
of feature and verifier. The side view of the hand is detailed in Section 2.2.1. The back-of-the-hand 
view is provided in Section 2.2.2. The VPE are illustrated in Section 2.2.3. 

2.2.1. The Side View of the Hand 

To establish the thickness of the side view of the hand, the heights of the middle finger, the index 
finger, and the palm are collected and calculated in the following order: (1) find a line at the base of the 
palm; (2) next, find the starting point perpendicular to the palm base line; (3) then, calculate the thickness 
of the side view the hand from the starting point to the end point. The location of the endpoint is 
predetermined by the acquisition device. The profile of thickness is Pside(x), as shown in Figure 6. 

2.2.2. The Back of the Hand 

The curvature can define a curve intwo-dimensional space. The curvature of the discrete data in a 
digital image using a suitable approximation is obtained. The concept of K-curvature is such that a 
continuous curvature is represented by a discrete function. 

In this study, the K-curvature uses the curvature of the boundaries of the hands and the background 
as feature vectors. The K-curvature is calculated in the following order: (1) The chain code 
representation of the hand surface pattern is obtained. The traces of chain code are represented by blue 
in Figure 7(b),(d); (2) Then, the K-curvature is calculated using data from the trace of chain code. 
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Figure 6. Thickness search of the side view of the hand and the profile of the thickness. 

 

Figure 7. (a) the chain code; (b) traces of the chain code; (c) K-curvature, and (d) trace of 
the chain code with K-curvature. 

 

The K-curvature is expressed as: 
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The curvature at a point pi is taken as the difference between the mean angular direction of K 
vectors on the leading curve segment of pi and that K of vectors on the trailing curve segment of Pi fi is 
the i th component of the chain code. K-curvature begins at the beginning of a thumb.  
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The traces of the K-curvature are represented by red in Figure 7(d) (k = 30). The “maximum peak” 
means the end of the finger [marked in red in Figure 7(b),(c)]. The “minimum peak” values mean the 
contact point between the fingers [marked in blue in Figure 7(b),(c)]. 

The first feature of the hand geometry is the divided K-curvatures. The original K-curvature is split 
into components that can be characterized. These components consist of K1(x) for the valley between 
the thumb and index finger; K2(x) for the valley between the index and middle fingers; K3(x) for the 
valley between the ring and index fingers; and K4(x) for the valley between the ring and little fingers. 
The features of the end of each finger were removed by a K-curvature above 50. Figure 8 shows the 
feature extraction for the K-curvature. 

Figure 8. The feature extraction for K-curvature. 

 

The second feature of the hand geometry is the length and the angle of the finger valley that is 
calculated by the K-curvature. Valley points consist of VP1, VP2, VP3, and VP4. The d1 is length of A  
that is connected from VP2 to the outer edge of the hand through VP1. The d2 is the length of B  that is 
connected from VP2 to VP3. The d3 is the length of C  that is connected from VP3 to the outer edge of 
the hand through VP4. The θ1 is the angle between VP1 and VP3 on the basis of VP2. The θ2 is the angle 
between VP2 and VP4 on the basis of VP3. Figure 9 shows the feature extraction for the lengths and 
angles of the finger valleys. 

Figure 9. The feature extraction for lengths and angles of finger valleys. 

 

The third feature of the hand geometry is the length of the fingers. The peak points for K-curvature 
consist of PP1, PP2, PP3, and PP4. The lengths are d1 from PP1 to A ; d5 from PP1 to A ; d6 from PP2 
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to A ; d7 from PP1 to A ; and d8 from PP1 to A  The d4 is the length of the line from PP1 to A . The d5 
is the length of the line from PP2 to A . The d6 is the length of the line from PP3 to B . The d7 is the 
length of the line from PP4 to C . The d8 is the length of the line from PP5 to C . Figure 10 shows the 
feature extraction for the lengths of the fingers. 

Figure 10. The feature extraction for the lengths of fingers. 

 

The fourth feature of hand geometry is the profile of the fingers. The starting points of the profile 
are the y-axis coordinates at the valley points. The end points of the profile are the y-axis coordinates 
at peak points. The starting point of the baseline consists of 1PS , 2PS , 3PS , and 4PS . The end point 
of the baseline consists of 1PP , 2PP , 3P P , 4PP , and 5PP . The profile of the fingers consists of P1(x), 
P2(x), P3(x), P4(x), and P5(x). Figure 11 shows the feature extraction for the profile of fingers. 

