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Abstract: The calibration of a projector-camera system is an essential step toward accurate 
3-D measurement and environment-aware data projection applications, such as augmented 
reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration 
of both intrinsic and extrinsic parameters of a projector. Two key components of the 
system are the automatic generation of projected light patterns and the incremental 
calibration process. Based on the incremental strategy, the calibration process first 
establishes a set of initial parameters, and then it upgrades these parameters incrementally 
using the projection and captured images of dynamically-generated calibration patterns. 
The scene-driven light patterns allow the system to adapt itself to the pose of the 
calibration target, such that the difficulty in feature detection is greatly lowered. The 
strategy forms a closed-loop system that performs self-correction as more and more 
observations become available. Compared to the conventional method, which requires a 
time-consuming process for the acquisition of dense pixel correspondences, the proposed 
method deploys a homography-based coordinate computation, allowing the calibration 
time to be dramatically reduced. The experimental results indicate that an improvement of 
70% in reprojection errors is achievable and 95% of the calibration time can be saved. 
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1. Introduction 

One of the most fundamental problems in the field of computer vision is how to estimate geometric 
parameters of an image sensor. It forms an active vision system where the image sensor is coupled 
with a light projector. The performance of such an active vision-based measuring instrument heavily 
relies on an accurate calibration procedure to determine the geometric parameters of the paired image 
sensor and light projector. The Microsoft Kinect™ is perhaps one of the most well-known examples [1]. 
Asides from Kinect’s popularity, today’s off-the-shelf video projectors are widely adopted to build 3-D 
scanners due to their cost efficiency and availability [2–4]. Knowing the geometric parameters of a 
projector also makes it applicable to a wider range of applications, such as augmented reality and 
performing arts (e.g., [5,6]). The interest in calibrating video projectors has therefore been significantly 
increasing in the last decade (see [4,5,7–12] for example). 

A projector can be effectively described by the pinhole camera model. It is well-known that the 
geometric parameters of a pinhole camera can be estimated from the world-image correspondences of 
a set of control points [13,14]. Therefore it is possible to simultaneously calibrate both the camera and 
the projector using the same object. However, calibrating a projector is not as trivial as calibrating a 
camera since there is no straightforward way to observe what a projector “sees”, making the 
establishment of the projector-world correspondences a challenging task. 

Figure 1. (a) A chessboard commonly used to calibration an image sensor. (b) Dense 
reconstruction of the projector’s view. (c) Visualization of camera-projector x-coordinate 
correspondences acquired using seven Gray-coded patterns and eight phase-shifting patterns. 

 
(a) (b) (c) 

One approach is to reconstruct the view of the projector from actively acquired camera-projector 
correspondences (see Figure 1 for example). In order to sample as many control points as possible in 
the reconstructed view, the process requires establishing dense point-wise mapping from the projection  
screen to the image plane in sub-pixel precision. It usually involves the projection of a sequence of 
temporally-codified light patterns, which is not only a time-consuming procedure, but also poses 
problem when classifying pixels on the stripe boundaries [15]. As a result, dense correspondences 
come at the cost of either dropped accuracy or increased scanning time, which are not desirable in the 
calibration process. 

In past literatures, a typical alternative strategy is to project some easy-to-identify features onto a 
calibration target (a plane in most cases), which is associated with the so-called world (or global, or 
object) coordinate system. By analyzing images of the calibration target, a set of projector-world 
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2. Related Work 

The calibration of video projectors has recently received a lot of attention in the field of computer 
vision. Related work in the literature can be categorized into either photometric or geometric 
calibration. In this paper we focus on geometric calibration. Since a projector can be described as an 
inverse camera, many works use the same calibration object to estimate the geometric parameters of 
the projector while calibrating the camera (e.g., [4,7]). These methods require the acquisition of dense 
stereo correspondences so that a mapping of control points from projector screen to the world 
coordinates can be obtained. To achieve better accuracy, the calibration object is replaced many times and 
the scanning procedure is performed repeatedly. As a result, the calibration time is greatly increased. 
Experimental results of [4] and [7] show reprojection errors of 0.224 and 0.113 pixels, respectively. 

