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Abstract: In Vehicular Networks, communication success usually ddp®n the density of

vehicles, since a higher density allows having shorter aoereliable wireless links. Thus,
knowing the density of vehicles in a vehicular communiaagi@nvironment is important,
as better opportunities for wireless communication camwsino. However, vehicle density
is highly variable in time and space. This paper deals withithportance of predicting

the density of vehicles in vehicular environments to takeigiens for enhancing the

dissemination of warning messages between vehicles. Waopeoa novel mechanism
to estimate the vehicular density in urban environments.r @echanism uses as input
parameters the number of beacons received per vehicleharntdgological characteristics
of the environment where the vehicles are located. Sinarlatesults indicate that,

unlike previous proposals solely based on the number ofdmsareceived, our approach
is able to accurately estimate the vehicular density, aedetbre it could support more
efficient dissemination protocols for vehicular enviromsg as well as improve previously
proposed schemes.

Keywords: vehicular networks; vehicular density estimation; wagnimessage
dissemination; VANETS
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1. Introduction

The convergence of wireless telecommunication, computiagd transportation technologies
facilitates that our roads and highways can be both our p@tetion and communication platforms.
These changes will completely revolutionize when and hovagoess services, communicate, commute,
entertain, and navigate, in the coming future. Vehiculatwdeks (VNs) are wireless communication
networks that support cooperative driving among commuimgavehicles on the road. Vehicles
act as communication nodes and relays, forming dynamiccuidr networks together with other
nearby vehicles. VNs involve vehicle-to-vehicle (V2V])] [and vehicle-to-infrastructure (V2I1)2]
communications, and have received a remarkable attemtiggcent years.

The specific characteristics of vehicular networks faverdbvelopment of attractive and challenging
services and applications. Though traffic safety has beerptimary motive for the development
of these networks3-5], VNs also facilitate applications such as managing tréfbgvy, monitoring
road conditions, environmental protection, and mobiletaihment applications6}8]. Most of these
applications could be more efficient if the protocols inamhbecome aware of the density of vehicles
at any given time 9], being able to adapt their behavior according to this facithus, knowing the
traffic density in vehicular scenarios is of great importasmce it promotes the more efficient use of
the wireless channel().

One issue to keep in mind when making any proposal relateehizular networks is to study in detalil
how it behaves when modifying all the possible factdq.[ However, this can be a very time-consuming
task, so it is recommended to focus only on the most impoffestors, overlooking the rest of the
parameters. Foguet al. [12] concluded that the most significant factors affecting camimation in
realistic urban environments are: (i) the density of vedsckince messages are propagated much more
easily in high density scenarios than in scenarios with avehicle density (where messages cannot
exploit the inherent multihop capabilities of VNs), and (e urban topology, since the presence of
buildings greatly affects the wireless signal propagation

Traditionally, in Transportation Systems, vehicle dgnkis been one of the main metrics used for
assessing the road traffic conditions. A high vehicle dgnsitially indicates that the traffic is congested.
Currently, most of the vehicle density estimation teche&are designed for using infrastructure-based
traffic information systems. Hence, these approachesnestie deployment of vehicle detecting devices
such as inductive loop detectors, or traffic surveillanceaas 1 3,14]. Consequently, these approaches
do not exploit the capabilities offered by the emerging-seffanizing vehicular traffic information
systems, where vehicles are able to collect and processdtfie information without relying on any
fixed infrastructure.

In this paper we focus on the vehicle density awareness ianugnvironments, and we present a
solution to estimate the density of vehicles based on thebeumf beacons received per vehicle, and
the roadmap topology. We consider that vehicles, able toiggly estimate the vehicular density in
their neighborhood, can adjust their diffusion scheme iting to this density. When using our density
estimation proposal, an adaptive system could increasessitl communication probability in sparse
networks by increasing its data dissemination rate, oraedbe channel contention in high density
scenarios by reducing the number of broadcast messages.



Sensor013 13 2401

The paper is organized as follows: in Sect®nve review previous works closely related to our
proposal, highlighting the similarities and differencés. Section3 we present in detail our proposal
for real-time estimation of vehicular density. In Sectbwe measure the estimated error to assess the
goodness of our proposal. In Sectidrve compare our proposal with a density estimation methad tha
only relies on the information provided by the beacons reszki Finally, in Sectioré we present the
main conclusions of this work.

