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Abstract: The rising popularity of location-based services has prompted considerable
research in the field of indoor location systems. Since there is no single technology to
support these systems, it is necessary to consider the fusion of the information coming from
heterogeneous sensors. This paper presents a software architecture designed for a hybrid
location system where we can merge information from multiple sensor technologies. The
architecture was designed to be used by different kinds of actors independently and with
mutual transparency: hardware administrators, algorithm developers and user applications.
The paper presents the architecture design, work-flow, case study examples and some results
to show how different technologies can be exploited to obtain a good estimation of a
target position.
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1. Introduction

The problem of real time location systems (RTLS) in indoor scenarios is receiving a great deal of
attention because of the many Location-Based Services (LBSs) that can be implemented with them, such
as route management [1], guidance [2], points of interest [3,4], augmented reality [5], healthcare [6]
and others. To provide such services we need a positioning system, typically based on radio range
communications. The Global Positioning System (GPS) is frequently used outdoors due to its worldwide
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coverage. Unfortunately, GPS radio waves are unable to penetrate building structures, leaving indoor
areas uncovered [7]. Moreover, GPS has a poor accuracy, typically in the order of 10 meters [8,9].
Thus, other technologies such as Wireless Sensor Networks (WSN) are needed to implement Indoor
Positioning Systems (IPSs) and enable LBSs in indoor environments.

Nowadays, there is a continuous emergence of many kinds of portable devices, such as mobile phones,
smart-phones, PDAs, tablets and laptops, that are equipped with several radio interfaces such as WiFi,
Bluetooth, GPS, NFC, and even inertial sensors, such as accelerometer and digital compass. Luckily, we
can take advantage of these features for indoor positioning, and use them to directly estimate the position
of persons, animals, vehicles, etc.

While outdoor positioning systems typically operate without many problems using satellite systems,
indoor positioning is a non-trivial task, as signals that propagate through the indoor environment are
scattered, reflected and affected by multi-path fading. Moreover, signals are affected by transient
effects such as human bodies absorbing signals [10] or the humidity level. For instance, narrowband
technologies working on the 2.4 GHz ISM band, such as WiFi, ZigBee and Bluetooth, are affected
in a similar manner by environmental phenomena. They use Receive Signal Strength (RSS) noisy
information for ranging and they have similar accuracy. According to the RADAR project [11] a median
accuracy of fingerprint technique in a noisy WiFi channel can be of 2.94 m. Subsequent research efforts
have tried to improve positioning accuracy by means of several kinds of location and classification
algorithms, such as Support Vector Machines [12], Neural Networks [13,14] and Particle Filters [15–17].
Motion models have also been used to better model signal fluctuations in non-static scenarios [15–19].
However, the accuracy that can be obtained by using an indoor positioning system cannot be only
attributed exclusively to the chosen location algorithm; it is also affected by factors such as the number
of sensors, their placement, their sensitivity, the orientation of their antennas or the number of samples
used, etc. [18,20]. Elnahrawy et al. [21] made an extensive study comparing a wide range of location
algorithms, and concluded that 10 feet (about 3 m) supposes a feasible lower bound for these indoor
systems based on RSS measurements, due to the inherent limitations of distinguishing RSS values at
short distances.

Thus, for an LBS demanding greater accuracy, e.g., below one meter, other non-RSS based
technologies are needed. Ultrasound and Ultra Wide Band (UWB) technologies appear as feasible
options as they use Time-of-Arrival (ToA) and Time-Difference-of-Arrival (TDoA) information,
much more precise than RSS, and more robust to multi-path fading and to external interferences.
However, the availability of these technologies and their price compared, for instance, with WiFi and
Bluetooth, sometimes force us to deploy multiple WSNs to cover a large scenario. UWB platforms
require the deployment of a much more expensive infrastructure especially designed for precise time
synchronization between the readers of the network, but on the other hand, it typically uses inexpensive
UWB transmitting tags. Another weak point of UWB is that there is still no portable device on the
market (i.e., a smartphone) that integrates any UWB part. Luckily, the size and weight of the UWB tags
are extremely small so they can be easily attached to any other portable device, being able to obtain a
much higher accuracy.

To obtain a ubiquitous and reliable RTLS supporting indoor and outdoor scenarios, we require a
hybrid location system supporting multiple technologies simultaneously. In this paper, we propose
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an approach to this problem by introducing a client-server architecture for developing a generic and
easy-to-use hybrid real-time location system. The proposed system is able to obtain measurements
from several WSNs (RF nodes) and several generic sensors (i.e., inertial sensors, motion detector,
video cameras, etc.), obtaining position estimations by means of several location algorithms running
simultaneously in real-time. It also provides a flexible data fusion module to furnish combined
positioning information to several concurrent client applications. This fusion module can automatically
merge positioning information from an arbitrary number of nodes (several WSN technologies) and
sensors registered in the system. Moreover, communication between the clients and the server is made
by using a well defined interface.

This paper is organised as follows. Section 2 introduces an overview of the state of the art and
the proposed architecture features. Section 3 presents a logic view of the elements that make up the
architecture and how they are connected. Section 4 shows a runtime view of the architecture, presenting
the common workflow of tasks like the registration of WSN hardware, mobile nodes, sensors, etc.,
and the insert and query of measurements and position estimation information. Section 5 shows two
implementation example case studies; one based on two ZigBee and UWB networks, and an inertial
sensor (accelerometer) to illustrate how to deploy a representative set of WSN technologies, nodes and
sensors in a scenario; and another real scenario showing how to implement a real fingerprinting solution
based on WiFi technology. Section 6 shows some validation results using a simulated environment
where we deploy two ZigBee and UWB WSNs, and we track the position of a multi-technology target,
comparing several data fusion methods. Finally, Section 7 shows some conclusions and future lines
of work.

2. State of the Art and Proposed Architecture Features

Typically location-aware applications build the entire system (including sensing, representation, and
application logic) as a monolithic structure. These monolithic systems are a fast-developing solution
when considering a particular application and type of sensors, but they lack flexibility and scalability.
Therefore, these solutions are difficult to generalize and retarget to new applications, increasing the
costs of a further development. Authors in [22] were one of the first groups who introduced the idea of
a layered architecture for LBS. The seven layers try to provide a stack for any kind of location-based
service or application.

In a more general way [23] described the LBS by means of a three layer model: positioning,
middleware and application layer. The application layer determines the data usage for specific location
applications, based on the data extracted from the middleware. The middleware provides the interfaces
for the application layer, hiding technical details from the positioning layer. Finally, the positioning layer
deals with the deployment, configuration and calibration of wireless location infrastructure; gathers raw
data (radio signal strength, time of arrival, angle of arrival. . . ); and calculates location data using location
algorithms such as proximity, ranging, triangulation, or signal strength maps. RTLS platforms, like the
one introduced in the paper, cover the positioning and middleware layers of an LBS.

Once it is clear that an architecture model for RTLS was necessary, the International Organization for
Standarization (ISO) defined two standards: ISO24730-1:2006 [24] and ISO19762-5:2008 [25]. The first
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defines an API (Application Programming Interface) describing an RTLS service and its access methods,
to enable client applications to interface with the RTLS, whilst the second provides a harmonized
vocabulary with terms and definitions unique to locating systems in the area of automatic identification
and data capture techniques. This glossary of terms enables communication between non-specialist users
and specialists in locating systems through a common understanding of basic and advanced concepts.

We can find several examples of location systems with standalone solutions. As we can see, these
systems provide particular solutions for an RTLS. Representative examples of them are:

• Authors in [26–28] take advantage of data coming from only one technology (one type of sensor)
for obtaining a monolithic solution.
• Authors in [4,6] use several technologies, but they were defined for specific applications, in

particular for hospitals and museums.
• Other examples of proprietary RTLS with a business model are shown in [29–32], where the

owner companies provide closed solutions for their customers, relying on their own hardware and
presenting large numbers of constraints in the location data provided.

The best example of an RTLS platform that works seamlessly with several technologies can be found
in the LocON project [33,34]. This platform provides an interface for the end user that interacts with
an application layer independent of and transparent to the supported technologies [35,36]. The defined
API in LocON is oriented to application support, but it lacks interfaces for users of the platform at other
levels of abstraction, i.e., hardware providers or algorithm developers.

Taking into account this state of the art, we have considered the following requirements for the
proposed architecture that improves the deficiencies of the previous solutions:

• Technology Independent: it must support inputs from any kind of measurement (RSS, TOA,
TDOA, Angle-of-Arrival (AOA) and raw distance), generic data from any sensor (i.e., inertial
sensor such as accelerometer, gyroscope, digital compass, motion detector, image frames from a
digital camera, etc.).

Table 1 shows the standardized type of measurements supported by the proposed architecture, to
consider any kind of sensor data. The custom defined data of a generic sensor can be modelled as
an aggregation of parameters of any basic data type: float, integer, strings, boolean or binary data
(encoded as string using a method such as Base64, UUEncoding, etc.). Or it can be modelled as
an arbitrary long array-list of such kind of parameters. Section 5 shows two example case studies
and it deeply explains the capabilities of the platform with generic sensors.

Table 1. Standardized types of measurement supported.

RSS TimeStamp [ms] AnchorID MobileID RSS [dBm] Seq. Number
TOA TimeStamp [ms] AnchorID MobileID TOA [s] Seq. Number

TDOA TimeStamp [ms] AnchorID1 AnchorID2 MobileID TDOA12[s] Seq. Number
AOA TimeStamp [ms] AnchorID MobileID AOA [α,β rad] Seq. Number

DISTANCE TimeStamp [ms] AnchorID MobileID Distance [m] Seq. Number

SENSOR TimeStamp [ms] SensorID Custom defined data*
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• Multi-Technology: a target to be located could be comprised of several technologies at the same
time. In this way, the requirement of supporting several technologies can be used to merge
heterogeneous raw data to provide reliable and precise positions, thanks to the diversity obtained.

Figure 1 shows the UML class diagram of the possible components that are defined in the proposed
architecture, needed for considering the previous requirement. As we can see, we have Nodes of
two types: Anchor (with fixed and known positions) or Mobile (to be located). The Networks
are groups of several Anchor nodes (at least one) to form a common WSN. Finally, the Target
devices are virtual devices with an identifier that aggregate several Mobile nodes (i.e., different
technologies) and/or generic Sensors which can be jointly located with only one system query.
As we can see, target nodes can consider multiple technologies, providing diversity that can be
exploited by the algorithms.