In [8] line patterns are used to find sparse projector-world point correspondences without the 
projection of sequences of encoded light patterns, achieving a reprojection error of 0.428 pixels. In 
their work, the projector is assumed to follow the linear projection model. In practice, some projectors 
may cause non-negligible radial lens distortions, as discovered in our experiments. In this case, the 
estimated parameters may be far from accurate. 

Some methods (e.g., [10,11]) suggest to use another “projector-friendly” object (e.g., a white board) 
from which the projected calibration patterns are easy to locate. An obvious drawback is that it 
requires two different targets to calibrate a camera-projector system.  

There are also methods utilizing special devices to overcome the interference of calibration pattern. 
For instance, Zhan et al. use a LCD monitor as the calibration target [12]. The panel is turned on with a 
checkerboard pattern displayed to calibrate a camera and turned off during the projection of light 
patterns. They have achieved an accuracy of around 0.4 pixels in reprojection error. 

3. Nonlinear Projection Model and Geometric Calibration 

Adopting a model that accurately describes the geometric imaging or projection behavior of a 
device is critical to the performance of calibration. It has been reported that, like image sensors, an  
off-the-shelf video projector may pose significant lens distortion due to nonlinear factors which cannot 
be compensated by the classical pinhole camera model [16]. Therefore, we adopt a modified pinhole 
camera model with nonlinear correction of radial and tangential lens distortion [13]. Adopting the 
nonlinear model, a 3-D point ሺݔ, ,ݕ  ሻ expressed in the world coordinate system is first projected onto aݖ
point ሺݑሶ , ሶݒ  ሻ in the normalized ideal image plane using: 

൭
ሶݑ  
ሶݒ  
1

൱ ~ ൭
1 0 0 0
0 1 0 0
0 0 1 0

൱ ଷൈସܯ ቌ

ݔ
ݕ
ݖ
1

ቍ (1)

where ~ means equality up to scale, and: 

ܯ ൌ ቀܴ ݐ
0 1ቁ (2)

contains the extrinsic parameters that transform points to the camera-centered coordinate system by the 
rotation matrix ܴ א ܱܵሺ3ሻ and the translation 3-vector ݐ. The following nonlinear model is then 
applied to approximate the distorted pixel ሺݑ෬,  :෬ሻ in normalized coordinatesݒ
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൭
෬ݑ
෬ݒ
1

൱ ~ ൭
ሶݑ ሶݑ2 ሶݒ ଶݎ ൅ ሶݑ2 ଶ 0
ሶݒ ଶݎ ൅ ሶݒ2 ଶ ሶݑ2 ሶݒ 0
0 0 0 1

൱ ൮
1 ൅ ଶݎଵߢ ൅ ସݎଶߢ ൅ ଺ݎଷߢ

ଵ݌
ଶ݌
1

൲ (3)

with the radial term ݎଶ ൌ ሶݑ ଶ ൅ ሶݒ ଶ and the distortion coefficients ሺߢଵ, ,ଶߢ ,ଷߢ ,ଵ݌  ଶሻ. The normalized݌
coordinates ሺݑ෬, ,ݑ෬ሻ can be converted to pixel subscripts ሺݒ  :ሻ asݒ

ቆ
ݑ
ݒ
1

ቇ ~ ൭
௨݂ 0 ௖ݑ
0 ௩݂ ௖ݒ
0 0 1

൱ ൭
෬ݑ
෬ݒ
1

൱ (4) 

where ௨݂ and ௩݂ are the effective focal lengths in horizontal and vertical direction respectively, and 
ሺݑ௖,  ௖ሻ is the point where the optical axis passes through the image plane. All these parameters plusݒ
the distortion coefficients are the intrinsic parameters of a non-linear pinhole camera. 

