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Abstract: In Vehicular Networks, communication success usually depends on the density of

vehicles, since a higher density allows having shorter and more reliable wireless links. Thus,

knowing the density of vehicles in a vehicular communications environment is important,

as better opportunities for wireless communication can show up. However, vehicle density

is highly variable in time and space. This paper deals with the importance of predicting

the density of vehicles in vehicular environments to take decisions for enhancing the

dissemination of warning messages between vehicles. We propose a novel mechanism

to estimate the vehicular density in urban environments. Our mechanism uses as input

parameters the number of beacons received per vehicle, and the topological characteristics

of the environment where the vehicles are located. Simulation results indicate that,

unlike previous proposals solely based on the number of beacons received, our approach

is able to accurately estimate the vehicular density, and therefore it could support more

efficient dissemination protocols for vehicular environments, as well as improve previously

proposed schemes.

Keywords: vehicular networks; vehicular density estimation; warning message

dissemination; VANETs
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1. Introduction

The convergence of wireless telecommunication, computing, and transportation technologies

facilitates that our roads and highways can be both our transportation and communication platforms.

These changes will completely revolutionize when and how weaccess services, communicate, commute,

entertain, and navigate, in the coming future. Vehicular Networks (VNs) are wireless communication

networks that support cooperative driving among communicating vehicles on the road. Vehicles

act as communication nodes and relays, forming dynamic vehicular networks together with other

nearby vehicles. VNs involve vehicle-to-vehicle (V2V) [1] and vehicle-to-infrastructure (V2I) [2]

communications, and have received a remarkable attention in recent years.

The specific characteristics of vehicular networks favor the development of attractive and challenging

services and applications. Though traffic safety has been the primary motive for the development

of these networks [3–5], VNs also facilitate applications such as managing trafficflow, monitoring

road conditions, environmental protection, and mobile infotainment applications [6–8]. Most of these

applications could be more efficient if the protocols involved become aware of the density of vehicles

at any given time [9], being able to adapt their behavior according to this factor. Thus, knowing the

traffic density in vehicular scenarios is of great importance since it promotes the more efficient use of

the wireless channel [10].

One issue to keep in mind when making any proposal related to vehicular networks is to study in detail

how it behaves when modifying all the possible factors [11]. However, this can be a very time-consuming

task, so it is recommended to focus only on the most importantfactors, overlooking the rest of the

parameters. Fogueet al. [12] concluded that the most significant factors affecting communication in

realistic urban environments are: (i) the density of vehicles, since messages are propagated much more

easily in high density scenarios than in scenarios with a lowvehicle density (where messages cannot

exploit the inherent multihop capabilities of VNs), and (ii) the urban topology, since the presence of

buildings greatly affects the wireless signal propagation.

Traditionally, in Transportation Systems, vehicle density has been one of the main metrics used for

assessing the road traffic conditions. A high vehicle density usually indicates that the traffic is congested.

Currently, most of the vehicle density estimation techniques are designed for using infrastructure-based

traffic information systems. Hence, these approaches require the deployment of vehicle detecting devices

such as inductive loop detectors, or traffic surveillance cameras [13,14]. Consequently, these approaches

do not exploit the capabilities offered by the emerging self-organizing vehicular traffic information

systems, where vehicles are able to collect and process the traffic information without relying on any

fixed infrastructure.

In this paper we focus on the vehicle density awareness in urban environments, and we present a

solution to estimate the density of vehicles based on the number of beacons received per vehicle, and

the roadmap topology. We consider that vehicles, able to precisely estimate the vehicular density in

their neighborhood, can adjust their diffusion scheme according to this density. When using our density

estimation proposal, an adaptive system could increase successful communication probability in sparse

networks by increasing its data dissemination rate, or reduce the channel contention in high density

scenarios by reducing the number of broadcast messages.
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The paper is organized as follows: in Section2 we review previous works closely related to our

proposal, highlighting the similarities and differences.In Section3 we present in detail our proposal

for real-time estimation of vehicular density. In Section4 we measure the estimated error to assess the

goodness of our proposal. In Section5 we compare our proposal with a density estimation method that

only relies on the information provided by the beacons received. Finally, in Section6 we present the

main conclusions of this work.