Figure 1. UML class diagram of the system nodes, sensors, networks, etc.
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• Multiple coordinate system and map-aware application support: to give support to the
map-aware applications in indoor scenarios, the architecture must be able to work with elements
and positions with coordinates relative to different maps, which possibly have different local
coordinate systems. The local coordinate systems can be defined by an origin point, a scale,
and optionally an associated blueprint bitmap. Moreover, the architecture should support a global
coordinate system such as the one used by satellite location systems, and should be able to combine
both kinds of coordinate system transparently for users.

• Data Fusion: the system must provide mechanisms for data fusion coming from different raw
measurements (technologies) and/or positions obtained from different algorithms. On one hand,
low-level raw measurement fusion could be considered inside the location algorithms (i.e., Kalman
or Particle Filters), since an algorithm can obtain data coming from several technologies (sensors)
associated to the same target. And, on the other hand, optional high-level fusion of final estimated
positions must be provided directly by the platform. In this way, depending on the LBS considered,
client applications could switch between, or combine, different algorithm position estimations.

• Protection and Security: the system should support at least one mechanism for secure
authentication of external users who want to interact with the system, and optional protection
of the data interchanged with the system, for instance by some means of data encryption.

• API: the platform must define an API describing the access methods, to enable client applications
to interface with the RTLS. This API will define a boundary with syntax and semantics that
specifies the seamless interface between external modules and the platform. Since the cited
standards ISO24730-1:2006 [24] and ISO19762-5:2008 [25] do not cover all the requirements
of the proposed platform, it is not possible to follow them. However, the API platform is based
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on them using standardized names and abbreviations for the different actors, commands, modules,
parameters, etc.

• Off-line data: it must be possible to get measurements and position estimations on-line in real
time and also off-line. Therefore, it should be possible to get the latest measurements or positions
available or those from specific instants of time (off-line or historical data). Off-line data makes
it possible to test and compare algorithms and client applications with a common set of data, and
obtain repeatable results which are critical for research purposes.

• Easy-to-Use: users without special skills should be able to access the system to perform any of
the following tasks:

– Registration of WSNs, building blueprints, anchor networks, mobile nodes, generic sensors,
and insertion of raw measurements into the system. This information will provide an
abstraction of the hardware, offering users without hardware skills the possibility to obtain
real measurements and sensor data without effort.

– Obtaining measurements and inserting position estimation information by users who
design location and tracking algorithms. They provide positioning data to end-user client
applications which do not need special skills in how the location algorithms are implemented,
optimized or obtain measurements.

– Obtaining position information by end-user client applications in real time, for several
mobile nodes, sensors, or groups of them, which can be implemented by using different
WSN hardware technologies. These users do not need to know how and from which
WSNs measurements were taken, nor from which location or tracking algorithms were these
positions generated.

3. Logic View

Figure 2 shows the components that make up the proposed client-server architecture as well as the
connections among the components in terms of a logic view:

• Location Server: the main component of the hybrid location system, which is composed of
several modules for storing measurements and positioning information obtained from external
WSNs, sensors, and location algorithms. It allows external actors to insert and retrieve in a flexible
way all manner of location information. As a server, it offers an input/output interface to allow
remote connections.

• WSNs and Sensors: remote client applications that can be deployed in distributed hosts, and
which provide all kinds of measurements (as shown in Figure 1, RSS, TOA, TDOA, AOA or
distance) and generic sensing data (i.e., motion detection, acceleration, turning, inclination, etc.)
to other actors such as Location Algorithms.

• Location Algorithms: client applications responsible for obtaining available measurements and
sensing information from the Location Server to estimate new positions. Then, they can store
the new positioning information inside the system. Low-Level Fusion Algorithms (i.e., Kalman
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and Particle filters) are supported as specialized Location Algorithms which would retrieve
several kinds of measurements from different WSNs (instead of from only one), accessing the
Location server.

• Localization Clients: client applications that consume positioning information previously
generated and filtered for one or more location algorithms, with the option of high-level position
data fusion. They can also query for measurements if they need them for a specific purpose.

Figure 2. Proposed architecture for Hybrid Real-Time Location Systems.
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3.1. Location Server

Figure 2 shows a component diagram of the Location Server architecture. It is composed of the
following subsystems:

• Communication Manager: responsible for communications with the server to attend external
clients, parsing the received requests and generating appropriate responses. Internally, it is made
up of an Input-Output Module in charge of the data transmission from or to an external network,
and a Request Parser module in charge of processing query messages and wrapping output
messages. As we will show in the following sections, these messages are well defined, based on
the JavaScript Object Notation (JSON) standard. JSON is a lightweight text-based open standard
designed for human-readable data interchange, much more compact and readable than other data
formats such as XML [37] and YAML [38]. The greater speed and reduced computational
complexity of JSON versus other formats has led the main API developments to increase their
use of JSON from 6% in 2009 to 20% in 2011, as the only supported formatting system [39].
Seeing the growing inclination of developers and API makers alike for JSON, many well-known
companies and Internet services such as Tumbler, Twitter, Facebook, OpenSocial, Google, Digg,
Urban Airship, Twilio, etc. have decided to eliminate the XML support (when possible) and
devote their energies to migrating to a good implementation of JSON [39–45]. Currently there
are several implementations of JSON available (i.e., Jackson [46], Jsonlib [47], Google Gson [48],
etc.), which even offer cache mechanisms to guarantee maximum performance. Some benchmarks
are available in [49–52]. Therefore, we decided to combine JSON with standard TCP sockets to
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guarantee very low in-system overheads due to message data processing, and to allow a very low
latency. In this way we allow any client (even lightweight clients using micro-controllers), using
any kind of programming language, to be able to send and receive data with the Location Server.

• Location Manager: its mission is to analyze all the queries that come into the Location Server
to find a suitable answer in the server by delegating in the Position Manager, Sensor Manager or
ID Manager subsystems. The next element is the High-Level Fusion Module. It is responsible
for creating fusion data based on the available position estimations from any technology that have
been generated by any Location Algorithm. This module is easily extensible by a programmer
by registering a new fusion module implementation in the system. Adding a fusion method key
to an appropriate configuration file and the implementation class should be enough to add a new
high-level fusion method to the architecture.

• ID Manager: its mission is to store the existing relationships among the target devices to be
located and the mobile nodes and sensors assigned to it (see Figure 1 for more details about the
relationships allowed in the system). This subsystem manages the associations and disassociations
among the target devices, mobile nodes and generic sensors, and a log of these associations for
future use.

• Measurements Manager: receives and stores measurements from WSNs and sensors, and attends
queries from external Location Algorithms and Localization Clients.

• Position Manager: its mission is to receive and provide positioning data. Several Location
Algorithms can store estimated positions in the system using this module, while external
Localization Clients can query these data at any time. The stored positioning data is associated
with an identifier of the target device or single mobile node or sensor from where it was measured,
and an estimation of its accuracy, which is calculated by means of different aspects such as the
kind of technology, the number of sensors available, the number of measurements per time, etc.
The associated identifier can be a single mobile device, although more sophisticated target devices
are managed by the ID Manager.

• Map Manager: receives and stores coordinate system information associated to several maps.
Map-aware elements such as the anchor nodes or the position estimations generated by the
Location Algorithms (or a specific Low-Level Fusion Algorithm) are relative to a particular map
registered in the system. The different clients can register new maps, given an origin coordinate,
a map scale and optionally a map bitmap (usually the blueprints of a floor of a building for an
indoor scenario).

As shown in Figure 2, some subsystems are connected to different databases, which can be
implemented in the same or in several physical databases. Also note that the ID Manager, Measurement
Manager, Position Manager and Map Manager use the following two modules: a Request Manager to
parse the queries and encapsulate the result data, and a DB Module to obtain and store information from
or into the appropriate database, abstracting and isolating access to it.

When isolating each part within the Location Server as we have done, using different modules and
layers, we are able to correctly maintain and extend each part in the future. Therefore, we can give a



Sensors 2013, 13 2228

proper support to future application requirements, or adapt the system to specific project constraints with
little effort.

3.2. High-Level Fusion Module

As we have explained in Section 2, multiple sensor technologies can be associated to a virtual target
device that can be used for its location. With the proposed location system, we can not only query the
position estimation of a multi-technology target device with one system call, moreover we can combine
all or a subset of technologies grouped by a target device with one system call.

The proposed high-level fusion module of the architecture can combine or select different position
estimations available in the system, which were inserted by several location algorithms and which are
associated to several sensor networks. This module can automatically switch or combine the available
position estimations, and provide an end-user client application with an improved position estimation,
also automatically.

The main advantage of the high-level fusion module of the proposed architecture is its extensibility. A
software programmer can add a new implementation for this fusion module to the existing ones, adding
new capabilities to the system in terms of data fusion. The new data fusion method should be uniquely
identified by a string key, which should be added to a configuration file, in addition to other parameters
about the path of the new implementation class files, etc.

The proposed architecture message system that will be discussed in Section 4 will show how to ask
the system for a position estimation, using or not the data fusion capability.

To facilitate the workload of the data-fusion method programmer, the new position estimation
message defined in the system (new position message) requires an input position accuracy (position.acc)
parameter. It is thus mandatory for all the location algorithms to insert an accuracy estimation (in meters)
for every position estimation inserted into the system. It is a task of the location system designer to
provide this parameter as accurately as possible, through the new position message. Typically based
on the specific characteristics of the indoor scenario, the number of anchor nodes available, number of
anchors detecting a mobile node, the kind of sensor technology (based on RSS, TOA, etc.), and maybe
on an estimation of the variance of the signal level fluctuations, the location algorithm designer should
provide the system a dynamic changing position.acc value.

As an example, we have considered three different data fusion techniques to illustrate how the
proposed high-level fusion module works, and how it can be extended. Some of these methods take
advantage of the position.acc information obtained from the location algorithm estimations, and by
means of different techniques for combining or selecting the available position estimations provide
filtered position estimations. The three methods implemented are based on classic combination and
selection algorithms, typically used to increase the capacity or to stabilize the received signals when
using multiple antennas. Note that in this paper we use the same names as those used in the traditional
algorithms, but we have adapted them to our location architecture, based on the position.acc parameter
and the position estimations. In the results Section 6 we will show the conditions where we gain
from using high-level data fusion, compared with the case where we use separate individual WSN
technologies.
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3.2.1. Combination Methods

• EGC (Equal Gain Combiner): identified as EGC in the system, this combination method is very
simple as it gives equal weight to all the position estimations from the available technologies
associated with a single device. It produces the average of all the position estimations, following
the equation:

posEGC =
1

N

N∑
i=1

posi (1)

where N is the number of available location algorithms which are associated to a device, and posi

is the position given by the i-th location algorithm. This method does not take into account the
position.acc parameter.