The projection can be denoted by a nonlinear 2-vector function Φሺݔ, ,ݕ ሻݖ ൌ ሺ߶௨, ߶௩ሻ 
parameterized over the intrinsic and extrinsic components. Given a set of world-image point 
correspondences ሺݔ, ,ݕ ሻݖ ՜ ሺݑ,  ሻ captured from multiple views, one may recover the parameters of Φ. Inݒ
this work we apply Zhang’s calibration method [13] to solve linear parameters ሺ ௨݂, ௩݂, ,௖ݑ ,௖ݒ  ,ሻ firstܯ
and then fit the result into the nonlinear model with the distortion coefficients ሺߢଵ, ,ଶߢ ,ଷߢ ,ଵ݌  ଶሻ taken݌
into account by minimizing a least-square function in terms of reprojection error. As has been 
suggested in [14], the reprojection error in horizontal and vertical directions should be dealt with 
separately, we define the error functions as: 

߳௨ሺݔ, ,ݕ ,ݖ ,ݑ ሻݒ ൌ Ԅ୳ሺݔ, ,ݕ ሻݖ െ and (5) ,ݑ

߳௩ሺݔ, ,ݕ ,ݖ ,ݑ ሻݒ ൌ Ԅ୴ሺݔ, ,ݕ ሻݖ െ (6)  ,ݒ

and apply an implementation of the Levenberg-Marquardt algorithm to search for the best  
fitting parameters. 

4. Incremental Calibration Framework 

In this section we present a framework that begins with a few projector-world correspondences and 
continuously upgrades the estimated parameters of both image sensor and video projector.  
The proposed calibration procedure works as follows: 

1. Several sets of initial world-camera and world-projector correspondences are first collected. 
This is typically a rapid process using one-shot pattern projection. 

2. Initial camera and projector parameters are calculated. 
3. An image of the calibration target is captured to calculate its pose. 
4. Positions of good feature points that are ideal for projector calibration are calculated using 

initial parameters and the estimated pose. 
5. Pattern renderer generates a calibration pattern according to the calculated positions. 
6. Feature points are projected, tracked, and matched to their ideal positions. 
7. According to the observed deviation, the projector-world correspondences are updated and the 

parameters are re-calculated. 
8. The process repeats through Steps 3 to 7 until the parameters converge. 
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respect to the projector is estimated by chaining previously calibrated extrinsic parameters, as will be 
shown in Section 4.2. Then, ෠ܱ௣ , the control points in world coordinates are projected onto projector’s 
screen using estimated extrinsic parameters and previously calculated intrinsic parameters, resulting in 
௣ܫ

௣ the locations of feature points on the projection screen. 
According to ܫ௣

௣, a calibration pattern is rendered and projected onto the scene. Due to the error in 
the calibrated parameters, ௣ܱ, the actual locations of projected features will differ from ෠ܱ௣, the 
estimated locations on the calibration board. We will use image feedback to correct this. To find more 
accurate correspondences ௣ܱ ՜ ௣ܫ

௣, the feature points are extracted from captured images for further 
analysis. These points have to be associated with ܫ௣

௣ to form calibration data for the projector. The 
matching can be performed quite efficiently if some hints are available. Hence we use the projection of 
෠ܱ௣ onto the image plane, denoted by ܫመ௣௖, as the starting point of search. Details of the generation and 
analysis of calibration pattern will be further studied in Section 5. 

In the final step, the matched image points ܫ௣
௖ are transformed to world coordinates ௣ܱ via ܪ௖ (see 

Section 4.3 for the computation and use of homography). Once the world-projector correspondences 
௣ܱ ՜ ௣ܫ

௣ are ready, the system performs a multiple-view calibration algorithm which also takes 
calibration data collected in previous ݊ െ 1 viewpoints to compute refined intrinsic parameters ܭ௣ሺ݊ሻ 
and new extrinsic parameters ܯ௣ሺ݊ሻ. 

4.2. Continuous Calibration and Estimation of Extrinsic Parameters 

Collecting calibration data from multiple viewing directions is an important basis to ensure that the 
calibrated projective parameters can be well generalized to a wide range in 3-D space. The process as 
described in the previous Section continuously tracks the position of the calibration target and calibrates the 
devices in real-time. In order to project markers onto specified locations on the calibration target after 
change of viewing angle, the extrinsic parameters of the projector have to be recalculated. This can be 
done by solving a classical Perspective-n-Point problem (PnP) given some known 3D-to-2D mapping [17]. 
However, in our case such world-projector correspondences are not available. 