2. Related Work

Despite the importance of determining the vehicular dgrisitimprove the support for vehicular
network applications, so far there have not been enoughestuldat explored the density estimation
in order to improve wireless communications in vehiculaviemnments. Next, we will discuss the
most relevant works in this field. Tyagt al. [15 considered the problem of vehicular traffic
density estimation, using the information provided by thenalative acoustic signal acquired from a
roadside-installed single microphone. This cumulatigeal comprises several noise signals such as tire
noise, engine noise, engine-idling noise, occasional ficarkd air turbulence noise of multiple vehicles.
Based on these distributions, they used a Bayes classifidagsify the acoustic signal segments. Using
a discriminative classifier, such as a support vector macf8VM), results in further classification
accuracy gained over the Bayes classifier. This mechanigmires to deploy microphones in every
street to be able to estimate the vehicular density.

Tan and Chenl[3] proposed a novel approach of combining an unsupervisetising scheme called
AutoClass with Hidden Markov Models (HMMs) to determine thaffic density state in a Region Of
Interest (ROI) of a road in a traffic video. This approach reggito deploy video cameras in every street
to be able to estimate the vehicular density, and it involuege computational requirements.

Shiraniet al. [10] presented the Velocity Aware Density Estimation (VADE)papach. In VADE,

a car estimates the density of neighboring vehicles by ingcks own velocity and acceleration
pattern. An opportunistic forwarding procedure, based AD estimation, was also proposed. In this
procedure, data forwarding is done when the probabilityaefing a neighbor is high, which dramatically
reduces the probability of messages being dropped. Thi®apip can be very inaccurate since the own
velocity and acceleration pattern of a vehicle travelin@iaity do not seem very representative when
accounting for the vehicular density in the nearby roads.

Artimy [16] proposed a scheme that allows vehicles to estimate thé deeeity, and distinguish
between the free-flow and the congested traffic phases. Tigtyleestimation is used to develop a
dynamic transmission-range assignment (DTRA) algorithat a&djusts the vehicle transmission range
dynamically, according to the local traffic conditions. 8arly to the previous work, the scheme
presented in this paper is based on the flow-density rekttipn which seems to be only applicable
to simple topologies such as highways. Masles&iaal. [9] claimed that clustering has demonstrated
to be an effective concept to implement the estimation ofowgérr density in the surroundings. In this
work, they proposed a direction based clustering algoritfith a clusterhead switching mechanism.
This mechanism aims at overcoming the influence of overtplithin the clusters. The proposed
algorithm facilitates the attaining of better stabilitpdathus improves the density estimation within the
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clusters. Simulation results showed that the proposedecing algorithm is rendered stability through
the switching mechanism, and hence provides a better agcurgerms of density estimation. However,
due to high mobility, a stable cluster within a vehiculanfi@wvork is difficult to implement.

Stanicaet al. [17] considered that the medium access control protocol of ardutrehicular
ad-hoc network is expected to cope with highly heterogesemnditions. An essential parameter
for protocols issued from the IEEE 802.11 family is the miaim contention window used by the
back off mechanism. While its impact has been thoroughlgistiin the case of wireless local area
networks, the importance of the contention window has bearetiow neglected in the studies focusing
on vehicle-to-vehicle communication. In this paper, awshowed that the adjustment of the minimum
contention window depending on the local node density caahty improve the performance of the
802.11 protocol. Moreover, they compared through simoitain a realistic framework five different
methods for estimating the local density in a vehicular emunent, presenting the advantages and the
shortcomings of each of them. Venkatiaal. [18] proposed a clustering approach for traffic monitoring
and routing, where the Cluster Head (CH) election is donedas distance and direction information.
Since clusters are formed all along the road, CH’s will tdike tesponsibility of routing the message
to the destination. Simulation results showed better kigkaccurate density estimation in the cluster,
better end-to-end delay, and good packet delivery ratiowdder, the density estimation mechanism
operation is limited to the vehicles within the cluster.

Other authors use the Kalman filtering technique for theresion of traffic density. For example,
Balcilar and Sonmez1f] estimate traffic density based on images retrieved frorfidcrenonitoring
cameras operated by the Traffic Control Office of IstanbulrdMalitan Municipality. To this end, they
use a Kalman filter-based background estimation, which daneatly adapt to environmental factors
such as light changes. However, this approach requiresathgitgt estimation procedures to be applied
to the road areas manually marked beforehand. More recémandet al. [20] proposed a method that
also uses the Kalman filtering technique for estimatinditralensity. In particular, they propose using
the flow values measured from video sequences and the trenvelobtained from vehicles equipped
with a Global Positioning System (GPS). They also reportsdgrestimation using flow and Space
Mean Speed (SMS) obtained from location-based data, usengxtended Kalman filter technique.