2. Related Work

Despite the importance of determining the vehicular density to improve the support for vehicular

network applications, so far there have not been enough studies that explored the density estimation

in order to improve wireless communications in vehicular environments. Next, we will discuss the

most relevant works in this field. Tyagiet al. [15] considered the problem of vehicular traffic

density estimation, using the information provided by the cumulative acoustic signal acquired from a

roadside-installed single microphone. This cumulative signal comprises several noise signals such as tire

noise, engine noise, engine-idling noise, occasional honks, and air turbulence noise of multiple vehicles.

Based on these distributions, they used a Bayes classifier toclassify the acoustic signal segments. Using

a discriminative classifier, such as a support vector machine (SVM), results in further classification

accuracy gained over the Bayes classifier. This mechanism requires to deploy microphones in every

street to be able to estimate the vehicular density.

Tan and Chen [13] proposed a novel approach of combining an unsupervised clustering scheme called

AutoClass with Hidden Markov Models (HMMs) to determine thetraffic density state in a Region Of

Interest (ROI) of a road in a traffic video. This approach requires to deploy video cameras in every street

to be able to estimate the vehicular density, and it involveshuge computational requirements.

Shiraniet al. [10] presented the Velocity Aware Density Estimation (VADE) approach. In VADE,

a car estimates the density of neighboring vehicles by tracking its own velocity and acceleration

pattern. An opportunistic forwarding procedure, based on VADE estimation, was also proposed. In this

procedure, data forwarding is done when the probability of having a neighbor is high, which dramatically

reduces the probability of messages being dropped. This approach can be very inaccurate since the own

velocity and acceleration pattern of a vehicle traveling ina city do not seem very representative when

accounting for the vehicular density in the nearby roads.

Artimy [16] proposed a scheme that allows vehicles to estimate the local density, and distinguish

between the free-flow and the congested traffic phases. The density estimation is used to develop a

dynamic transmission-range assignment (DTRA) algorithm that adjusts the vehicle transmission range

dynamically, according to the local traffic conditions. Similarly to the previous work, the scheme

presented in this paper is based on the flow-density relationship, which seems to be only applicable

to simple topologies such as highways. Maslekaret al. [9] claimed that clustering has demonstrated

to be an effective concept to implement the estimation of vehicular density in the surroundings. In this

work, they proposed a direction based clustering algorithmwith a clusterhead switching mechanism.

This mechanism aims at overcoming the influence of overtaking within the clusters. The proposed

algorithm facilitates the attaining of better stability, and thus improves the density estimation within the
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clusters. Simulation results showed that the proposed clustering algorithm is rendered stability through

the switching mechanism, and hence provides a better accuracy in terms of density estimation. However,

due to high mobility, a stable cluster within a vehicular framework is difficult to implement.

Stanicaet al. [17] considered that the medium access control protocol of a future vehicular

ad-hoc network is expected to cope with highly heterogeneous conditions. An essential parameter

for protocols issued from the IEEE 802.11 family is the minimum contention window used by the

back off mechanism. While its impact has been thoroughly studied in the case of wireless local area

networks, the importance of the contention window has been somehow neglected in the studies focusing

on vehicle-to-vehicle communication. In this paper, authors showed that the adjustment of the minimum

contention window depending on the local node density can notably improve the performance of the

802.11 protocol. Moreover, they compared through simulation in a realistic framework five different

methods for estimating the local density in a vehicular environment, presenting the advantages and the

shortcomings of each of them. Venkataet al. [18] proposed a clustering approach for traffic monitoring

and routing, where the Cluster Head (CH) election is done based on distance and direction information.

Since clusters are formed all along the road, CH’s will take the responsibility of routing the message

to the destination. Simulation results showed better stability, accurate density estimation in the cluster,

better end-to-end delay, and good packet delivery ratio. However, the density estimation mechanism

operation is limited to the vehicles within the cluster.

Other authors use the Kalman filtering technique for the estimation of traffic density. For example,

Balcilar and Sonmez [19] estimate traffic density based on images retrieved from traffic monitoring

cameras operated by the Traffic Control Office of Istanbul Metropolitan Municipality. To this end, they

use a Kalman filter-based background estimation, which can efficiently adapt to environmental factors

such as light changes. However, this approach requires the density estimation procedures to be applied

to the road areas manually marked beforehand. More recently, Anandet al. [20] proposed a method that

also uses the Kalman filtering technique for estimating traffic density. In particular, they propose using

the flow values measured from video sequences and the travel time obtained from vehicles equipped

with a Global Positioning System (GPS). They also report density estimation using flow and Space

Mean Speed (SMS) obtained from location-based data, using the Extended Kalman filter technique.