We show that, by chaining previously acquired extrinsic parameters, the rigid transformation from 
world coordinate system to the projector-centered space can be estimated even without knowing any 
point correspondences. Let ܯ௖ሺ݅ሻ and ܯ௣ሺ݅ሻ be the extrinsic parameters of the camera and of the 
projector with respect to the i-th view, the extrinsic parameters of the projector of the n-th view can be 
estimated using ܯ௖ሺ݊ሻ and previously calibrated extrinsic parameters as: 

෡௣ሺ݊ሻܯ ൌ ௖ܯ௣ሺ݇ሻܯ
ିଵሺ݇ሻܯ௖ሺ݊ሻ (7)

where ݇ א ሼ1,2, … , ݊ െ 1ሽ. Note that the error of previously calibrated parameters will propagate along 
the chain. Therefore it is important to conduct the calibration and optimization procedures each time a 
new set of calibration data becomes available. 

4.3. Projector-World Correspondences from Homography 

In our work, the projected feature points are not aligned to the control points printed on the 
calibration target. As a result, a mechanism is required to assign world coordinates to each projected 
feature point. The homography from the calibration plane to the image is estimated for this purpose. 
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Under linear projection, the mapping from a pixel ሺݑ, ,ݔሻ to a control point ሺݒ ,ݕ 0ሻ on the calibration 
plane (ݖ ൌ 0) is encapsulated by a homography matrix H as: 

ቆ
ݔ
ݕ
1

ቇ ~Hଷൈଷ ቆ
ݑ
ݒ
1

ቇ ൌ ൭
݄ଵଵ ݄ଵଶ ݄ଵଷ
݄ଶଵ ݄ଶଶ ݄ଶଷ
݄ଷଵ ݄ଷଶ ݄ଷଷ

൱ ቆ
ݑ
ݒ
1

ቇ (8)

Given at least four point correspondences ሺݑ௜, ௜ሻݒ ՜ ሺݔ௜, ,௜ݕ 0ሻ, the homography can be estimated by 
solving the over-determined homogeneous linear system [17]: 

ۉ

ۈ
ۇ

ଵݑ ଵݒ 1 0 0 0 െݔଵݑଵ െݔଵݒଵ െݔଵ
0 0 0 െݑଵ െݒଵ െ1 ଵݑଵݕ ଵݒଵݕ ଵݕ

ଶݑ ଶݒ 1 0 0 0 െݔଶݑଶ െݔଶݒଶ െݔଶ
0 0 0 െݑଶ െݒଶ െ1 ଶݑଶݕ ଶݒଶݕ ଶݕ

ڭ ی

ۋ
ۊ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

݄ଵଵ
݄ଵଶ
݄ଵଷ
݄ଶଵ
݄ଶଶ
݄ଶଷ
݄ଷଵ
݄ଷଶ
݄ଷଷی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

ൌ 0 (9)

In this work, the point correspondences are derived from the printed calibration points and their 
world coordinates (i.e., ܫ௖

௖ ՜ ௖ܱ), as shown in Figure 3. Once the homography is estimated, a projected 
feature point detected at pixel ൫ݑ௣,  ௣൯ can be associated to its world coordinates according toݒ
Equation (8). 

In real world scenarios, the homography could be inaccurate when estimated from radially distorted 
pixels, and in turn, would result in imprecise projector-world correspondences. Therefore it is 
important to compensate the distortion in advance. To maintain such a camera-projector dependency, 
the projector-world correspondences will be updated each time the camera’s distortion coefficients  
are adjusted. 