All of these works established the importance of vehicutangity awareness for neighboring areas,
but none has deepened in the analysis of the accuracy of ttiedased to estimate this density, the
best time period to gather the required data, or the effettteofopology in the results obtained. In most
cases, this estimation does not take place in real time onresjinfrastructure deployment. Moreover,
most of the works regarding the use of Vehicular Networky aise the number of beacons to estimate
the vehicular density. In this paper, we demonstrate hostiegj approaches can be highly inaccurate,
since the characteristics of the simulated roadmap carifisently affect the obtained results, making
the estimation erroneous.

3. Real-Time Vehicular Density Estimation

The main objective of this paper is to propose a mechanismatil@avs estimating the density of
vehicles in a specific area by using Vehicular Networks. mi@aar, we intend to estimate the vehicular
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density taking into account the number of beacons receinddlee topological features of the selected
area (which can be obtained from the in-vehicle GPS unit).

Our method consists of three phases. In the first phase, wefiedyze the features of different
cities (see SectioB.1). During the second phase, the vehicles obtain the numbleeadfons received
(see Sectior8.2). Finally, in the third phase, each vehicle can estimatevetg@cular density in its
neighborhood by applying an equation that requires as ipg@meters the values, in terms of roadmap
complexity and beacons received, obtained in the previbasgs. Next subsections present the different
phases of our mechanism.

3.1. Phase 1: Features of the Cities Studied

An important issue to our vehicular density estimation apph is to obtain the different features of
each roadmap (e.g., the number of streets, the number dignecthe average distance of segments,
and the number of lanes per street).

The roadmaps used to achieve the density estimation weretselin order to have different profile
scenariosi(e., with different topology characteristics). We studiedhgidifferent cities (San Francisco,
Valencia, Rome, Rio de Janeiro, Sydney, Amsterdam, Madnd,Los Angeles). Figurg shows the
topologies of the cities studied. Although some differencan be visually perceived, a more thorough
analysis must be performed to determine and classify thadgy of each map.

Table 1 shows the main features of each map of the cities under siweythie number of streets
according to the RAV radio propagation modeL], where the visibility between vehicles is taken into
consideration when identifying the different streets, tloenber of junctions, the average distance of
segments, and the number of lanes per street.

Table 1. Map features.

Map Streets | Junctions | Avg. Street Length (m) | Lanes/Street| SJ Ratio
Rome 1655 1193 77.0296 1.0590 1.3873
Rio de Janeirg 542 401 167.9126 1.1135 1.3516
Valencia 2829 2233 60.7434 1.0854 1.2669
Sydney 872 814 138.0716 1.2014 1.0713
Amsterdam | 1494 1449 90,8164 1.1145 1.0311
Madrid 628 715 183.4947 1.2696 0.8783
San Franciscq 725 818 171.4871 1.1749 0.8863
Los Angeles | 287 306 408.2493 1.1448 0.9379

We consider that the parameters that better correlate Wwehcomplexity of the roadmap are the
number of streets and the number of junctions. Hence, weaalded a column labeled &) Ratio
which represents the result of dividing the number of strdmitween the number of junctions. As
shown, the first 5 cities (Rome, Rio, Valencia, Sydney, andt&ntdam) present an SJ ratio greater than
1, which indicates that they have a complex topology, wiierest of the cities (Madrid, San Francisco,
and Los Angeles) present a lower SJ value, which indicatdghiey have a simple topology. Note that,
although Rio de Janeiro has a relatively small number oé&rand junctions, it has a complex topology
since its SJ Ratio is greater than 1.
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Figure 1. Scenarios used in our simulations. Fragments of the cifie&p Rome (Italy),
(b) Rio de Janeiro (Brazil),d) Valencia (Spain),d) Sydney (Australia),  Amsterdam
(Netherlands),f) Madrid (Spain), §) San Francisco (USA), anti) Los Angeles (USA).
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3.2. Phase 2: Counting the Number of Beacons Received

After performing the topological analysis of the studiedpsiawe need to obtain the number of
beacons received by each vehicle during a certain periadhef {This period is very important, since it
will affect the number of beacons received, and the accusatye vehicular density estimation.