All of these works established the importance of vehicular density awareness for neighboring areas,

but none has deepened in the analysis of the accuracy of the method used to estimate this density, the

best time period to gather the required data, or the effect ofthe topology in the results obtained. In most

cases, this estimation does not take place in real time or requires infrastructure deployment. Moreover,

most of the works regarding the use of Vehicular Networks only use the number of beacons to estimate

the vehicular density. In this paper, we demonstrate how existing approaches can be highly inaccurate,

since the characteristics of the simulated roadmap can significantly affect the obtained results, making

the estimation erroneous.

3. Real-Time Vehicular Density Estimation

The main objective of this paper is to propose a mechanism that allows estimating the density of

vehicles in a specific area by using Vehicular Networks. In particular, we intend to estimate the vehicular
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density taking into account the number of beacons received and the topological features of the selected

area (which can be obtained from the in-vehicle GPS unit).

Our method consists of three phases. In the first phase, we first analyze the features of different

cities (see Section3.1). During the second phase, the vehicles obtain the number ofbeacons received

(see Section3.2). Finally, in the third phase, each vehicle can estimate thevehicular density in its

neighborhood by applying an equation that requires as inputparameters the values, in terms of roadmap

complexity and beacons received, obtained in the previous phases. Next subsections present the different

phases of our mechanism.

3.1. Phase 1: Features of the Cities Studied

An important issue to our vehicular density estimation approach is to obtain the different features of

each roadmap (e.g., the number of streets, the number of junctions, the average distance of segments,

and the number of lanes per street).

The roadmaps used to achieve the density estimation were selected in order to have different profile

scenarios (i.e., with different topology characteristics). We studied eight different cities (San Francisco,

Valencia, Rome, Rio de Janeiro, Sydney, Amsterdam, Madrid,and Los Angeles). Figure1 shows the

topologies of the cities studied. Although some differences can be visually perceived, a more thorough

analysis must be performed to determine and classify the topology of each map.

Table1 shows the main features of each map of the cities under study (i.e., the number of streets

according to the RAV radio propagation model [21], where the visibility between vehicles is taken into

consideration when identifying the different streets, thenumber of junctions, the average distance of

segments, and the number of lanes per street.

Table 1. Map features.

Map Streets Junctions Avg. Street Length (m) Lanes/Street SJ Ratio

Rome 1655 1193 77.0296 1.0590 1.3873

Rio de Janeiro 542 401 167.9126 1.1135 1.3516

Valencia 2829 2233 60.7434 1.0854 1.2669

Sydney 872 814 138.0716 1.2014 1.0713

Amsterdam 1494 1449 90,8164 1.1145 1.0311

Madrid 628 715 183.4947 1.2696 0.8783

San Francisco 725 818 171.4871 1.1749 0.8863

Los Angeles 287 306 408.2493 1.1448 0.9379

We consider that the parameters that better correlate with the complexity of the roadmap are the

number of streets and the number of junctions. Hence, we alsoadded a column labeled asSJ Ratio,

which represents the result of dividing the number of streets between the number of junctions. As

shown, the first 5 cities (Rome, Rio, Valencia, Sydney, and Amsterdam) present an SJ ratio greater than

1, which indicates that they have a complex topology, while the rest of the cities (Madrid, San Francisco,

and Los Angeles) present a lower SJ value, which indicates that they have a simple topology. Note that,

although Rio de Janeiro has a relatively small number of streets and junctions, it has a complex topology

since its SJ Ratio is greater than 1.
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Figure 1. Scenarios used in our simulations. Fragments of the cities of: (a) Rome (Italy),

(b) Rio de Janeiro (Brazil), (c) Valencia (Spain), (d) Sydney (Australia), (e) Amsterdam

(Netherlands), (f) Madrid (Spain), (g) San Francisco (USA), and (h) Los Angeles (USA).