Figure 11. The feature extraction for the profile of fingers. 
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2.2.3. VPE 

The VPE algorithm is implemented by using the direction-based vascular-pattern extraction 
(DBVPE) method [11]. The DBVPE uses a noise-removal filter that consists of a Gaussian low-pass 
filter and a smoothing low-pass filter. The DBVPE uses an emphasizing filter that combines the output 
of the row VPE filter (RVPEF) and the column vascular-pattern extraction filter (CVPEF). The VPE 
processing is illustrated in Figure 12. 

Figure 12. The VPE algorithm processing. 

 

The VPE algorithm uses a noise-removal filter and an emphasizing filter. The VPE algorithm is 
shown in Figure 13(c–f). The VPE is calculated in the following order: (1) first, for the noise removal 
filter, a Gaussian low-pass filter was used, as shown in Figure 13(b); (2) then, the emphasizing filter 
combines the output of the RVPEF in Figure 13(c); (3) next, the CVPEF in Figure 11(d); (4) next, 
RVPEF and CVPEF are added together in Figure 13(e); (5) finally, The median filter for noise 
reduction is shown in Figure 13(f). 

Figure 13. Curvatures estimate. (a) the ROI for preprocessing of vascular pattern;  
(b) Gaussian filter; (c) row vascular-pattern extraction filter; (d) column vascular-pattern 
extraction filter; (e) row or column vascular-pattern; and (f) median filter. 
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The emphasizing filter is expressed as:  
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where z(c), M, N, and w(i) are the center pixels of the filter mask, the abscissa vector size of the mask, 
the ordinate vector size of the mask, and the filter coefficient of the emphasizing filter, respectively. 
S(x,y) is one of {−1,1}, and k(x,y) is any integer number. We used RVPEF with an 11 × 17 kernel with 
horizontal characteristics, and CVPEF with an 11 × 17 kernel with vertical characteristics. 

2.2.4. The Features of Hand Recognition 

The feature of hand recognition is illustrated in Table 2. These features are the length, angle, 
profile, and vascular pattern, and they are used as data for verification. 

Table 2. The features of hand recognition. 

 Features 
The side view of the hand profile of thickness: Pside(x) 

The back-of-the-hand view 

K-curvature: K1(x), K2(x), K3(x), K4(x) 
angle: θ1, θ2 

LENGTH: d1, d2, d3, d4, d5, d6, d7, d8 
PROFILE OF FINGERS: P1(X), P2(X), P3(X), …. P4(X), P5(X), 

VPE vascular pattern 

2.2.5. Matching 

In order to compare the different features of hand recognition, three kinds of verifier algorithms are 
used. The first algorithm is Euclidean distance. To establish the angle and length, the Euclidean 
distance algorithm was used. It performs its measurements with the following equation: 

= −∑
=

2( )
1

L
D X Y

i i
i

 (6)

with L being the dimension of the feature vector; Xi is the ith component of the source feature vector; 
θ θ= 1 2 1 2 3 4 5 6 7 8{ , , , , , , , , , }i t t t t t t t t t tX d d d d d d d d ; and Yi is the ith component of the target feature vector; 

θ θ= 1 2 1 2 3 4 5 6 7 8{ , , , , , , , , , }i s s s s s s s s s sY d d d d d d d d
. 

The second algorithm is the distance measured for the polygonal curves. For the K-curvature and 
profile, the distance-measure algorithm was used. An approach to a distance measurement for 
polygonal curves is to make a comparison between the original curves and the target curves with the 
objective of minimizing some property under specific constraints on the possible mappings; this 
algorithm performs its measurements with the following equation: 
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where Pi is the ith component of the source feature vector: 
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Qi is the ith component of the target feature vector: 
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h is shifted along the x-axis to minimize the integral; s is scaled uniformly by any positive values; 
For the K-curvature and profile, the number of scores is 10. 
The third algorithm is a matching algorithm. The matching algorithm is used for the vascular 

pattern, and it obtains the maximum matching value between the source patterns and target patterns. 
The patterns consist of the vascular pattern and the background pattern. The matching of patterns is 
calculated by giving a weight of 1/4. The third algorithm performs its measurements with the 
following equation: 

− − − − − − − −∑∑ ∑∑ ∑∑ ∑∑
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 (8)

where f(x,y) is the vascular value of the source pattern; w(x,y) is the vascular value of the target 
pattern; ( , )f x y  is the background value of the source pattern; ( , )w x y  is the value background of the 
target pattern; s is the matching point of the x-axis; t is the matching point of the y-axis. 

Three kinds of verifier algorithms compute 12 matching scores. The 12 matching scores are 
illustrated in Table 3. 

Table 3. The matching score. 