According to the results obtained in Secti®s3.1. in our scheme, we obtain the number of beacons
received during 30 seconds. We consider that each vehiolgssene beacon per second, and that
these messages, unlike warning messages, are not dissetnbathe rest of the vehicles. These
considerations can be found in many previous Vehicular Mekwtudies, so they could be considered
quite realistic.

The simulation results shown in this article have been abthiusing the ns-2 simulato?],
modified to consider the IEEE 802.11p standard (All theseawgments and modifications are available
in http://www.grc.upv.es/software/). In terms of the pilogs layer, the data rate used for packet
broadcasting is 6 Mbis!, as this is the maximum rate for broadcasting in 802.11p.MAE layer was
also extended to include four different priorities for chahaccess. Therefore, application messages
are categorized into four different Access Categories jA@sere ACO has the lowest and AC3
the highest priority.

The purpose of the 802.11p standard is to provide the minisetraf specifications required to ensure
interoperability between wireless devices when attenggtincommunicate in potentially fast-changing
communication environments. For our simulations, we clibedEEE 802.11p because it is expected
to be widely adopted by the industry.

We tested our model by evaluating the performance of a WaiMiessage Dissemination mechanism,
where each vehicle periodically broadcasts informatioauabtself, or about an abnormal situation
(icy roads, traffic jametc). In order to mitigate the broadcast storm probleé8 [ our simulations use
the enhanced Message Dissemination based on Roadmaps jeddbétne 24]. The eMDR scheme
only allows forwarding messages when the distance betweerdes and receiver is greater than a
threshold, or in situations where the receiver is the clogekicle to a junction, and rebroadcasting
could allow the message to reach vehicles in adjacent street

As for vehicular mobility, it has been obtained with CityMédr Roadmaps (C4R)25], a mobility
generator able to import maps directly fro26], and make them available for being used by the ns-2
simulator. Table shows the parameters used for the simulations. All the tesepresent an average
of over 50 repetitions with different scenarios (maximumoeonf 10% with a degree of confidence of
90%), and each simulation run lasted for 180 seconds.

Figure 2 shows the results obtained for the different cities stud\& also included two lines that
depict the average values for each profile categoey, 6imple and complex average). As shown, two
different groups can be distinguished: (i) the complex magsch are located in the left part of the
figure, and (ii) the simple maps, which are located in thetnggint of the figure.

As expected, complex roadmaps present a number of beacmiga® lower than simple roadmaps
for a similar vehicular density. In addition, we found thlaé tsimpler cities present a high similitude
in terms of results, being more difficult to estimate the ealar density in complex cities compared
with simple cities. Figur€ demonstrates that the vehicular density depends not onthemumber
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of beacons received, but also on the characteristics ofadadnnap where the vehicles are located.
Therefore, the characteristics of the roadmap will be vesgful in order to accurately estimate the
vehicular density in a given scenario. According to datarshmm Tablel, the SJ ratio can be used to

characterize the different maps.

Table 2. Parameters used for the simulations.

Parameter Value

roadmaps Rome, Rio de Janeiro, Valencia, Sydney, Amsterdam,
Madrid, San Francisco, and Los Angeles

number of vehicles [100, 200, 300...1000]

number of collided vehicles 3

roadmap size 2000 m x 2000 m

warning message size 256B

beacon message size 512B

warning messages priority AC3

beacon priority AC1

interval between messages 1 second

MAC/PHY 802.11p

radio propagation model RAV [2]]

mobility model Krauss [27]

channel bandwidth 6 Mbps

max. transmission range 400 m

Figure 2. Number of beacons received when varying the vehicular tdensi
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Table3 shows the average percentage difference with respect tmé¢ha@ value. From the obtained
results we observe that the cities that show a better fit foatlerage results are Valencia (in the complex
topology group) and San Francisco (in the simple topologypgy. Hence, these cities could be used as
reference to obtain representative results when simglafhicular Networks.