• MRC (Maximum Ratio Combiner): identified as MRC. Unlike the EGC, this method weighs
each position estimation depending on its quality, given by the position.acc parameter. That is, it
gives more weight to the algorithms with the smaller position.acc, and is calculated by means of
the following expression:

posMRC =
N∑
i=1

ωiposi, (2)

ωi = 1− position.acci
N∑
j=1

position.accj

Note that in the event of there being only one position available (N = 1), the result is directly
this position.

3.2.2. Selection Methods

• SC (Selection Combiner): identified as SC, this method consists in sorting the available position
estimations by means of their associated position.acc from lowest to highest value, choosing only
one value. The goal of this method is to achieve the best position estimation at each instant,
without considering the location accuracy fluctuations. In our system we have considered the
position estimation associated to the lowest valued position.acc.

3.3. Location Algorithms and Low-Level Fusion Algorithms Support

As shown in Figure 2 any arbitrary location or more sophisticated tracking algorithm is supported.
The typical workflow of the location algorithms is explained in detail in subsection 4.3 but basically,
they are periodically fed with measurements from a particular WSN, which are stored in the Location
Server, and they then generate new position estimations in real-time (which are sent back to the Location
Server for future use by any Locatization Client of other Location Algorithms, etc.).

The special tracking algorithms which involve a low-level fusion of raw data from multiple WSN
are specialized versions of a Location Algorithm, supported in this architecture by the gathering of
measurements from several WSNs and sensors through the Location Server. The mechanism for
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obtaining measurements is the same. The multi-threaded implementation of the Communication
Manager allows for concurrent connections to the Location Server and permits the low-level fusion
algorithms to gather the sensor data asynchronously and concurrently at any time, so that they have time
to process and merge the data as needed.

Therefore, all kinds of Bayesian filtering algorithm with different observation models are supported
within this architecture.

3.4. Protection and Security

We considered the OpenID [53] open standard as the most convenient manner of authenticating users
with the Location Server. It is a highly mature and safe solution, which can be extended in the future.
OpenID authentication is now used and provided by several large websites, such as AOL, BBC, Google,
Yahoo!, IBM, MySpace, LiveJournal, Facebook, Vkontacte, Steam, Orange, PayPal and VeriSign.

Regarding the confidentiality of data exchanged between the different clients and the Location Server,
we can optionally add cryptographic support by using security protocols such as Secure Sockets Layer
(SSL) [54] or Transport Layer Security (TLS) [55]. These security mechanisms are optional and
independent of the rest of the proposed architecture, and they are only implemented for high-level clients
with high security requirements. Thin clients such as the ones implemented over a WSN hardware do
not usually require such high security which, on the other hand, would increase the network overheads.

4. Runtime View

After describing the elements (and interconnections) of the proposed architecture in Section 3, in this
section we will explain a runtime view which represents the workflow of the different processes needed
by the proposed architecture supporting the capabilities shown in Section 2.

These processes are divided into the following four main groups, according to the person responsible
for carrying each process. All the processes are considered independent:

• Network Administration and Measuring Processes: a network installer has to physically
deploy a WSN (of anchor nodes) at an indoor or outdoor scenario, from which to take physical
measurements. Therefore, a user registers the network elements (anchors), mobiles and generic
sensors, all of them with an associated identifier, and the anchors with their real and fixed positions
relative to a map coordinate system. After that, several external software applications should
continuously take measurements from the deployed networks by directly accessing the nodes
hardware. They then insert these measurements into the system by creating standardized messages
and sending them through a network to the Location Server. In this section we will explain in detail
the set of standardized commands supported by the system.

• Target Device Administration: the same network installer or another user can register virtual
target devices, which are associated to several mobile nodes and/or generic sensors used for
localization. These targets, and consequently the several elements associated to them, can be
queried by other users (in the following steps) with a single system call.
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• Position Estimation using Location Algorithms: a researcher or location algorithm developer
can continuously take measurements from the system, without taking care about how the WSN
networks were deployed, or how the measurements were “extracted” from the hardware. These
users can implement several variants of a location algorithm which are fed with real measurements,
from the same or from different WSNs. Specialized versions of Location Algorithms can perform
low-level data fusion by retrieving measurements from several networks and several sensors at
a time. After that, they can perform a tracking step, and finally return a position estimation to
the Location Server. As always, the measurements and positions can be easily obtained from the
system or inserted into the system by using standardized commands.

• Localization Clients: finally, several end-user client applications can access the system in real
time to obtain position estimations from several technologies, optionally using a high-level fusion
method registered in the system.

In the rest of this section we will decompose the previous main groups of processes, and explain them
in depth. Figure 3 shows six groups of processes. As we will explain later, the reason for dividing them
into these subgroups is because some of these processes need only be performed once, for instance for
initialization purposes.

4.1. Network Administration and Measuring Processes

These processes correspond to the workflow of the group of commands A and B shown in Figure 3,
and they are explained below:

A.1. Network Infrastructure Registration

First, a network installer would physically deploy the anchor nodes of a network (group of nodes
with fixed positions) at an indoor or outdoor scenario. Then, he has the option to make the
local coordinate system of several floors of a building with their associated blueprints available
for future use. He can use the new map command for this purpose, or obtain the maps already
uploaded into the system by using the get available maps command. After that, if this
has not been done before, he registers the kind of node technology (i.e., ZigBee, based on RSS
measurements or UWB, based on TOA measurements), using the command new technology.
This step is performed only once for a specific kind of hardware technology of a network (i.e.,
ZigBee infrastructure based on MicaZ [56] nodes working at 2.4 GHz in channel 15, with a specific
PAN identifier, etc.). This means that when using another ZigBee platform, for instance based
on Arduino [57] plus XBee [58] nodes, or with the same hardware but configured in another
radio channel with a different PAN ID, etc., which is not interoperable with the previous one,
the new technology should be registered as a new kind of technology in the system, with a different
identifier. He also has the option to retrieve the previously registered WSN or sensor technologies
by using get available technology.

Once the technologies have been registered, the network installer has several alternatives. He
usually continues inserting the WSN anchor nodes with their fixed positions into the system (i.e.,
ten anchors for a desired room, calling the new anchor command ten times). The anchors are
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associated to a specific technology, which guarantees a type and format of measurements for the
system in the future.

Then, it aggregates all these anchors to a same network identifier (which represents a unique WSN)
using the new network command. Thus, in the future all of these grouped anchors can be
accessed at the same time by a location algorithm. Note that an anchor can only be associated
to a single network and that its coordinates are relative to the local coordinate system defined for
a specific map (floor or part of a building or other scenario with an origin coordinate, a scale
(in pixels/meter) and an optional associated blueprint bitmap image). An example of a new map

JSON message is shown in the next section.

As an alternative at the third decision point, the network installer could skip the anchor and network
registration, and pass directly to the following mobile node or sensor registration. Note that some
previously registered technologies only involve generic sensors which are not associated to any
registered network (i.e., inertial sensor, fingerprinting scan point, etc.). See group A of messages
in Figure 3 for more details.

This registration process can be repeated for a different kind of node platform and networks as
many times as needed. Other users who have already implemented some location algorithms and
tested them with simulated measurements can now test their algorithms with real measurements,
without having to be skilled in either hardware deployment or low-level programming of access to
the WSN hardware in order to extract physical measurements.

A.2. Mobile Node Registration

The network installer also registers new mobile nodes in the system for use by other users with no
hardware skills. He uses the new mobile command.

A.3. Generic Sensor Registration

The final registration step is for generic sensors such as accelerometers, gyroscopes, digital
compass, etc., which can give localization support to a tracking algorithm, for instance. They
must be registered at this step using the new sensor command. Note that a customized kind of
technology must have previously been registered in step A.1 for each generic sensor. For instance,
for a 3D accelerometer we would require three float values associated to each measurement,
representing the acceleration on the three axes. Each sensor measurement format is unique and
can be custom defined as shown in Figure 1, as any combination of data types supported by the
system. The system will use this kind of custom technologies so defined to parse and verify the
format of new measurements to be inserted into the system in the future.

B.1-2. Measuring Process

The next two measuring process steps can be performed by the same network installer as in
the previous registration steps, or by another user who is familiar with the deployed hardware
platform and who knows how to extract physical measurements from the hardware. This user
should implement a piece of software that continuously accesses one or several anchor nodes at
low-level (which can be quite sophisticated depending on the kind of technology) to be able to
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communicate or somehow detect several mobile nodes. This software finally extracts physical
parameter information like RSS, TOA, AOA, etc., or generic sensor data (for generic sensors
such as accelerometers, gyroscopes, etc.). It should use the new measurement command to
insert new measurements into the system, and make them available for the other users (i.e., the
location algorithm designer or an end-user location application).

Figure 3. Workflow of the proposed system divided into six groups of messages:
(A) Infrastructure (maps, anchor and network), mobile node and sensor registration process;
(B) New measurements from mobiles or sensors; (C) Target administration with association
to mobiles and/or sensors; (D) Location algorithm initialization steps to know the elements
available; (E) Position estimation process where, a location algorithm estimates new
positions after reading measurements; (F) The localization clients continuously get position
estimations, optionally filtering and merging positioning data.
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4.2. Target Device Administration

As explained in Section 2 we can group and identify several mobile nodes and generic sensors by a
single and unique target device identifier. In this step, somebody in charge of the device administration
can create new virtual target devices and associate or disassociate mobile nodes or generic sensors with or
from it. The new target command can be used to register a new target device identifier in the system,
and then the new target association and del target association commands can be used
to add or to delete mobile nodes and sensors to the target device. This process corresponds to the
workflow and the group of commands C shown in Figure 3.