4.4. Initial Correspondences from Line Patterns 

The proposed method requires a “bootstrapping” stage to obtain initial estimate of parameters from 
which the incremental process can be initiated. In previous work [15], we have used a sequence of 
colored block patterns that extends the classical 1-D Gray-coded patterns to obtain initial 
correspondences. In this work, we adopt line features because they are easy and fast to detect, and also 
more robust against pattern interference and chromatic distortion. Figure 4(a) shows the image of a 
line pattern projected onto the checkerboard. It is easy to identify six lines despite the fact that some 
segments of the projected lines are greatly absorbed by the black squares. 

A fast technique is designed to reliably locate projected lines. It first searches for the position of the 
checkerboard in the image using detected corner features. Once found, all pixels in the region of the 
checkerboard are taken into account to compute a dynamic threshold, such that only the brightest 2% 
of the pixels survive the binarization (see Figure 4(b) for an example). We then deploy a RANSAC 
technique to search for lines in the binarized image (see Algorithm 1 for its pseudo-codes). Figure 4(c) 
shows 9 lines detected in real-time. In the experiments we have found that the adopted method is more 
robust and faster than Hough Line Transform, which is also a popular line detection algorithm in 
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pattern renderings, for example, are to use point features to generate a binary image that contains black 
background with white dots as can be generated by: 

ܰሺݑ, ሻݒ ൌ ൜1, ሺݑ, ሻݒ א ௣ܫ
0, otherwise

 , (10)

or with filled circles of radius ݎ, given by: 

ܰሺݑ, ሻݒ ൌ ൜1, ,௣ݑ൫׌ ௣൯ݒ א ,௣ܫ ฮሺݑ, ሻݒ െ ൫ݑ௣, ௣൯ฮݒ ൑ ݎ
0, otherwise

. (11)

Taking perspective distortion into account, we use corner features in a chessboard pattern. First a 
base image ܤ is rendered in world coordinates, such that each feature is carried on ܤ൫ݔ௣,  ௣൯. Then theݕ
pattern is rendered according to: 

ܰሺݑ, ሻݒ ൌ ,ݑ௫ሺ݇ൣܤ ,ሻݒ ݇௬ሺݑ, ሻ൧ (12)ݒ

by means of a mapping function ݇: ሺݑ, ሻݒ ՜ ሺݔ,  ሻ. The mapping is essentially a homographyݕ
transformation applied on undistorted projector screen: 

݇ሺݑ, ሻݒ ൌ ,ݑ௄ሺߤ௣ܪ ሻݒ ൌ ௣ܪ ൭
ሶݑ
ሶݒ
1

൱ (13)

where ߤ௄ሺݑ, ሻݒ ൌ ሺݑሶ , ሶݒ , 1ሻ் is the inverse function of Equations (3) and (4) defined by intrinsic 
parameters ܭ that reverse the effects of the radial and tangential distortions in normalized image 
coordinates, and ܪ௣ is the homography computed from ߤ௄൫ݑ௣, ௣൯ݒ ՜ ൫ݔ௣, ,௣ݕ  ௣൯. In theݖ
implementation both ܤ and ܰ are discrete images indexed by integer subscripts while ݇ is a real 
function. Interpolation functions (e.g., bilinear interpolation, as adopted by our work) are used to 
determine the value of each pixel. 

Figure 5. (a) A base image annotated with the x- and y-axis of the world coordinate system. 
Note the pattern is shifted by 10 mm in both directions, so that the corner features will hit 
square centers of the calibration target (b) A calibration pattern generated from the base image. 

(a) (b) 
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Figure 6. (a) Image of the checkerboard with projection of the generated calibration 
pattern. (b) Rectified region of interest. (c) Histogram and the optimally determined 
thresholds. (d) Classified pixels, blue, red, and white pixels represent “dark”, “gray” and 
“bright” categories respectively. 

(a) (b) 

(c) (d) 

Figure 5(a) illustrates a generated base image which contains corner features aimed to hit square 
centers of the calibration target—A 16-by-12 checkerboard. Since the squares have dimensions of 
20 mm ൈ 20 mm, the pattern is rendered with shifts of 10 mm in both x and y directions. The base 
image can be transformed according to Equations (12) and (13) to generate a target-adapted calibration 
pattern, as shown in Figure 5(b). The projection of this pattern can be found in Figure 6(a). 