Table 3. Average percentage difference with respect to the mearvalu

City Percentage Difference

Rome 29.49%

Rio De Janeiro 5.85%
Valencia 4.56%
Sydney 15.82%
Amsterdam 14.96%
Madrid 6.44%
San Francisco 1.74%
Los Angeles 4.70%

3.3. Phase 3: Density Estimation Function

After observing the direct relationship between the togglof the maps, the number of beacons
received, and the density of vehicles, we proceed to obtéimetion to estimate, with the minimum
possible error, each of the curves shown in Figure

To propose a method able to accurately estimate the derfsitghicles, based on the number of
beacons received and the roadmap topology, we made a tatd@d@d experiments. These experiments
involved the simulation of controlled scenariase( scenarios where the actual density is known).
According to the results obtained, we propose a densitynasiton function capable of estimating the
vehicular density in every urban environment, at any irntstétime.

In order to obtain the best approach, we have tested someratff functions (exponential,
logarithmic,etc). To this purpose, we performed a regression analdsthat allowed us to find the
polynomial equation offering the best fit to the data obtditheough simulation. Equatiod) shows the
density estimation function, which is able to estimate theber of vehicles per k#in urban scenarios,
according to the number of beacons received, and the SJiratjetreets/junctions).

f(z,y) = a+bx+cy+dx® + fy* + g2 + hy® + izy + j2°y + kxy? (1)
In this equationy is the number of beacons received by each vehicle yasdhe SJ ratio obtained

from the roadmap. The values of the polynomial coeffici€nt$, c,d, f, g, h, i, j, and k) are listed in
Table4, and Figure3 shows the 3-dimensional representation of the proposeatiequ
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Table 4. Proposed equation coefficients.

Coeff. Value

a -1.1138191190298828E+0
-1.0800433554686800E+0
3.1832185406821718E+0
-4.0336415134812398E-0
-3.0203454502011946E+0
2.8542014049626700E-03
9.5199929660347175E+0
[ 3.5319225007012626E+0
1.6230525995036607E-0]
k -1.6615888771467137E+0

SJKQ| -0 |T

[—

= N S A TR S Ve =y gy}

Figure 3. 3D representation of our density estimation function.
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Equation @) presents the best non-polynomial approach we obtainedet#er, in terms of accuracy,
the sum of squared absolute error of this function is of 3885104, while the polynomial function
presents a lower value (6.3321E+03). Thus, we consideresethe first equation in our approach.
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(2)

3.3.1. Time Period Analysis

As mentioned before, our proposal is based on two key fac{grthe roadmap topology, which is
provided by the in-vehicle GPS systems, and (ii) the numbdéeacons received at a given period of
time. Hence, in a vehicular density estimation system, el important to decide how much time
is dedicated to gather important and necessary data in tvdmetter estimate the density of vehicles
at any given time.

In order to determine the optimal period of time that showddcbnsidered to estimate the density in
vehicular environments, thereby enhancing the performanhthe density estimation process, we made
a total of 600 experiments including six different time pes {.e., 10, 20, 30, 60, 120, 180 seconds), and
using the maps of Valencia and San Francisco.

Figure 4 shows the number of beacons received by each vehicle wheualaging 100 and
200 vehicleskm=2, respectively. As shown, complex maps are more affecteddhjcular density
variations, since messages encounter more difficulties fvdgpagated in these kinds of maps, especially
in lower density scenarios. Regarding the optimal timeqeksince results are quite linear, a larger time
period seems to be the best option; notice that this soluéiquires fewer calculations, thereby reducing
the overhead. However, a more thorough analysis should ke toadetermine the optimal time period
required to gather the number of beacons received.

To find the best period, we also analyzed the error committédnwusing different time
periods. Specifically, we fitted the function coefficientsdach period, and then calculated the
absolute error committed.

Table5 shows the median and the variance of the absolute error ébr@eriod analyzed. As shown,
lower periods obtain more accurate results. In fact, whertithe period exceed¥) seconds, the error
increases by two orders of magnitude. Having discarde@targriods, we consider that the best period
to gather data is of 30 seconds, since the absolute erras@fflewer variance.

Table 5. Absolute error when varying the time period.

Time (s) Median Variance
10 -5.073593E-03| 1.483517E-03
20 -1.515514E-03| 1.048494E-03
30 -2.972316E-03| 7.569214E-04
60 2.377369E-01| 1.241401E+03
120 7.621857E+00| 1.548736E+03
180 5.128145E+00| 1.492756E+03
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Figure 4. Number of beacons received per vehicle when varying thepiened and the city
roadmap when simulatinga) 100 vehicleskm=2, and g) 200 vehicleskm~2.
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3.4. The Concept of Street

Our vehicular density estimation approach uses threerdiftgparameters: (i) the number of beacons
received, (ii) the number of junctions, and (iii) the numbgstreets. As for the number of junctions, itis
only necessary to count the junctions between differeaesgsegments. However, regarding the number
of streets, we realized that different alternatives cowddsblected to obtain the number of streets in a
given roadmap.