 Matching score 
Euclidean distance D 

Distance measurement for polygonal curves δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ10 
matching  C 

At the verifier state, the source templates are compared with the target template. A source or target 
template is represented by 21 feature vectors: one profile of thickness, four K-curvatures, two angles, 
eight lengths, five profiles of fingers, and one vascular pattern. Angle and length are grouped into a 
single matching score. The verifier between the source templates and the target templates consists of 
computing 12 matching scores between them. 

For hand geometry recognition, we used a weighted sum between the Euclidean distance and the 
distance measurement for polygonal curves. The weights W1 and W2 are varied over the range [0,1] in 
steps of 0.01, such that the constraint W1 + W2 = 1 is satisfied. The best weights for the Euclidean 
distance and the distance measurements are 0.37 and 0.63. Measurements are performed using the 
following equation:  

δ δ δ δ= × + × + + +_ 1 1 1 100.37 0.63 ( ... )H and geom etricV D  (9)
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The VPE recognition performs its measurements with the following equation: 

=VPEV C  (10)

The false acceptance rate (FAR) is the error rate of accepting the wrong person; the false reject rate 
(FRR) is the error rate of rejecting own; the genuine acceptance rate (GAR) is 1 − FRR; and the equal 
error rate (EER) is the error rate when FRR is equal to the FAR.  

2.2.6. Matching 

Multimodal biometric uses various levels of fusion: matching-score level, decision level, and the 
feature-extraction level. In this paper, we used integration at the matching-score level. The matching-score 
level comprises two approaches: the classification approach and the combination approach. Because 
the combination approach performs better than some classification approaches [24], we select the 
combination approach that combines the individual matching scores to generate a single scalar score. 

The matching-score level needs normalization to transform the score into a common domain before 
combining it. In this paper, normalization uses a z-score [25]. The z-score is calculated using the 
arithmetic mean and standard deviation of the given data. 

The normalized scores are expressed as: 

μ
σ
−

=' k
k

s
s  (11)

where μ is the arithmetic mean, and σ is the standard deviation. 
The distributions of the matching scores of the two modalities after z-score normalization are 

shown in Figure 14. 

Figure 14. Distribution of genuine and impostor scores after z-score Normalization  
(a) hand geometry; (b) hand vascular pattern. 

(a) Z-Score Normalized hand Geometric (b) Z-Score Normalized Hand Vascular 

Once normalized, the normalized-scores obtained from hand geometric and vascular pattern are 
combined using a simple weighted-summation operation. The weighted-summation method is given by:  

= + −(1 )
h v

F pS p S , ≤ ≤0 1p  (12)
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where Sh and Sv are the normalized-scores of the hand geometric and vascular pattern, respectively, and 
F is the fused-score. p is the weight of the normalized-scores obtained from hand geometric 
authentication, while (1 − p) is the weight of the normalized-scores obtained from vascular pattern. In 
the decision, the fusion score is compared with the decision threshold T. When the fusion score F is 
greater than T, the person is recognized; otherwise the person is not. 

3. Results 

The experimental database contains a total of 1,300 images (side-view-of-the-hand, back-of-the-hand 
and vascular-pattern-of-the-hand images) for 100 subjects, i.e., 13 images per individual. We use three 
images each individual (a total of 300 images) for training. To test the proposed recognition method, 
we use 10 images per hand from 100 people. For training and test purposes, each of these biometric 
data sets is partitioned into with 3 × 100 and with 10 × 100 samples. The users’ ages ranged from 20 to 
50. Approximately 73% were men, and 27% were women. 

In our experiments, we use summed score of all the scores from each unimodal matching as a final 
matching score. As the EER of unimodal biometrics, hand geometry, and VPE acquired 1.81%, and 
1.19%. Our proposed approach is based on a score-level fusion with the unimodal biometrics approach. 
The score level was normalized as a z-score. The fusion of hand geometry and the VPE obtains the 
best EER of 0.06%. Figure 15 shows the ROC curves for unimodal and multimodal biometrics. 

Figure 15. ROC curves of unimodal and multimodal biometrics. 

 

We measured the speed of the proposed algorithm on a desktop computer with Intel Pentium (R) 
Dual CPU 2.00 GHz processor, with 2.00 GB of RAM The computational complexity of processing is 
summarized in Table 4. 

Table 4. The computational timing for processing. 

Processing Time (msec) 
Image Preprocessing 112

Hand geometric Processing 11 
VPE Processing 16 
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4. Conclusions 

In this article, we have proposed a new multimodal biometric verification method based  
on the fusion of the hand geometry and the vascular pattern from a single hand image. The proposed 
hand recognition method was based on K-curvature, thickness of the side view of the hand, and VPE. 
The accuracy of the proposed multimodal biometrics method is better than that obtained using 
unimodal biometrics. 
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