4.3. Position Estimation using Location Algorithms

The researcher or user who implements a location algorithm is the next actor in the system. He would
typically be a user who has already implemented a more or less complex location or tracking algorithm,
and who probably uses a simulation environment such as MATLAB and makes use of simulation
measurements to test his algorithms. This user can now feed his algorithm using real measurements
from one or several WSNs, with the advantage that he does not have to spend any time deploying a WSN
or accessing the hardware. He can directly query which technologies are available (registered) in the
system, where the networks (groups of anchors) are physically deployed (relative to a map), with which
technology a particular network (or kind of sensor) is implemented, which mobile nodes and sensors are
available for experiments, etc. Finally, he can query for several on-line or off-line measurements from
several WSNs. All these tasks can be easily performed using standard commands as always, with no
need for advanced skills in hardware or software implementation. In Section 5 we will explain how a
researcher could connect the Location Server to take real measurements.

This process corresponds to the workflow and the groups of commands D and E shown in Figure 3.
The first part (group D of commands), as an initialization step, is only performed once to know which
maps, technologies and networks are available, where the anchor nodes are deployed, and which target
devices, mobile nodes or sensors are available for testing. Remember that the networks and other
nodes were probably deployed and registered by another user. Taking this information into account,
the researcher can now configure his location algorithm parameters, and enter the place where the
network is deployed (i.e., in a building) to make measurement studies and test his algorithms with
real measurements.

Once his algorithms have been initialized with the information for a specific network, the researcher
should start getting measurements from the system in a continuous fashion, and then generate position
estimations based on them. This second group of commands is depicted as E in Figure 3. Finally, he
will register these positions in the system, making them available to other Localization Clients who do
not have skills in location algorithms and only want to obtain final position estimations.

4.4. Localization Clients

Finally, a localization-consuming client application wants to remotely query the position estimation
of a target device (that can be multi-technology) or of a single mobile node or sensor. This user does not
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need to have any skills in how the WSN was deployed, how the measurements were extracted from the
hardware or how the positions were estimated by one or several location algorithms.

This process corresponds to the workflow and group of commands F shown in Figure 3. Firstly,
the user can optionally ask for the available high-level fusion methods registered in the system, to later
obtain position estimations using data fusion. Alternatively, he can directly and continuously query the
system for position estimations for a specific target device, mobile node or generic sensor. Note that he
could also perform some initialization steps as in the group of commands D, to know the maps, networks,
targets, mobile nodes and sensors available.

To summarize this section, Figure 4 shows the set of the messages that all the actors would
continuously use after their initialization steps.

Figure 4. Once the network infrastructure is registered, and the location algorithms and
clients configured, these actors continuously use the same type of messages to save and
retrieve data with the system.
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Note that we do not show other messages to modify and delete the information available in the
Location Server. Commands such as set map, set technology, set anchor, set network,
set mobile, set sensor, del map, del technology, del anchor, del network,
del mobile, del sensor, del target, del measurement and del position are also
available to privileged users. We support not only a global coordinate system for anchors and position
estimations but also relative position coordinates inside a building, covering all the common scenarios.

5. Implementation Example Case Studies

In this section we will explain two implementation example case studies to better understand the
capabilities of the system regarding the fusion of multiple technologies, the mixing of mobile nodes and
generic sensors, how to define new kind of sensor technologies, etc.
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5.1. ZigBee and UWB Networks, plus an Inertial Sensor (Accelerometer)

In the first case, we have chosen the ZigBee and UWB technologies plus some inertial sensors (acting
as generic sensors) to better explain how the commands described in the previous Section 4 are formatted,
in the case of having a multi-technology target device to be located. Moreover, we will make it clear
how to call the system to obtain high-level fusion position estimations in this case.

The ZigBee network could be implemented with MicaZ [56] nodes working at 2.4 GHz. In this
example we will have four anchor nodes zb A1 to zb A4 and one ZigBee mobile node zb M1.

The UWB network could be implemented with the PLUS platform of TimeDomain [32]. In this
example we will have four anchor nodes (UWB readers uwb A1 to uwb A4) and one UWB mobile
node (UWB tag uwb M1).

Additionally, we have decided to take the measurements from the accelerometer (accel 1)
integrated in a smartphone to illustrate how the measurements of any generic sensor could be formatted
and processed.

The ZigBee and UWB mobile nodes, plus the accelerometer, will be associated together by a unique
target device identifier, in order to be conveniently located with a single system call. Figure 5 shows
how we associate a unique identifier to the virtual target device associated to both mobile nodes and
the sensor. Note that all these pieces of hardware should be attached and moved together in order to be
tracked correctly. In a real case, they would all be integrated in a multi-technology portable device.

Figure 5. The zb uwb accel target identifier represents a virtual target device, and it
is associated to the zb M1 and uwb M1 mobile devices and to the accel 1 generic sensor.
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In order to save space in this section, we will usually refrain from showing some kinds of messages
twice, for the cases where the ZigBee and UWB messages are somehow identically formatted. We will
also usually refrain from showing the reply commands obtained from the system, when they are simply
OK acknowledgement messages, as they actually are in most of the cases. We always assume that there
will be no communication problems with the location server.
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Next, in this section we will explain the four kind of processes introduced in Section 4, applied to the
example case study of using ZigBee, UWB and an accelerometer, by using similar flowchart diagrams
but with specific JSON messages for each entity.

As in Figure 3 in Section 4, groups A and B of messages in Figure 6 show the network
administration and measuring processes in detail. For the measuring process we assume that we have
already implemented three pieces of software for obtaining measurements from the ZigBee, UWB
and accelerometer hardware. On the one hand, a client collects RSS data coming to a PC by USB
port, from a ZigBee gateway (or a sniffer). On the other, another client collects TOA measurements
from the TimeDomain UWB platform. With the software API provided by TimeDomain, it is quite
straightforward to implement a client that takes raw TOA measurements from the hardware and
optionally transform them into TDOA measurements (when needed, grouping the anchor TOA messages
in pairs). These two pieces of software that abstract the communications with the WSN hardware have to
insert the new RSS and TOA measurements (when they are available) into the Location Server, by using
the new measurement command (as shown in the first message of group B in Figure 6). Finally,
a small piece of software, implemented in Android for example, could collect the inertial information
from its accelerometer by a predefined sampling period of time, and periodically send it to the Location
Server by also using the new measurement command (with different parameters).

The target device administration is explained by group C of messages in Figure 6.
The position estimation using location algorithms is shown in group D of messages in Figure 7. We

show several commands for the initialization of the location algorithms, while in group E of messages
we illustrate the loop process of obtaining measurements from the system (for a desired target, mobile
node or sensor) and inserting new position estimations. In this example, two location algorithms
should be implemented in order to process the RSS and TOA measurements separately. Usually the
location algorithms are implemented by a researcher using a high-level simulation environment such as
MATLAB, and he only has to add some functions to send and receive JSON messages using TCP/IP
sockets. This is quite straightforward using a Java client for processing JSON messages, as MATLAB is
completely integrated with the Java Virtual Machine (JVM).

As explained in Section 2 we wanted a highly flexible system for obtaining both measurements and
positions. Our implementation allows to obtain both on-line and off-line measurements in real time,
asking in different ways:

• We can ask for a list of the latest N available measurements stored in the server DB.

• Asking for the available measurements in the last S seconds, starting the count from the time when
the call message is received by the server. Note that we can retrieve a greater or smaller number
of measurements, depending on the sampling period of the WSN measuring client.

• Or we can ask for off-line measurements registered in the past. This is a flexible manner to test
location algorithms using the same campaign of measurements in each case, to produce repeatable
results. The simulation results that are explained in Section 6 are obtained using this strategy.
Note that we can insert both real and simulated measurements to test a location algorithm by
sending new measurement commands through the network. The mechanism for inserting the
measurements into the system is the same in both cases, using the new measurement command
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filled in with simulated or real data. Therefore, for testing purposes we can also take advantage of
this feature, and simulate thousands of nodes and large numbers of location algorithms accessing
the system at the same time. This allow us to perform stress tests, measure latency versus load,
check the performance of disk access to the DB under certain controlled conditions, etc.

Figure 6. Groups of messages A, B and C.

new_anchor message for registering a fixed anchor
node. The anchors zb_A2 to zb_A4 and uwb_A1 to
uwb_A4 are registered the same manner. Note that the
anchor coordinates are relative to the local coordinate
system defined by floor1_MUB.

new_anchor message for registering a fixed anchor
node. The anchors zb_A2 to zb_A4 and uwb_A1 to
uwb_A4 are registered the same manner. Note that the
anchor coordinates are relative to the local coordinate
system defined by floor1_MUB.

{
”command ” : ” new anchor ” ,
” ancho r . i d ” : ” zb A1 ” ,
” ancho r . de sc ” : ” MicaZ 2 . 4GHz mote wi th a d i r e c t i v e

a n t e n n a ” ,
” ancho r . x ” : ”43” ,
” ancho r . y ” : ”19” ,
” ancho r . a l t ” : ” 6 . 5 ” ,
”map . i d ” : ” floor1 MUB ”

}

new_technology message for registering the ZigBee
technology based on RSS measurements. The UWB
technology would be registered the same way as TOA.
See Figure 1 for further details about the predefined types
of measurements and their format.

new_sensor message for registering the accel_1,
a generic sensor which measurements are of type
accelerometer3D, previously defined.

A

B

C

new_technology message for registering the ZigBee
technology based on RSS measurements. The UWB
technology would be registered the same way as TOA.
See Figure 1 for further details about the predefined types
of measurements and their format.

{
”command ” : ” new techno logy ” ,
” t e c h n o l o g y . i d ” : ” z i g b e e ” ,
” t e c h n o l o g y . t y p e ” : ”RSS”

}

new_technology message for registering a generic
sensor, which does not fit the predefined types of mea-
surements of the system (RSS, TOA, TDOA, AOA or
DISTANCE). In this example, an accelerometer sensor
with three customized parameters associated to each
measurement, the acceleration on each axis as a double
value. The server registers a new kind of dynamic formed
data in the database, and automatically register a new
parser in the Location Server for incoming measurements
from these kind of generic sensors.

{
”command ” : ” new techno logy ” ,
” t e c h n o l o g y . i d ” : ” a c c e l e r o m e t e r 3 D ” ,
” t e c h n o l o g y . t y p e ” : ”SENSOR” ,
” s e n s o r . d a t a ” : {

{ ” key ” : ” a c c e l . x ” ,
” v a l u e ” : ”DOUBLE TYPE”

} ,
{ ” key ” : ” a c c e l . y ” ,

” v a l u e ” : ”DOUBLE TYPE”
} ,
{ ” key ” : ” a c c e l . z ” ,

” v a l u e ” : ”DOUBLE TYPE”
}

}
}

new_network message for registering a network of an-
chor nodes. For UWB, we would register the uwb_NET1
for grouping the uwb_A1 to uwb_A4 anchors.