(a) (b) (c)

(d) (e) (f)

(g) (h)
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3.2. Phase 2: Counting the Number of Beacons Received

After performing the topological analysis of the studied maps, we need to obtain the number of

beacons received by each vehicle during a certain period of time. This period is very important, since it

will affect the number of beacons received, and the accuracyof the vehicular density estimation.

According to the results obtained in Section3.3.1. in our scheme, we obtain the number of beacons

received during 30 seconds. We consider that each vehicle sends one beacon per second, and that

these messages, unlike warning messages, are not disseminated by the rest of the vehicles. These

considerations can be found in many previous Vehicular Network studies, so they could be considered

quite realistic.

The simulation results shown in this article have been obtained using the ns-2 simulator [22],

modified to consider the IEEE 802.11p standard (All these improvements and modifications are available

in http://www.grc.upv.es/software/). In terms of the physical layer, the data rate used for packet

broadcasting is 6 Mbit·s−1, as this is the maximum rate for broadcasting in 802.11p. TheMAC layer was

also extended to include four different priorities for channel access. Therefore, application messages

are categorized into four different Access Categories (ACs), where AC0 has the lowest and AC3

the highest priority.

The purpose of the 802.11p standard is to provide the minimumset of specifications required to ensure

interoperability between wireless devices when attempting to communicate in potentially fast-changing

communication environments. For our simulations, we chosethe IEEE 802.11p because it is expected

to be widely adopted by the industry.

We tested our model by evaluating the performance of a Warning Message Dissemination mechanism,

where each vehicle periodically broadcasts information about itself, or about an abnormal situation

(icy roads, traffic jam,etc.). In order to mitigate the broadcast storm problem [23], our simulations use

the enhanced Message Dissemination based on Roadmaps (eMDR) scheme [24]. The eMDR scheme

only allows forwarding messages when the distance between sender and receiver is greater than a

threshold, or in situations where the receiver is the closest vehicle to a junction, and rebroadcasting

could allow the message to reach vehicles in adjacent streets.

As for vehicular mobility, it has been obtained with CityMobfor Roadmaps (C4R) [25], a mobility

generator able to import maps directly from [26], and make them available for being used by the ns-2

simulator. Table2 shows the parameters used for the simulations. All the results represent an average

of over 50 repetitions with different scenarios (maximum error of 10% with a degree of confidence of

90%), and each simulation run lasted for 180 seconds.

Figure2 shows the results obtained for the different cities studied. We also included two lines that

depict the average values for each profile category (i.e., simple and complex average). As shown, two

different groups can be distinguished: (i) the complex maps, which are located in the left part of the

figure, and (ii) the simple maps, which are located in the right part of the figure.

As expected, complex roadmaps present a number of beacons received lower than simple roadmaps

for a similar vehicular density. In addition, we found that the simpler cities present a high similitude

in terms of results, being more difficult to estimate the vehicular density in complex cities compared

with simple cities. Figure2 demonstrates that the vehicular density depends not only onthe number
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of beacons received, but also on the characteristics of the roadmap where the vehicles are located.

Therefore, the characteristics of the roadmap will be very useful in order to accurately estimate the

vehicular density in a given scenario. According to data shown in Table1, the SJ ratio can be used to

characterize the different maps.

Table 2. Parameters used for the simulations.

Parameter Value

roadmaps Rome, Rio de Janeiro, Valencia, Sydney, Amsterdam,

Madrid, San Francisco, and Los Angeles

number of vehicles [100, 200, 300...1000]

number of collided vehicles 3

roadmap size 2000 m× 2000 m

warning message size 256B

beacon message size 512B

warning messages priority AC3

beacon priority AC1

interval between messages 1 second

MAC/PHY 802.11p

radio propagation model RAV [21]

mobility model Krauss [27]

channel bandwidth 6 Mbps

max. transmission range 400 m

Figure 2. Number of beacons received when varying the vehicular density.
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Table3 shows the average percentage difference with respect to themean value. From the obtained

results we observe that the cities that show a better fit for the average results are Valencia (in the complex

topology group) and San Francisco (in the simple topology group). Hence, these cities could be used as

reference to obtain representative results when simulating Vehicular Networks.

Table 3. Average percentage difference with respect to the mean value.