Basically, the different alternatives are: (i) the numbésweets obtained in SUMO2P], where
each segment between two junctions is considered a stii¢e¢he(number of streets obtained i24g]
(OSM), where each street has a different “name”, and (ig)riamber of streets according to the RAV
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radio propagation modePR[], where the visibility between vehicles is taken into colesation when
identifying the different streets.

Figure5 shows a small portion of New York City to depict the differeniteria when counting the
number of streets. For example, Thames Street is consiadengdone street in OSM, whereas the
SUMO and RAV models consider that there are two differergettr instead. However, if we observe
Cedar Street, the RAV visibility model and the OSM approaat@nsider a single street (as expected),
whereas it is represented by three different streets aicmptd SUMO, since it has three different
segments. Finally, according to both the OSM and SUMO ampres Trinity Place and Church Street
are represented as two different streets, whereas the RAIhsonsiders that only one street exists.

Figure 5. Different criteria when counting the number of streets.

Thames street Cedar street Trinity Pl.-Church st.
OSM: 1 street OSM:; 1 street OSM: 2 streets
SUMO: 2 streets SUMO: 3 streets SUMO: 2 streets
RAV: 2 streets RAV: 1 street RAV: 1 street

Table6 shows the values obtained when counting the number of stoésbme of the cities studied,
according to each criterion.¢., SUMO, OSM, or RAV). As shown, the differences between these
approaches are significant, meaning that it is importanewd® which one to use in order to obtain
accurate and realistic results. After some experimentsreaéized that the third approach better
correlates with the real features of cities, since the otiver present some drawbacks: they are not
accurate enough, or they present some errors (e.g., SUM&yslbonsiders segments between junctions
as streets, and using street names to estimate the comitiamibatween the vehicles may result in
inaccurate estimations). So, we choose the RAV model totdb@number of streets in our vehicular
density estimation mechanism.
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Table 6. Number of streets obtained depending on the criterion used.

City SUMO | OSM | RAV
Rome 2780 | 1484 | 1655

Rio de Janeirg 758 377 | 542
Amsterdam 3022 796 | 1494
Madrid 1387 | 1029 | 628

4. Validation of Our Proposal

To determine the accuracy of our proposal, we proceed to unedke estimated error. Figufe
shows the difference between the average values for alltiee studied, and the values obtained by our
function. As shown, we achieve a good fit for the average gadlgained in the simulations. In addition,
Table7 shows the different types of errors calculated when compawur density estimation function
with the values actually obtained. Note that the averagsivel error is only 1.02%.

Figure 6. Comparison between simulated and estimated averages.esult
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Table 7. Density estimation error.

Error

Absolute

Relative

Minimum

-2.612027E+01

-2.284800E-01

Maximum

2.169529E+01

5.713108E-01

Mean

-3.176197E-10

1.023340E-02

Std. Error of Mean

1.360303E+00

1.714082E-02

Median

1.698901E-01

-1.359121E-03

Finally, Figure7 shows the absolute error histogram.
around zero, which confirms that our proposal is consistéhttive expected results, and that the density

estimation is accurate enough.

80

As shown, results amlynaoncentrated
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Figure 7. Absolute error histogram.
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5. Comparing Our Proposal with a Beacons-Based Density Estiation Approach

As previously mentioned, other vehicular density estiorafiroposals rely on the use of infrastructure
elements to estimate the vehicle density (eZf],[and [L3]). On the contrary, the proposals based on
V2V communications do not require the deployment of anyaisiiructure nodes, but they usually take
into account just the number of beacons received (€.and [L7]), while omitting any data related to
the map topology where the vehicles are located at.

In order to assess the importance of the topology, we cordpaue proposal with a beacon-based
approach, where the vehicular density is estimated by osilyguthe number of beacons received. To
make a fair comparison, we followed the same methodologyih Bpproaches.