{
”command ” : ” new network ” ,
” ne twork . i d ” : ”zb NET1 ” ,
” ne twork . de s c ” : ” L a b o r a t o r y 1 . 2 ” ,
” a n c h o r s ” : [

{ ” ancho r . i d ” : ” zb A1 ” } ,
{ ” ancho r . i d ” : ” zb A2 ” } ,
{ ” ancho r . i d ” : ” zb A3 ” } ,
{ ” ancho r . i d ” : ” zb A4 ” }

]
}new_mobile message for registering a ZigBee mobile

node. The UWB mobile, called uwb_M1, would be
registered the same manner but associating it to the uwb
technology identifier, previously registered.

{
”command ” : ” new mobile ” ,
” mobi le . i d ” : ”zb M1 ” ,
” t e c h n o l o g y . i d ” : ” z i g b e e ” ,
” mobi le . de sc ” : ” MicaZ 2 . 4GHz mote wi th an

o m n i d i r e c t i o n a l a n t e n n a ”
}

new_sensor message for registering the accel_1,
a generic sensor whose measurements are of type
accelerometer3D, previously defined.

{
”command ” : ” new sensor ” ,
” s e n s o r . i d ” : ” a c c e l 1 ” ,
” t e c h n o l o g y . i d ” : ” a c c e l e r o m e t e r 3 D ” ,
” s e n s o r . de sc ” : ” A c c e l e r o m e t e r i n t e g r a t e d i n t o

a Samsung Galaxy i7500 ”
}

new_measurement message for inserting a new RSS
measurement into the system. In this example, it is a
measurement result of a transmission between the second
ZigBee anchor and the mobile node. For UWB, as in this
case it uses TOA measurements, the equivalent message
has also one input parameter anchor.id but, in case of
having TDOA measurements we would have two input
parameters anchor1.id and anchor2.id

{
”command ” : ” new measurement ” ,
” measurement . t s ” : ”1322657079 .450” ,
” ancho r . i d ” : ” zb A2 ” ,
” mobi l e . i d ” : ”zb M1 ” ,
” measurement . r s s ” : ”− 45.6” ,
” measurement . seq−no ” : ”126”

}

new_measurement message for inserting a new accel-
eration measurement into the system. The server would
parse the message based on the customized type of
measurement associated to this generic sensor, and store
it into a customized database fields that were auto-
generated.

{
”command ” : ” new measurement ” ,
” s e n s o r . i d ” : ” a c c e l 1 ” ,
” measurement . t s ” : ”1322657080 .167” ,
” a c c e l . x ” : ” 2 3 . 4 7 ” ,
” a c c e l . y ” : ” 8 0 . 3 0 ” ,
” a c c e l . z ” : ” 1 8 . 2 3 ”

}

new_target message for registering a unique target
device. We chose the zb_uwb_accel_target iden-
tifier, which will be associated to the two mobile nodes
zb_M1, uwb_M1 and the generic sensor accel_1.

{
”command ” : ” n e w t a r g e t ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” t a r g e t . de sc ” : ” Mul t i− t e c h n o l o g y d e v i c e ( ZigBee ,

UWB and A c c e l e r o m e t e r ) ”
}

new_target_association message for associating
the two mobile nodes zb_M1, uwb_M1 and the sensor
accel_1 to the zb_uwb_accel_target target de-
vice.

{
”command ” : ” n e w t a r g e t a s s o c i a t i o n ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” t a r g e t . a s s n ” : [

{ ” mobi l e . i d ” : ”zb M1” } ,
{ ” mobi l e . i d ” : ”uwb M1” } ,
{ ” s e n s o r . i d ” : ” a c c e l 1 ” }

]
}

{
”command” : ”new map ” ,
”map . i d ” : ” floor1 MUB ” ,
”map . de sc ” : ” F l o o r 1 − Main U n i v e r s i t y B u i l d i n g ” ,
”map . s c a l e ” : ” 2 3 . 4 5 9 ” ,
”map . o r i g i n . x ” : ”137” ,
”map . o r i g i n . y ” : ”450” ,
”map . image ” : ”iVBORw0KGgoAAAANSUhEUgAAAMIAAAB2CA

YAAACaukxSAAAACXBIWXMAAAsTAAALEwEAmpwYAAABNmlDQ1BQa
G90b3Nob3AgSUNDIHByb2ZpbGUAAHjar . . . ”
}

new_map message for registering a new map and its as-
sociated local coordinate system. It includes a map origin
coordinate, a scale (defined in pixels per meter) and an
optional blueprint bitmap image associated (given by a
string using Base64 encoding). This call is only needed
once per floor of a building, usually at the first sys-
tem  initialization.  Afterwards,  users  can  request  the
registered maps by using the get_available_map
command.
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Figure 7. Groups of messages D, E and F.

new_position message to store a new position es-
timation associated to the mobile node zb_M1, based
on the measurements recently read using the previ-
ous get_measurement messages. In an equivalent
manner, the UWB location algorithm would insert new
positions related to the uwb_M1 mobile, based on the
TOA measurements recently retrieved from the system.
In this example, the position.acc for an UWB
measurement could be 0.5 meters, while the ZigBee
accuracy reported is 2.5 meters. These numbers are
used by the High-Level Fusion Module to automatically
estimate improved position. See the get_position
message for further details about getting fusion positions.

new_position message to store a new position es-
timation associated to the mobile node zb_M1, based
on the measurements recently read using the previ-
ous get_measurement messages. In an equivalent
manner, the UWB location algorithm would insert new
positions related to the uwb_M1 mobile, based on the
TOA measurements recently retrieved from the system.
In this example, the position.acc for an UWB
measurement could be 0.5 meters, while the ZigBee
accuracy reported is 2.5 meters. These numbers are
used by the High-Level Fusion Module to automatically
estimate improved position. See the get_position
message for further details about getting fusion positions.

get_available_network call and response mes-
sages. In this example, we can realise with the response
that there are two WSNs (of type zigbee and uwb) de-
ployed at the same room. Optionally, with the command
get_technology we could query which kind of WSN
were defined by the keys zigbee and uwb, to know
which kind of measurements (RSS, TOA, TDOA,...) are
used.

D

E

get_available_network call and response mes-
sages. In this example, we can realise with the response
that there are two WSNs (of type zigbee and uwb) de-
ployed in the same room. Optionally, with the command
get_technology we could query which kind of WSN
were defined by the keys zigbee and uwb, to know
which kind of measurements (RSS, TOA, TDOA,...) are
used.

C a l l :
{

”command ” : ” g e t a v a i l a b l e n e t w o r k ”
}

Response :
{

” s t a t u s . code ” :  ”OK” ,
”command ” : ” g e t a v a i l a b l e n e t w o r k ”
” n e t w o r k s ” : [

{ ” ne twork . i d ” : ”zb NET1 ” ,
” t e c h n o l o g y . i d ” : ” z i g b e e ” ,
” ne twork . de sc ” : ” L a b o r a t o r y 1 . 2 ”

} ,
{ ” ne twork . i d ” : ”uwb NET1 ” ,

” t e c h n o l o g y . i d ” : ”uwb ” ,
” ne twork . de sc ” : ” L a b o r a t o r y 1 . 2 ”

}
]

}

get_anchor call and response messages. Repeating
this call for all the anchor identifiers we could know their
fixed positions, for both ZigBee and UWB networks.
In total we need eight calls for the anchors zb_A1 to
zb_A4 and uwb_A1 to uwb_A4

C a l l :
{

”command ” : ” g e t a n c h o r ” ,
” anc ho r . i d ” : ” zb A1 ”

}

Response :
{

” s t a t u s . code ” : ”OK” ,
”command ” : ” g e t a n c h o r ” ,
” anc ho r . i d ” : ” zb A1 ” ,
” a ncho r . de sc ” : ” MicaZ 2 . 4GHz mote wi th a

d i r e c t i v e a n t e n n a ” ,
” ancho r . x ” : ”43” ,
” a ncho r . y ” : ”19” ,
” ancho r . a l t ” : ” 6 . 5 ”

}

get_available_target call and response mes-
sages. We get the list of target devices and their associ-
ated mobile and sensor identifiers. With these identifiers
we can query the system for available measurements or
for estimated positions.

C a l l :
{

”command ” : ” g e t a v a i l a b l e t a r g e t ”
}

Response :
{

” s t a t u s . code ” : ”OK” ,
”command ” : ” g e t a v a i l a b l e t a r g e t ”
” t a r g e t s ” : [

{
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” t a r g e t . de sc ” : ” Mul t i− t e c h n o l o g y d e v i c e

( ZigBee , UWB, A c c e l e r o m e t e r ) ” ,
” t a r g e t . a s s n ” : [

{ ” mobi l e . i d ” : ”zb M1” } ,
{ ” mobi l e . i d ” : ”uwb M1” } ,
{ ” s e n s o r . i d ” : ” a c c e l 1 ” }

]
}

]
}

get_measurement call and response messages. In
this example only the latest measurement (last.n=1)
of each mobile node and sensor associated to the
zb_uwb_accel_target were requested. We could
also request the latest measurements for N seconds, or
filter the query between two timestamps.