City Percentage Difference

Rome 29.49%

Rio De Janeiro 5.85%

Valencia 4.56%

Sydney 15.82%

Amsterdam 14.96%

Madrid 6.44%

San Francisco 1.74%

Los Angeles 4.70%

3.3. Phase 3: Density Estimation Function

After observing the direct relationship between the topology of the maps, the number of beacons

received, and the density of vehicles, we proceed to obtain afunction to estimate, with the minimum

possible error, each of the curves shown in Figure2.

To propose a method able to accurately estimate the density of vehicles, based on the number of

beacons received and the roadmap topology, we made a total of4,000 experiments. These experiments

involved the simulation of controlled scenarios (i.e., scenarios where the actual density is known).

According to the results obtained, we propose a density estimation function capable of estimating the

vehicular density in every urban environment, at any instant of time.

In order to obtain the best approach, we have tested some different functions (exponential,

logarithmic,etc.). To this purpose, we performed a regression analysis [28] that allowed us to find the

polynomial equation offering the best fit to the data obtained through simulation. Equation (1) shows the

density estimation function, which is able to estimate the number of vehicles per km2 in urban scenarios,

according to the number of beacons received, and the SJ ratio(i.e., streets/junctions).

f(x, y) = a+ bx+ cy + dx2 + fy2 + gx3 + hy3 + ixy + jx2y + kxy2 (1)

In this equation,x is the number of beacons received by each vehicle, andy is the SJ ratio obtained

from the roadmap. The values of the polynomial coefficients(a, b, c, d, f, g, h, i, j, and k) are listed in

Table4, and Figure3 shows the 3-dimensional representation of the proposed equation.
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Table 4. Proposed equation coefficients.

Coeff. Value

a -1.1138191190298828E+03

b -1.0800433554686800E+01

c 3.1832185406821718E+03

d -4.0336415134812398E-01

f -3.0203454502011946E+03

g 2.8542014049626700E-03

h 9.5199929660347175E+02

i 3.5319225007012626E+01

j 1.6230525995036607E-01

k -1.6615888771467137E+01

Figure 3. 3D representation of our density estimation function.

Equation (2) presents the best non-polynomial approach we obtained. However, in terms of accuracy,

the sum of squared absolute error of this function is of 3.8618E+04, while the polynomial function

presents a lower value (6.3321E+03). Thus, we considered touse the first equation in our approach.
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f(x, y) =
16a · exp(−(x−b

c
)− (y−d

f
))

(1 + exp(−(x−b
c
)))2 · (1 + exp(−(y−d

f
)))2

(2)

3.3.1. Time Period Analysis

As mentioned before, our proposal is based on two key factors: (i) the roadmap topology, which is

provided by the in-vehicle GPS systems, and (ii) the number of beacons received at a given period of

time. Hence, in a vehicular density estimation system, it isvery important to decide how much time

is dedicated to gather important and necessary data in orderto better estimate the density of vehicles

at any given time.

In order to determine the optimal period of time that should be considered to estimate the density in

vehicular environments, thereby enhancing the performance of the density estimation process, we made

a total of 600 experiments including six different time periods (i.e., 10, 20, 30, 60, 120, 180 seconds), and

using the maps of Valencia and San Francisco.

Figure 4 shows the number of beacons received by each vehicle when simulating 100 and

200 vehicles·km−2, respectively. As shown, complex maps are more affected by vehicular density

variations, since messages encounter more difficulties to be propagated in these kinds of maps, especially

in lower density scenarios. Regarding the optimal time period, since results are quite linear, a larger time

period seems to be the best option; notice that this solutionrequires fewer calculations, thereby reducing

the overhead. However, a more thorough analysis should be made to determine the optimal time period

required to gather the number of beacons received.

To find the best period, we also analyzed the error committed when using different time

periods. Specifically, we fitted the function coefficients toeach period, and then calculated the

absolute error committed.

Table5 shows the median and the variance of the absolute error for each period analyzed. As shown,

lower periods obtain more accurate results. In fact, when the time period exceeds30 seconds, the error

increases by two orders of magnitude. Having discarded larger periods, we consider that the best period

to gather data is of 30 seconds, since the absolute error offers a lower variance.

Table 5. Absolute error when varying the time period.