We tested four different density estimation functions e only based on the number of beacons
received, trying to obtain the lowest sum for the squarealabs error. Specifically, we have tested
three different polynomial functions.€., quadratic, cubic, and quartic), and a non-polynomial fimmc
(based on the Preece—Baines Growth function). Equat®r$6) show these functions, and Tale
shows their coefficients.

f(z) =a+ bx + cx? (3)

f(z) = a+ bx + ca® + da® 4)

f(z) = a+ bz + ca® + da® + fa* (5)
a—2-(a—Db)

(6)

0= e = D) + eonlf - @ =)
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Table 8. Beacons-only functions’ coefficients.

2414

Coefficient

Quadratic

Cubic

Quartic

Preece—Baines

a

1.8294269144848133E+0

| 2.2768425534110406E+0

| 3.9047236513533704E+01

1.9087154795377430E+0

4.1367349228558270E+0

D 3.2941345206538704E+0

D -1.3847115600040454E+0

o

D 1.6327793099067961E+0

-2.1509124292378768E-0.

p 7.0289357151021746E-03

2.9758692872675790E-01

2.5673041989256740E-04

-2.5558429762904153E-0:

fl -6.4713013709561500E-03

4.4055843266582620E+01

Q|0 |T

4.2741298952571685E-05

6.8666406701129157E-0]

Table 9 shows the square absolute error sum for each of the functested. As shown, our SJ
Ratio function yields more accurate results, presentirggloiver sum for the square absolute error
(approximately 6.332E+03, two orders of magnitude lowamntithe others), and it only commits an
error of8.8967 vehicles, whereas the rest of the functions that only adcfaurthe number of beacons
commit an error ranging fromi0.5017 to 41.5684 vehicles, depending on the selected function.

Table 9. Comparison between our SJ Ratio and the Beacon-based ydessimation

approaches.
Fitted function Sum of square absolute error| Vehicles error
Beacons-only Quadratic 1.3823448453520384E+05 41.5684
Beacons-only Cubic 1.3799411801756185E+05 41.5322
Beacons-only Quartic 1.3609380737712432E+05 41.2453
Beacons-only Preece—Baines Growth 1.3123134971478261E+05 40.5017
SJR Full Cubic 6.3321549647968613E+03 8.8967

Figure 8. Graphical comparison between simulated and estimatetisésueach function.

Total number of vehicles per Km2

250 T T T T T T T
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#
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/s Quadratic ———-
X Cubic -------
Quartic - - - -
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0 V3 1 1 1 1 1 1 1
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Figure8 shows how our approach fits well with both the Complex and &rvaps, since it adjusts
the estimation made, accounting not only for the number a€bes received, but also for the features of
the maps where the vehicles are located. On the contrase tijgproaches that only take into account the
number of beacons received correctly estimate the denfsitglocles in complex maps, specifically in
low and mid-density scenarios (less than 150 vehikies?). However, they underestimate the number
of vehicles in high density environments, and, most impalyathey overestimate the density of vehicles
in Simple maps.

Therefore, the advantages of using our vehicular densttgnason proposal are clear in terms of
accuracy. Our approach requires using GPS and digital nfajgghese requirements are currently
fulfilled by most of the vehicles in many countries.

6. Conclusions

This paper proposes a method that allows vehicles to et vehicular density in their
neighborhood at any given time by using Vehicular Netwo@st proposal allows scientists to improve
their proposals, or propose new solutions, based on ountysdi

Unlike existing proposals, our vehicular density estim@tmechanism accounts not only for the
number of beacons received per vehicle, but also for the o@gdgy in the region where the vehicles
are located. Our method consists of three phases: (i) weafiiatyze the features of different cities,
(i) the vehicles obtain the number of beacons received,(anaach vehicle estimates the vehicular
density in its neighborhood by applying an equation thatires as input parameters the values in terms
of roadmap complexity and beacons received.

Results show that our proposal allows estimating the védmalensity for any given city with a
high accuracy. We also demonstrated that the charactsristithe roadmap are very useful in order to
accurately estimate the vehicular density in a given seenar

In the future, we plan to apply our proposed vehicular dgrestimation approach to implement more
efficient and adaptive information dissemination scherapsgially designed for urban environments.
We consider that, by using our density estimation propomaladaptive system could increase the
probability of successful communication in sparse netwdrkincreasing its data dissemination rate, or
reduce the channel contention in high density scenariogdhyaing the number of broadcast messages.
Therefore, we plan to apply our proposal to the Profile-drixdaptive Warning Dissemination Scheme
(PAWDS) [30], which was specially designed to improve the warning mgssissemination process in
urban environments.
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