C a l l :
{

”command ” : ” ge t measu remen t ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” l a s t . n ” : ” 1 ” ,
” l o c a l . t s ” : ”1322657080 .839”

}

Response :
{

” s t a t u s . code ” :  ”OK” ,
”command ” :  ” ge t measu remen t ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” l o c a l . t s ” :  ” 1 3 2 2 6 5 7 0 8 0 . 8 3 9 ” ,
” measurements ” : [

{ ” measurement . t s ” : ”1322657080 .110” ,
” ancho r . i d ” : ” zb A1 ” ,
” mobi le . i d ” : ”zb M1” ,
” measurement . r s s ” : ”− 68.3” ,
” measurement . seq−no ” : ”129”

} ,
{ ” measurement . t s ” : ”1322657080 .320” ,

” ancho r . i d ” : ” zb A2 ” ,
” mobi le . i d ” : ”zb M1” ,
” measurement . r s s ” : ”− 47.0” ,
” measurement . seq−no ” : ”129”

} ,
{ ” measurement . t s ” : ”1322657080 .534” ,

” ancho r . i d ” : ” zb A4 ” ,
” mobi le . i d ” : ”zb M1”,
” measurement . r s s ” : ”− 56.8” ,
” measurement . seq−no ” : ”129

} ,
{ ” measurement . t s ” : ”1322657080 .425” ,

” ancho r . i d ” : ” zb A3 ” ,
” mobi le . i d ” : ”zb M1”,
” measurement . r s s ” : ”− 49.1” ,
” measurement . seq−no ” : ”129”

} ,
{ ” measurement . t s ” : ”1322657080 .425” ,

” ancho r . i d ” : ”uwb A3 ” ,
” mobi le . i d ” : ”uwb M1”,
” measurement . t o a ” : ” 11 2 8 . 4 e−9”,
” measurement . seq−no ” : ”47”

} ,
{ ” measurement . t s ” : ”1322657080 .110” ,

” ancho r . i d ” : ”uwb A1 ” ,
” mobi le . i d ” : ”uwb M1”,
” measurement . t o a ” : ” 11 0 8 . 6 e−9”,
” measurement . seq−no ” : ”47”

} ,
{ ” measurement . t s ” : ”1322657080 .320” ,

” ancho r . i d ” : ”uwb A2 ” ,
” mobi le . i d ” : ”uwb M1”,
” measurement . t o a ” : ” 11 0 6 . 5 e−9”,
” measurement . seq−no ” : ”47”

} ,
{ ” measurement . t s ” : ”1322657080 .534” ,

” ancho r . i d ” : ”uwb A4 ” ,
” mobi le . i d ” : ”uwb M1”,
” measurement . t o a ” : ” 11 3 0 . 4 e−9”,
” measurement . seq−no ” : ”47”

} ,
{ ” s e n s o r . i d ” : ” a c c e l 1 ” ,

” measurement . t s ” : ”1322657080 .167” ,
” a c c e l . x ” : ” 2 3 . 4 7 ” ,
” a c c e l . y ” : ” 8 0 . 3 0 ” ,
” a c c e l . z ” : ” 1 8 . 2 3 ”

}
]

}

get_position message to get a position estima-
tion associated to the zb_uwb_accel_target target
based on the previously inserted positions associated to
the ZigBee and UWB mobile nodes. In this example,
we chose to use all the available technologies (with
the technology.filter equal to all), and we
decided to use the Fusion Module, giving a specific
fusion.method value of the available fusion meth-
ods. In this example we could ask using a MRC, EGC
or SC fusion method or none, to use none of them.
Note that the returned coordinate is relative to the map
floor1_MUB coodinate system.

C a l l :
{

”command ” : ” g e t p o s i t i o n ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” t e c h n o l o g y . f i l t e r ” : ” a l l ” ,
” f u s i o n . method ” : ”MRC” ,
” l o c a l . t s ” : ”1322657084 .239”

}

Response :
{

” s t a t u s . code ” : ”OK” ,
”command ” : ” g e t p o s i t i o n ” ,
” t a r g e t . i d ” : ” z b u w b a c c e l t a r g e t ” ,
” t e c h n o l o g y . f i l t e r ” : ” a l l ” ,
” f u s i o n . method ” : ”MRC” ,
” l o c a l . t s ” : ”1322657084 .239” ,
” p o s i t i o n . x ” : ”43” ,
” p o s i t i o n . y ” : ”19” ,
” p o s i t i o n . a l t ” : ” 1 . 4 ” ,
”map . i d ” : ” floor1 MUB ”

}

F

get_network call and reply messages. In
this example, we know that there are four an-
chors in the zb_NET1. For the UWB networks
uwb_NET1 we would know its anchor identifiers
the same way, using this command. With the
identifiers we could call the next command, to
know exactly where the anchors are deployed.

C a l l :
{

” t y p e . op ” : ” g e t n e t w o r k ” ,
” ne twork . i d ” : ”zb NET1”

}

Reply :
{

” op . r e p l y ” : ” OK” ,
” t y p e . op ” : ” g e t n e t w o r k ”
” ne twork . i d ” : ”zb NET1”
” a n c h o r s ” : [

{ ” a nc h o r . i d ” : ” zb A1 ”} ,
{ ” a nc h o r . i d ” : ” zb A2 ”} ,
{ ” a nc h o r . i d ” : ” zb A3 ”} ,
{ ” a nc h o r . i d ” : ” zb A4”}

]
}

get_network call and reply messages. In
this example, we know that there are four an-
chors in the zb_NET1.  For the UWB network
uwb_NET1 we would know its anchor identifiers
the same way, using this command. With the
identifiers we could call the next command, to
know exactly where the anchors are deployed.

{
”command ” : ” n e w p o s i t i o n ” ,
” mobi le . i d ” : ”zb M1 ” ,
” p o s i t i o n . de sc ” : ” T r i l a t e r a t i o n ” ,
” p o s i t i o n . x ” : ”43” ,
” p o s i t i o n . y ” : ”19” ,
” p o s i t i o n . a l t ” : ” 1 . 4 ” ,
” p o s i t i o n . acc ” : ” 2 . 5 ” ,
”map . i d ” : ” floor1 MUB ”

}
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Finally, the Localization Clients can use the get position command to obtain position estimations
from a remote computer or device, via LAN or Internet connection. As shown in group F of messages
in Figure 7, and similarly to the case of get measurement, they can request on-line and off-line
position estimations: the latest N known positions, the latest positions stored for S seconds starting from
the present, or a list of positions between two epoch timestamps.

Moreover, they can filter by technology when asking for a target device position, to use all or a subset
of the mobile nodes and sensors associated to a target device. Finally, they can optionally make use of
a high-level position fusion method implemented in the Location Server, such as the EGC, MRC or SC
proposed in this article for exemplifying purposes. See Section 3.2 for more details about the fusion
methods implemented.

5.2. WiFi Fingerprinting

In this second example case study, we will show how to apply our architecture in a real indoor scenario
when using RSS measurements and a fingerprinting location algorithm [11,59].

We take advantage of the WiFi access points already deployed in a building acting as beacon
transmitters. We use a WiFi tag that during the off-line or calibration phase acting as an access point (AP)
scanner, measuring at different locations of a building. The Received Signal Strength Indicator (RSSI)
from several APs is measured at chosen locations, called scan points (SP) or calibration points. These
measurements are called fingerprints of the SPs and they are part of a calibrated radio map [11,60–62].
Then, during an on-line or location estimation phase of the algorithm, the WiFi tag acts as a target sensor,
detecting the nearby APs while it moves. For simplicity, in this example we assume that the state of the
target includes only its location (x and y coordinates), and we associate the SP to a zone identifier of the
building for convenience.

We have used an Android smartphone with integrated WiFi connectivity to implement both roles
during the off-line and on-line phases, as shown in Figure 8.

First we specifically define the data structures for storing the measurements and the fingerprints
associated to each SP. Conceptually we have chosen the most complete way to represent this information
as raw lists of RSS measurements associated to an arbitrary number of surrounding APs. This way the
more or less complex fingerprint algorithm can use not only the mean [11], mean and variance [59],
number of available RSS measurements associated to an AP identifier, and also the whole list of
measurements to define a histogram [63].

Figure 9 shows a UML class diagram representing the data structures needed. On the other hand,
we have defined a RssVector class which makes it possible to store an arbitrary long RSS list of
measurements, which is associated to a specific AP by using a hash-map MeasurementMap. We
can add new RSS measurements to a MeasurementMap for an specific pair (apId-rss), by calling
its addMeasurement(apId, rss) method. It first checks if there are previous measurements
associated to the apId by searching in the list of available keys, and then it decides whether or not to
call the addMeasurement(rss) method of its associated RssVector. Otherwise, it creates a new
key-value entry in the MeasurementMap with the key apId associated to an empty RssVector.
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Figure 8. The wifi target represents a target device associated to the wifi sensor1

or wifi sensor2 implemented with the same physical smartphone device, in the example.

WiFi tag

Samsung
Galaxy i7500

wifi_sensor1 | wifi_sensor2
generic sensor

wifi_target
target device

wifi_sensor1 Acting as an access
point scanner during the off-line phase
of a Fingerprint algorithm.

Two different roles:

wifi_sensor2 Acting as a WiFi tag
sensor during the on-line phase of a
Fingerprint algorithm.

     fingerprint_ScanPoint | fingerprint_MeasurementMap
technology

Figure 9. UML class diagram representing how to implement any Fingerprinting algorithm
in any language (e.g., a KNN programmed in Java).

<< interface >>
Comparable

Distance

-distance:double
-scanPoint:ScanPoint

+compareTo(o:Object):int

Any p-norm distance can be used to compare a ScanPoint
fingerprint to an observation MeasurementMap.
Other distance metrics such as infinite-norm or Mahalanobis 
can be added here if needed.

java.util

HashMap<String, RssVector>

RssVector

-raw:List<Double>

+size():int
+mean():double
+std():double
+addMeasurement(rss:double):void
+getMeasurement(i:int):double
+removeMeasurement(i:int):void

apId:String hash-map key,
RssVector hash-map value

MeasurementMap

+addMeasurement(apId:String,rss:double):void

2-norm Euclidean distance

Position

-x:double
-y:double

+meanPosition(positions:List<Position>):Position
+distanceToPosition(p:Position):double

ScanPoint

-ts:String
-duration:String
-tagId:String
-zoneId:String

+addMeasurement(apId:String,rss:double):void
+distancePNormToObservation(p:int,obs:MeasurementMap):double

Fingerprint

+knn(k:int,p:int,scanPoints:List<ScanPoint>,observations:MeasurementMap):Position

position

<< returns >> List<ScanPoint> observations

measurements

On the other hand, a fingerprint associated to an SP is modelled with the ScanPoint class. The
coordinates of the SP are stored in the position object (of kind Position). We also have some
attributes such as ts (to store the timestamp of the beginning of the fingerprint), a duration (in
seconds, to store how long we have measured in the said SP), a zoneId (zone identifier to associate the
fingerprint to a specific zone of a building, for convenience), a tagId (tag identifier used for calibration)
and, finally, a measurements attribute associated to a MeasurementMap hash map object which
contains the whole fingerprint measurements.

Finally, the FingerPrint class has a static method to directly run the fingerprinting algorithm
from any client without instantiating it. In this example we implemented a K-Nearest Neighbour (KNN)
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fingerprint algorithm [62,64] as it is a commonly used fingerprint algorithm in the literature. As we can
see, with the k parameter we specify how many K “nearest” neighbours coordinates are used to average
the position estimations. With a parameter pwe choose the p-norm distance metric used to compare each
ScanPoint fingerprint with an observation MeasurementMap. Finally we have to give as parameter
the list of ScanPoint (of a specific radio map) and an observation MeasurementMap hash-map with
the latest observed RSS measurements.