Time (s) Median Variance

10 -5.073593E-03 1.483517E-03

20 -1.515514E-03 1.048494E-03

30 -2.972316E-03 7.569214E-04

60 2.377369E-01 1.241401E+03

120 7.621857E+00 1.548736E+03

180 5.128145E+00 1.492756E+03
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Figure 4. Number of beacons received per vehicle when varying the timeperiod and the city

roadmap when simulating: (a) 100 vehicles·km−2, and (b) 200 vehicles·km−2.
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3.4. The Concept of Street

Our vehicular density estimation approach uses three different parameters: (i) the number of beacons

received, (ii) the number of junctions, and (iii) the numberof streets. As for the number of junctions, it is

only necessary to count the junctions between different street segments. However, regarding the number

of streets, we realized that different alternatives could be selected to obtain the number of streets in a

given roadmap.

Basically, the different alternatives are: (i) the number of streets obtained in SUMO [29], where

each segment between two junctions is considered a street, (ii) the number of streets obtained in [26]

(OSM), where each street has a different “name”, and (iii) the number of streets according to the RAV
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radio propagation model [21], where the visibility between vehicles is taken into consideration when

identifying the different streets.

Figure5 shows a small portion of New York City to depict the differentcriteria when counting the

number of streets. For example, Thames Street is consideredonly one street in OSM, whereas the

SUMO and RAV models consider that there are two different streets instead. However, if we observe

Cedar Street, the RAV visibility model and the OSM approaches consider a single street (as expected),

whereas it is represented by three different streets according to SUMO, since it has three different

segments. Finally, according to both the OSM and SUMO approaches, Trinity Place and Church Street

are represented as two different streets, whereas the RAV model considers that only one street exists.

Figure 5. Different criteria when counting the number of streets.

Table6 shows the values obtained when counting the number of streets of some of the cities studied,

according to each criterion (i.e., SUMO, OSM, or RAV). As shown, the differences between these

approaches are significant, meaning that it is important to decide which one to use in order to obtain

accurate and realistic results. After some experiments, werealized that the third approach better

correlates with the real features of cities, since the othertwo present some drawbacks: they are not

accurate enough, or they present some errors (e.g., SUMO always considers segments between junctions

as streets, and using street names to estimate the communication between the vehicles may result in

inaccurate estimations). So, we choose the RAV model to count the number of streets in our vehicular

density estimation mechanism.
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Table 6. Number of streets obtained depending on the criterion used.

City SUMO OSM RAV

Rome 2780 1484 1655

Rio de Janeiro 758 377 542

Amsterdam 3022 796 1494

Madrid 1387 1029 628

4. Validation of Our Proposal

To determine the accuracy of our proposal, we proceed to measure the estimated error. Figure6

shows the difference between the average values for all the cities studied, and the values obtained by our

function. As shown, we achieve a good fit for the average values obtained in the simulations. In addition,

Table7 shows the different types of errors calculated when comparing our density estimation function

with the values actually obtained. Note that the average relative error is only 1.02%.

Figure 6. Comparison between simulated and estimated average results.
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Table 7. Density estimation error.

Error Absolute Relative

Minimum -2.612027E+01 -2.284800E-01

Maximum 2.169529E+01 5.713108E-01

Mean -3.176197E-10 1.023340E-02

Std. Error of Mean 1.360303E+00 1.714082E-02

Median 1.698901E-01 -1.359121E-03

Finally, Figure7 shows the absolute error histogram. As shown, results are mainly concentrated

around zero, which confirms that our proposal is consistent with the expected results, and that the density

estimation is accurate enough.
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Figure 7. Absolute error histogram.

5. Comparing Our Proposal with a Beacons-Based Density Estimation Approach

As previously mentioned, other vehicular density estimation proposals rely on the use of infrastructure

elements to estimate the vehicle density (e.g., [15], and [13]). On the contrary, the proposals based on

V2V communications do not require the deployment of any infrastructure nodes, but they usually take

into account just the number of beacons received (e.g., [9], and [17]), while omitting any data related to

the map topology where the vehicles are located at.

In order to assess the importance of the topology, we compared our proposal with a beacon-based

approach, where the vehicular density is estimated by only using the number of beacons received. To

make a fair comparison, we followed the same methodology in both approaches.