5.2. Marker Detection and Matching in Sub-Pixel Accuracy 

Image rectification is carried out using camera-world homography ܪ௖ (see Section 4.1), then Otsu’s 
threhsolding method [18] is applied twice to categorize rectified pixels into “dark”, “gray”, and “bright” 
groups. The results are shown in Figure 6. Only “bright” pixels are kept and all others are set to zero. 
The truncated image is then convoluted with a checker marker as shown in Figure 7(a). The result is 
normalized to produce corner scores, measuring how likely the corner feature occurs at each pixel. 
Scores are sorted and filtered so that only the top 5% of the pixels remain. The map is then segmented 
into regions. For each region a weighhted centroid is calculated to become a candidate feature point. 

The feature points detected in the image have to be associated with ܫ௣
௣, the rendered feature points 

on the projector’s screen. As aforementioned, the matching can be efficiently done given ܫ௣
௣ ՜  ,መ௣௖ܫ

where ܫመ௣௖ are the expected locations of feature points in the image. We start on each expected location 
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of feature points and search for the nearest observation. If the nearest observation is within a tolerable 
range, then the corresponding world-projector correspondence is updated via ܫ௣

௣ ՜ መ௣௖ܫ ՜ ௣ܫ
௖. Otherwise 

the feature point is marked as lost, and will be absent in the refined calibration data. Figure 7(c) shows 
a pair of matched ܫመ௣௖ and ܫ௣

௖. The centroid extraction can also be applied to locate a spot features as 
shown in Figure 7(d). 

Figure 7. (a) Convolution kernel designed to respond corner feature. (b) Corner scores 
computed using convolution (c) Crosshairs showing the expected location (in red) and the 
actual location (in green) of a feature point. (d) The same algorithm without convolution 
can also be used to track spot features. 

 
(a) (b) (c) (d) 

5.3. Rejection of Calibration Data 

A dynamically generated calibration pattern can miss its target after projection, if previously 
calibrated parameters have failed to be generalized to the new pose of the calibration board. It usually 
occurs when the system has not collected enough calibration data and the board has changed to a pose 
that is significantly different from its previous geometric configuration. It is necessary to detect such 
situation to prevent wrongly associated correspondences being used as valid calibration data. 

The failure of a generated calibration pattern occurs if there are too few matched feature points, i.e., the 
observed results deviates greatly from our expectation. Hence, we set a condition to reject a calibration 
pattern if more than 50% of the feature points are lost. The generalization error is also taken into 
account to improve the robustness. The newly calibrated parameters are evaluated using each 
previously collected calibration data. If the inclusion of the new calibration data does not improve the 
overall performance for more than 50% of the calibrated views, it will be rejected as well. 

6. Experimental Results 

6.1. Test Datasets 

A projector-camera system has been set up, and a series of experiments have been conducted to 
evaluate how the proposed method improves the calibration process of a projector-camera system. The 
hardware specifications are listed in Table 1. The software is implemented on an Intel Core i7  
quad-core laptop. The real-time detection of lines and all other computations are not GPU-accelerated. 
We use a customized checkerboard shown in Figure 6(a) as the calibration target. There are 192 corner 
features printed on the board, with 83 inner white squares for the projection of calibration feature 
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points. The checkerboard’s pose is changed 22 times during the acquisition of calibration data, with the 
first 4 poses used to generate the initial correspondences as described in Section 4.4.  

Two different types of features, namely checker corners and light spots, are used to generate target-
adapted calibration patterns (see Figure 7(c) and 7(d) for example). The established calibration datasets 
are named ADACHECKERS and ADASPOTS accordingly. These two datasets are compared with the 
dataset CONVENTIONAL, which acquires camera-projector correspondences using 14 Gray-coded and 
16 phase-shifted patterns for each viewpoint [3].  