Following once again the workflow process explained in Section 4, we have to prepare the server
for the available target and sensors, and register the new kind of sensor data that the WiFi sensors will
send to the Location Server. In this case, we have two new kinds of sensor measurements to represent a
fingerprint associated to an SP (during the off-line phase) and an observation from multiple APs (during
the on-line phase).

In Figure 10 we show a flowchart diagram with some of the custom defined JSON messages. During
the network and target device administration processes we have to define the two kinds of technologies,
then register the two WiFi sensors associated to each of the technologies, and finally associate both
sensors to a unique target device for convenience, to facilitate the work of obtaining positions at a higher
level for other clients. A localization client can easily ask for the wifi target positions. During
the measuring process we have to give measurements to the system with the new measurement

command: fingerprints during the off-line phase, and observations during the on-line phase, as shown in
Figure 10.

After this point, we have to implement two pieces of software into our WiFi tag device (in our example
an Android smartphone):

• To support the first role of the tag as an AP scanner during the off-line phase of the fingerprinting
algorithm, we have to implement an application with a more or less complex Graphical User
Interface (GUI) where we can fill the position coordinates (x,y) of the SP, the duration of scan,
and a zone identifier from where we will scan (Another possibility would be to take advantage of
the maps already registered in the system, retrieving all or some of them through the network using
the get available map command, and performing the same kind of tasks: show the different
scan point positions directly on each map in the GUI, allow the user to click on a relative coordinate
of a map, etc.) After pressing a “Start” kind of button of the GUI, the application will call the WiFi
API of Android to retrieve the surrounding AP measurements during few seconds, using the WiFi
interface in monitor mode by detecting RSSI levels of the surrounding APs during a scan window
on all or a subset of the WiFi channels. The application in this example can easily be implemented
in Java (as Android uses Java) using the same data structures as defined in Figure 9. When the
“Start” button is pressed we also start a timer and the application annotates the current system time
as a UNIX timestamp. Once a timer exceeds the given duration time, the program will stop feeding
the ScanPoint class with new measurements (pairs apId-rss), and it will send the whole fingerprint
associated to the SP to the Location Server by using a single JSON message new measurement,
putting its own sensor.id to “wifi sensor1”, the timestamp to the current time of the system, and
the remaining parameters according to the definition of fingerprint ScanPoint technology.
See Figure 10 for further details about the JSON messages. This process can be repeated as many
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times as needed, moving the WiFi tag to another position of the building, updating the current
scanning coordinate on the GUI, pressing “Start” again, and so on.

• To support the second role of the tag as RSS scanner during the on-line phase of the fingerprinting
algorithm, we have to implement a second application that could run in the background
or not, which never stops sending measurements to the Location Server. In a non-ending
loop it calls the WiFi API of Android to scan different channels and after a predefined
period of time (i.e., 2 s) it packages all the available observations to the server using the
new measurement command, putting its own sensor.id to “wifi sensor2”, the timestamp to
the current time of the system, and the remaining parameters according to the definition of
fingerprint MeasurementMap technology.

Figure 10. Groups of messages A, B and C of the fingerprint case study.

A

B

C

{
”command ” : ” new techno logy ” ,
” t e c h n o l o g y . i d ” : ” f i n g e r p r i n t S c a n P o i n t ” ,
” t e c h n o l o g y . t y p e ” : ”SENSOR” ,
” s e n s o r . d a t a ” : {

” key ” : ” x ” ,
” v a l u e ” : ”DOUBLE TYPE” ,
” key ” : ” y ” ,
” v a l u e ” : ”DOUBLE TYPE” ,
” key ” : ” d u r a t i o n ” ,
” v a l u e ” : ”DOUBLE TYPE” ,
” key ” : ” zone Id ” ,
” v a l u e ” : ”STRING TYPE” ,
” key ” : ” ap− measurements ” ,
” v a l u e ” : ”ARRAY TYPE” ,
” a r r a y− c o n t e n t ” : {

{ ” key ” : ” ap Id ” ,
” v a l u e ” : ”STRING TYPE” } ,

{ ” key ” : ” r s s ” ,
” v a l u e ” : ”DOUBLE TYPE” }

}
}

}

{
”command ” : ” new techno logy ” ,
” t e c h n o l o g y . i d ” : ” f i n g e r p r i n t M e a s u r e m e n t M a p ” ,
” t e c h n o l o g y . t y p e ” : ”SENSOR” ,
” s e n s o r . d a t a ” : {

” key ” : ” ap− measurements ” ,
” v a l u e ” : ”ARRAY TYPE” ,
” a r r a y− c o n t e n t ” : {

{ ” key ” : ” ap Id ” ,
” v a l u e ” : ”STRING TYPE” } ,

{ ” key ” : ” r s s ” ,
” v a l u e ” : ”DOUBLE TYPE” }

}
}

}

{
”command ” : ” new sensor ” ,
” s e n s o r . i d ” : ” w i f i s e n s o r 1 ” ,
” t e c h n o l o g y . i d ” : ” f i n g e r p r i n t S c a n P o i n t ” ,
” s e n s o r . de sc ” : ” Wif i a c c e s s− p o i n t s c a n n e r ( Samsung

Galaxy i7500 ) ”
}

{
”command ” : ” new sensor ” ,
” s e n s o r . i d ” : ” w i f i s e n s o r 2 ” ,
” t e c h n o l o g y . i d ” : ” f i n g e r p r i n t M e a s u r e m e n t M a p ” ,
” s e n s o r . de sc ” : ” Wif i t a g s e n s o r ( Samsung Galaxy

i7500 ) ”
}

{
”command ” : ” new measurement ” ,
” s e n s o r . i d ” : ” w i f i s e n s o r 1 ” ,
” measurement . t s ” : ”1322207084 .142” ,
” x ” : ” 1 2 . 5 ” ,
” y ” : ” 7 ” ,
” d u r a t i o n ” : ”20” ,
” zone Id ” : ” L a b o r a t o r y 1 . 2 ” ,
” ap− measurements ” : [

{ ” ap Id ” : ” 0 0 : 2 4 : 1D: 1 3 :DB: 7 7 ” ,
” r s s ” : ”− 69.5” } ,

{ ” ap Id ” : ” 0 0 : 2 4 : 1D: 1 3 :DB: 7 7 ” ,
” r s s ” : ”− 70” } ,

. . .
{ ” ap Id ” : ” 0 0 : 5 0 : 5 6 :AA:BB:CC” ,

” r s s ” : ”− 55” } ,
. . .

]
}
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{
”command ” : ” new measurement ” ,
” s e n s o r . i d ” : ” w i f i s e n s o r 2 ” ,
” measurement . t s ” : ”1321237454 .421” ,
” ap− measurements ” : [

{ ” ap Id ” : ” 0 0 : 2 4 : 1D: 1 3 :DB: 7 7 ” ,
” r s s ” : ”− 65.5” } ,

. . .
{ ” ap Id ” : ” 0 0 : 5 0 : 5 6 : C0 : 0 0 : 0 9 ” ,

” r s s ” : ”− 72.5” } ,
{ ” ap Id ” : ” 0 0 : 5 0 : 5 6 : C0 : 0 0 : 0 9 ” ,

” r s s ” : ”− 70” } ,
. . .
{ ” ap Id ” : ” 0 0 : 0C : 2 9 : 3 3 : 6 0 : 7 F ” ,

” r s s ” : ”− 48.5” } ,
. . .

]
}

{
”command ” : ” n e w t a r g e t ” ,
” t a r g e t . i d ” : ” w i f i t a r g e t ” ,
” t a r g e t . de sc ” : ” WiFi t a g f o r f i n g e r p r i n t i n g ”

}

{
”command ” : ” n e w t a r g e t a s s o c i a t i o n ” ,
” t a r g e t . i d ” : ” w i f i t a r g e t ” ,
” t a r g e t . a s s n ” : {

{ ” s e n s o r . i d ” : ” w i f i s e n s o r 1 ”} ,
{ ” s e n s o r . i d ” : ” w i f i s e n s o r 2 ”}

}
}

On the other hand, a location algorithm researcher can execute a KNN fingerprinting algorithm (for
example implemented in Matlab) to estimate positions of the WiFi target. First, he initializes it using
several fingerprints associated to the SPs, i.e., fingerprint ScanPoint data, which can be retrieved from
the Location Server using the get measurement command. Then he gets real observations at a
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certain sampling speed, i.e., fingerprint MeasurementMap data, again using the get measurement

command. After each position estimation is calculated by the fingerprinting algorithm, he can optionally
decide to filter the new position estimation based on previous position and a map cartography. Finally,
he has to send each position estimation to the Location Server using the new position command.
This process is repeated continuously.

Finally, one or several Localization Clients, as in Section 5.1, can ask for the position estimations of
the wifi target and show the information in a GUI application, a webpage, or wherever they want.

6. Validation Results

Up to this point we have shown how different actors involved in a location system would interact with
a Location Server by sending and receiving JSON messages through a LAN or Internet network, when
we have different WSNs and devices to be located, different fusion methods available, etc.

In this section we present some validation results by considering virtual hardware nodes whose
measurements will be simulated by software. Only the measurements are simulated based on propagation
models and real scenario noisy conditions. The rest of the code is common for a real implementation,
and we send and receive messages with the Location Server through a real network. Therefore, using
the same software to work with real measurements is straightforward. Also note that with a simulated
scenario we can perform stress tests with the server, evaluate the performance of a huge amount of
concurrent connections, simulate many kinds of sensors available at the same time, various fusion
methods, etc.

The simulated scenario consists of two ZigBee and UWB WSNs deployed in an indoor scenario. We
will track the position of two mobile devices (a ZigBee node and a UWB tag) testing the three illustrative
high-level fusion methods shown in Section 3.2. We make use of the LocationClient Java client
partially introduced in the previous section, and from MATLAB we simulate a moving target device
associated with the two mobile devices of the ZigBee and UWB networks, which moves around a large
room where both networks were deployed. This Java client sends real messages through the network
between a computer with Matlab (acting as a client) and another computer where we deployed the
Location Server software plus a MySQL database. The server is implemented using Java language and it
supports high-performance mechanisms as a pool of threads to attend concurrent TCP socket connections
and a pool of connections to the MySQL database in order to support hundreds of concurrent requests
from the network. In this way the system is scalable to support even thousands of concurrent requests.