We tested four different density estimation functions thatare only based on the number of beacons

received, trying to obtain the lowest sum for the squared absolute error. Specifically, we have tested

three different polynomial functions (i.e., quadratic, cubic, and quartic), and a non-polynomial function

(based on the Preece–Baines Growth function). Equations (3)–(6) show these functions, and Table8

shows their coefficients.

f(x) = a + bx+ cx2 (3)

f(x) = a + bx+ cx2 + dx3 (4)

f(x) = a+ bx+ cx2 + dx3 + fx4 (5)

f(x) =
a− 2 · (a− b)

(exp(c · (x− d)) + exp(f · (x− d)))
(6)
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Table 8. Beacons-only functions’ coefficients.

Coefficient Quadratic Cubic Quartic Preece–Baines

a 1.8294269144848133E+01 2.2768425534110406E+01 3.9047236513533704E+01 1.9087154795377430E+02

b 4.1367349228558270E+00 3.2941345206538704E+00 -1.3847115600040454E+00 1.6327793099067961E+02

c -2.1509124292378768E-02 7.0289357151021746E-03 2.9758692872675790E-01 2.5673041989256740E-02

d - -2.5558429762904153E-04 -6.4713013709561500E-03 4.4055843266582620E+01

f - - 4.2741298952571685E-05 6.8666406701129157E-01

Table 9 shows the square absolute error sum for each of the functionstested. As shown, our SJ

Ratio function yields more accurate results, presenting the lower sum for the square absolute error

(approximately 6.332E+03, two orders of magnitude lower than the others), and it only commits an

error of8.8967 vehicles, whereas the rest of the functions that only account for the number of beacons

commit an error ranging from40.5017 to 41.5684 vehicles, depending on the selected function.

Table 9. Comparison between our SJ Ratio and the Beacon-based density estimation

approaches.

Fitted function Sum of square absolute error Vehicles error

Beacons-only Quadratic 1.3823448453520384E+05 41.5684

Beacons-only Cubic 1.3799411801756185E+05 41.5322

Beacons-only Quartic 1.3609380737712432E+05 41.2453

Beacons-only Preece–Baines Growth 1.3123134971478261E+05 40.5017

SJR Full Cubic 6.3321549647968613E+03 8.8967

Figure 8. Graphical comparison between simulated and estimated results for each function.
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Figure8 shows how our approach fits well with both the Complex and Simple Maps, since it adjusts

the estimation made, accounting not only for the number of beacons received, but also for the features of

the maps where the vehicles are located. On the contrary, those approaches that only take into account the

number of beacons received correctly estimate the density of vehicles in complex maps, specifically in

low and mid-density scenarios (less than 150 vehicles·km−2). However, they underestimate the number

of vehicles in high density environments, and, most importantly, they overestimate the density of vehicles

in Simple maps.

Therefore, the advantages of using our vehicular density estimation proposal are clear in terms of

accuracy. Our approach requires using GPS and digital maps,but these requirements are currently

fulfilled by most of the vehicles in many countries.

6. Conclusions

This paper proposes a method that allows vehicles to estimate the vehicular density in their

neighborhood at any given time by using Vehicular Networks.Our proposal allows scientists to improve

their proposals, or propose new solutions, based on our findings.

Unlike existing proposals, our vehicular density estimation mechanism accounts not only for the

number of beacons received per vehicle, but also for the map topology in the region where the vehicles

are located. Our method consists of three phases: (i) we firstanalyze the features of different cities,

(ii) the vehicles obtain the number of beacons received, and(iii) each vehicle estimates the vehicular

density in its neighborhood by applying an equation that requires as input parameters the values in terms

of roadmap complexity and beacons received.

Results show that our proposal allows estimating the vehicular density for any given city with a

high accuracy. We also demonstrated that the characteristics of the roadmap are very useful in order to

accurately estimate the vehicular density in a given scenario.

In the future, we plan to apply our proposed vehicular density estimation approach to implement more

efficient and adaptive information dissemination schemes,specially designed for urban environments.

We consider that, by using our density estimation proposal,an adaptive system could increase the

probability of successful communication in sparse networks by increasing its data dissemination rate, or

reduce the channel contention in high density scenarios by reducing the number of broadcast messages.

Therefore, we plan to apply our proposal to the Profile-driven Adaptive Warning Dissemination Scheme

(PAWDS) [30], which was specially designed to improve the warning message dissemination process in

urban environments.
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