We have implemented a Levenberg-Marquardt optimizer and applied it to all of the datasets, with 
identical tuning parameters and termination criteria. The linear and nonlinear parts of the calibrated 
parameters are listed in Tables 2 and 3 respectively. The calibrated camera parameters are also listed 
for reference. The asymptotic standard errors are also given in the tables to provide the confidence in 
parameter estimation. The standard errors are derived from the inverse of the numerically 
approximated Hessian matrix. The explicit establishment of camera-projector correspondences 
requires 704 frames to finish the calibration, while the proposed method uses 40 frames, which is only 
about 5% of the number of frames required by the conventional method. Other results are studied in 
the rest of this section.  

Table 1. Hardware specification in the setup of the project-camera system. 

Component Model Image Resolution Lens Parameters Data Rate 

Camera 
Canon EOS 450D 

(EVF Stream Mode) 
848 ൈ 560 pixels 

18—55 mm 
(F3.5—F5.6) 

12 FPS 

Projector Epson EB-X7 1,024 ൈ 768 pixels 
16.90—20.28 mm 

(F1.58—F1.72) 
60 FPS 

Table 2. Calibrated linear intrinsic parameters with standard errors. 

Calibration Dataset ࢉ࢜ ࢉ࢛ ࢜ࢌ ࢛ࢌ 
ADACHECKERS 1,588.1 േ 36 pixels 1,560.7 േ 35 pixels 561.6 േ 19 pixels 562.7 േ 29 pixels

ADASPOTS 1,619.7 േ 38 pixels 1,605.0 േ 41 pixels 535.0 േ 39 pixels 590.8 േ 27 pixels
CONVENTIONAL 1,812.1 േ 23 pixels 1,686.1 േ 20 pixels 287.5 േ 10 pixels 530.2 േ 06 pixels

Camera 1,273.1 േ 14 pixels 1,258.0 േ 13 pixels 433.4 േ 08 pixels 274.4 േ 07 pixels

Table 3. Calibrated nonlinear intrinsic parameters with standard errors. 

Calibration Dataset ࢑૚ ࢑૛ ࢑૜ ࢖૚ ࢖૛ 
ADACHECKERS 0.577 േ 0.15 −9.288 േ 4.70 65.034 േ 46.5 0.009 േ 0.01 0.024 േ 0.01 

ADASPOTS 0.146 േ 0.01 −0.892 േ 3.17 2.878 േ 27.8 0.007 േ 0.01 0.004 േ 0.01 
CONVENTIONAL −1.332 േ 0.07 13.851 േ 1.71 −62.128 േ11.7 −0.006 േ 0.00 0.033 േ 0.00 

Camera −0.089 േ 0.05 1.370 േ 1.33 −6.841 േ 10.9 −0.003 േ 0.00 −0.002 േ 0.00 

6.2. Evaluation in Projective Plane 

Reprojection error (RPE) is a commonly adopted projective indicator of how well the calibration  
data conform to the projection model with the calibrated parameters [7,8,10–14]. We have  
measured reprojection errors in x- and y- coordinates separately according to Equations 5 and 6, and the 
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root-mean-squares (RMSs) are calculated to summarize the performance of the parameters with respect  
to a dataset. 

Figure 8. History RMS of reprojection errors during the calibration process. 

After calibrating all 22 views, datasets ADACHECKERS, ADASPOTS, and CONVENTIONAL have 
achieved RPEs of 0.188, 0.301, and 2.196 pixels respectively. Figure 8 depicts their RPEs at each 
stage, with a set of calibration data collected from a new viewpoint. One may find that the adaptively 
rendered calibration patterns initially pose significant errors. However, the errors decrease as more 
calibration data are collected with a lower bound. The RPEs of the ADASPOTS are 1.6 times higher than 
that of the ADACHECKERS. The cause might be that the algorithm has adopted to locate spot centroids, 
which are not preserved under perspective projection. Compared to the use of explicit 
correspondences, the adaptively established datasets ADACHECKERS and ADASPOTS result in 
improvements of 91% and 86%, respectively. 

6.3. Evaluation in Euclidean Space: Planarity Test 

Using criteria that are not modeled in the objective functions is important to evaluate the optimized 
parameters. We have therefore conducted another test to verify the performance of the calibrated 
parameters in 3-D space. The parameters are used to triangulate the 3-D position of each control point. 
Since a planar target is used, all of the control points are expected to lie in a plane. The flatness of the 
manufactured calibration target has been assessed to be accurate to within 0.1 mm. 

The best-fit planes of measured 3-D points are estimated, and the residuals are calculated. The box 
plots of the residuals are depicted in Figure 9. The overall 3-D RMS errors for the three datasets are 
0.36 mm, 0.65 mm, and 2.42 mm, respectively. Improvements of 85% and 73% are achieved for 
ADACHECKERS and ADASPOTS, respectively. 
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Figure 9. Plane residuals of control points after triangulated using parameters calibrated 
from datasets (a) ADACHECKERS (b) ADASPOTS, and (c) CONVENTIONAL. 

(a) 

(b) 

(c) 

6.4. Evaluation in Euclidean Space: Triangulation Error 

The projector-camera system can be utilized as a structured light 3-D scanner once the extrinsic and 
intrinsic parameters of the camera and the projector are obtained. Given a dense correspondence map, 
one may apply triangulation to recover the surface of an object. The triangulation error is defined as 
the shortest Euclidean distance between a pair of back-projected rays. It can be used to evaluate the 
calibration, since a more accurate set of parameters implies that the back-projected rays are more 
precise, and consequently, the triangulation errors will be lower. 

A statue with a highly irregular shape is selected to be scanned by the projector-camera system. The 
statue has a dimension of 450 mm by 250 mm by 240 mm in height, width, and depth. The statue is 
placed inside a working space spanned by the positions of the calibration board. About 105,000 points 
are triangulated using parameters calibrated from the ADACHECKERS and CONVENTIONAL datasets, and 
the calculated RMS errors are respectively 2.71 mm and 5.10 mm, or 1.8% and 3.4% compared to the 
depth of the recovered surface (145 mm). The error maps are shown in Figures 10(a) and (b). 
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Figure 10. Triangulation error map of the parameters calibrated using datasets  
(a) ADACHECKERS and (b) CONVENTIONAL; (c) Recovered depth map of a scanned statue. 

(a) (b) (c) 

There are observable systematic errors in the recovered surface using parameters calibrated from the 
CONVENTIONAL dataset when the error maps are compared to the depth map shown in Figure 10(c). This 
is a commonly observed phenomenon if a set of parameters is not well generalized to the overall 
volume. As a measured point moves away from the optimal space of the parameters, the triangulation 
errors will increase quadratically. Based on this observation, we may verify that the parameters 
calibrated from the ADAMARKERS dataset are more robust since they conform better in a wider range. 

7. Conclusions and Future Work 

In this paper, we have presented an innovative method to reliably establish the calibration datasets 
for a project-camera system. The method can be applied to achieve the calibration of the camera and 
the projector using as the calibration target a single checkerboard, which is easy to obtain and widely 
used in the computer vision. The dynamically generated calibration patterns contain feature points for 
the calibration of the projector. Each feature point is arranged to hit the center of a particular white 
square on the calibration target, where its detection can be accurately performed. With a feedback 
mechanism, the system increases the accuracy of the generated patterns incrementally. As a result, 
establishing a calibration dataset becomes more accurate and faster than deploying dense acquisition of 
camera-projector correspondences. In the experimental results, the proposed method is able to achieve 
an improvement more than 80% over the conventional method in both projective and Euclidean tests, 
with a saving of 95% of the required calibration time. The RPEs in sub-pixel level are also attainable. 

In the future, we aim to develop a system that tracks calibration targets and projects aligned 
calibration patterns in real-time. As can be seen in Figure 6, the corner features printed on the 
calibration target are still distinguishable due to the projection of the interleaved calibration pattern. 
Such a real-time application may hint a user to move the calibration target toward un-sampled space, 
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instead of placing it randomly; since it is crucial to maximize the coverage of the working volume 
during the collection of calibration data to achieve accurate 3-D measurement,. The proposed method 
can also be modified and adapted towards the application of environment-aware data projections, such 
as those used in augmented reality applications. 
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