We simulated the different actors of the location system:

• The WSNs client: Instead of getting real measurements from a hardware network, we will
simulate RSS and ToA noisy measurements, based on noise levels that typically appear in real
indoor scenarios [65]. Each Ts = 0.5 s we will have a new measurement when a mobile node is
inside the coverage area of an anchor node of the same technology. On each iteration we will send
each measurement to the server through the network using the new measurement command, as
would be done with real measurements obtained from a real WSN (when they are available).

• Location Algorithm: The second actor of the system is the location algorithm responsible for
estimating new positions based on the measurements obtained from the system, and previously
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introduced by the WSNs clients. In this case we make use of the get measurement and new -

position commands to retrieve measurements and store new positions in the server. We will
explain the location algorithms used in more detail below.

• Location client: The last actor will track the positions generated by the location algorithms
by using the get position command, querying the ZigBee and UWB nodes separately and
together, using the three high-level fusion methods proposed.

Figure 11 shows the indoor scenario where the two WSNs are deployed. There are four UWB anchors
deployed on the left-hand side of the 16×10 meter scenario, with a simulated coverage of eight meters,
and nine ZigBee anchors deployed on the right-hand side of the room, with a simulated coverage of
six meters. With different grey scale colours we represent the coverage areas where we will be able to
track the UWB and ZigBee nodes respectively. Note that we will need measurements from at least three
anchors at the same time to be able to estimate a new position.

Figure 11. Simulated indoor scenario with two ZigBee and UWB networks deployed.
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The networks are in partial overlap to simulate the effect of having coverage with only one of the
networks, then with both, then again only with the second network, and so on. We will analyze the effect
of tracking each mobile node separately, versus the use of both technologies together by means of the
high-level fusion module available in the Location Server.

The trajectory is quite simple, going from one side of the room to the other, turning twice to the
right and coming back again, crossing through the area of maximum coverage of both networks. At the
bottom of Figure 11 we show the time spent in walking one round of the trajectory at a speed of 0.5 m/s.
In total 62 s are needed to perform one round.

For the UWB network we assume we have TOA measurements affected by Gaussian noise with zero
mean and 1 ns of standard deviation, while in the case of ZigBee we assume an exponential log-normal
path-loss propagation model [66] with a Gaussian noise of zero mean and 3 dBm of standard deviation.
The path-loss exponent was assumed as known and constant (equal to 1.8) throughout the simulation.
Therefore, we assume that the received signal strength decays with the power of 1.8 each meter after a
reference distance considered equal to 0.5 m.
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Since the aim of this article is not to compare algorithm performance, we have considered
the well-known Non-linear Least Squares algorithm [67] (we used the Nonlinear Least-Squares
algorithm available in MATLAB using the lsqnonlin function of the Optimization Toolbox) for both
technologies, ZigBee and UWB. With this algorithm we can minimize the sum of the squares of the
distance errors to the anchors by minimizing the following objective function:

F (x, y) =
N∑
i=1

(ri − ri)
2 =

N∑
i=1

fi(x, y)
2, (3)

fi(x, y) = ri − ri =
√

(x− xi)2 + (y − yi)2 − ri

where ri is the exact radio of the circumference centred in the i-th anchor, ri is the noisy radio of the i-th
anchor, and (xi, yi) is the known position of the i-th anchor.

To be able to properly use the high-level fusion module of the Location Server, the location algorithm
designer must provide an appropriate position accuracy (position.acc) value inside each new position
estimation (as a parameter in each new position command). After performing one survey round and
observing the instant error for both ZigBee and UWB cases, we have chosen the following position.acc
formulas for the simulations:

position.accZB = 1 + 0.042(detecting anchors−N)2 (4)

position.accUWB = 0.5 (5)

where N is the total amount of ZigBee anchors, and detecting anchors is the number of ZigBee anchors
detecting the mobile node. With the first quadratic formula, we have a maximum accuracy of 1 m when
there are nine active ZigBee anchors, and a minimum accuracy of about 2.5 m when there are only three
anchors covering the mobile node. The decision to choose an accuracy bound between 1 and 2.5 m is
simply a possibility that the location algorithm designer should choose according to the scenario and
available number of anchors. In this case a separation of 3 m between ZigBee anchors lets us choose a
lower bound of about 2.5 m (when detecting anchors = 3), while in the best case of having nine anchors
detecting the target, uncertainty could reach the 1 m level (in this case the right hand side of equation 4
would become zero as detecting anchors = 9 = N). Therefore, the constant 0.042 was chosen to reach the
2.5 m lower bound, and should be adjusted, or the whole position.accZB calculation could be replaced by
another formula. For the UWB case, we fix the accuracy to 0.5 m in all cases, regardless of the number
of UWB detecting anchors. Thus for instance, the SC fusion method presented in Section 3.2 will always
select the UWB positions when both ZigBee and UWB technologies are covering the target at the same
time, as UWB’s accuracy is always better than ZigBee’s.

Figure 12 shows the instant error of the simulated trajectory, after repeating it ten times to average
the results (the ZigBee measurements are quite noisy). The instant error is calculated by the Euclidean
distance (2-norm) between the real position of the target and the estimated position (calculated by the
LS algorithm) at each time instant. Before each round starts, we always initialize the position estimation
of the location algorithm at the (0, 9) coordinate. In the subfigure on the left we show the case when the
ZigBee node is used alone. In red we show the instant error, which is the absolute difference between
the current estimated position and the real position of the ZigBee node. The first slope from 0 to about 6
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meters of error is due to the lack of ZigBee coverage on the left-hand side of the room until the ZigBee
anchors 4, 7 and 8 cover the mobile node (until it reaches the (6, 9) coordinate). Then, from this instant
(t ' 12 s) until it loses coverage again (t ' 50 s), the ZigBee mobile node is detected from between 3 and
9 anchors at any one time. With a blue line in the figure, we represent the number of activated anchors
with respect to time, and with a green line the calculated position accuracy defined in Equation (4).
Note that the position.acc is drawn as zero in the figure when there are no positions available. In fact,
there are no positions stored in the server for such time intervals and, therefore, they have no associated
position.acc value.

Figure 12. Instant error for the ZigBee and UWB networks when used separately.
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In the subfigure on the right side of Figure 12 we show the respective UWB case, when this technology
is used alone. In this case the instant error falls to as low as 0.2 m when we have full coverage by the four
UWB anchors. However, it lacks coverage during a long period of time, from t ' 19.5 s until t ' 42.5 s,
when the error increases to as much as 6 m.

We can see that when both technologies are used independently we lack coverage during long periods
of time, so that the error increases by up to several meters. By using the high-level fusion module of
the proposed architecture, we can easily combine both technologies in a single multi-technology target
device in a flexible manner to obtain fusion positions.

Figure 13 shows the instant error obtained when we ask the Location Server for fusion positions
using the SC, MRC and EGC fusion methods. We see that the three fusion algorithms perform exactly
the same when there is zero or only one technology available. This situation happens in the following
time intervals: t ∈ (0, 12) s (none or only UWB), t ∈ (19.5, 42.5) s (only ZigBee) and t ∈ (50, 62) s
(only UWB or none). In the rest of the time, when both technologies are available simultaneously,
the SC method always select the most accurate technology available in terms of position.acc value,
while MRC combines both technologies, assigning them weight depending again on the position.acc
associated to the estimated position stored in the Location Server. Finally, EGC performs rather worse
than the other two methods as it does not take into account the position.acc value for averaging the
available positions. And, as soon as ZigBee positions become much noisier than UWB’s, it produces
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worse fusion position estimations. As result, the proposed MRC and SC fusion methods perform very
similarly in this simulation scenario because there is a huge difference in accuracy between ZigBee and
UWB technologies. In a real scenario, possibly incorporating different RSS-based technologies, the
MRC method would probably perform better, averaging a larger set of noisy data, but it is definitely
dependent on the amount of anchors available and the indoor scenario characteristics.

Figure 13. Instant error of the fusion positions when using the SC, MRC and EGC methods.
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The maximum combined instant error obtained with fusion data is less than 2.5 m throughout the
whole simulation and is much better than using the WSN technologies separately.

Note that in all cases the fusion positions are pre-calculated in the Location Server before being sent
back to the Location Clients. They are directly packed inside a JSON response message, and the clients
only have to display them using an application with a GUI, on a map of the building.

Table 2 shows the minimum, mean and maximum size of the messages used during the simulation,
in order to evaluate the bandwidth consumption for communicating with the location server. Both the
new measurement and new position messages which insert data into the Location Server only
receive a small OK acknowledge JSON message as a response, which occupies a fixed small amount of
data. Other message responses such as the get measurements and get position can increase
in size depending on the number of measurements or positions requested. In our simulations we always
asked for positions in iterations every 0.5 s, for a window size of 0.499 s, so that the number of obtained
positions was always zero or one for a specific technology (ZigBee or UWB), and for the fusion positions
(zero or only one fusion position is given per call). This is the reason why the get position responses
do not grow much in this simulation. However, in the case of measurements, we ask for all the available
measurements of the mobile nodes regarding all the anchors of each network, which can be from 1 to 9
measurements per response.
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Table 2. Message size.

Message type
Call message size [bytes] Response message size [bytes]

Minimum Mean Maximum Minimum Mean Maximum
new measurement (ZigBee) 232 236 238 49 49 49
new measurement (UWB) 224 229 231 49 49 49
get measurement (ZigBee) 167 170 171 135 842 1639
get measurement (UWB) 164 167 168 447 566 785

new position (ZigBee) 221 225 228 55 55 55
new position (UWB) 216 219 221 55 55 55
get position (ZigBee) 219 222 223 159 282 350
get position (UWB) 216 219 220 156 242 338
get position (Fusion) 217 221 222 158 311 347

Note that during the simulations we have not used OpenID to authenticate the different clients with
the Location Server. Therefore, the message size shown in Figure 2 shows exactly the size of the JSON
messages going through the Location Server, not other network traffic involved in the authentication.

7. Conclusions

This paper introduces an RTLS architecture supporting multiple technologies. This architecture was
designed to provide an easy means of including new hardware, new algorithms and any kind of LBS by
considering client applications of the location estimations of targets of interest.

The architecture provides a complete API with several methods for interfacing with external modules.
Hardware providers can set up a network in the platform based on their own technology in a transparent
way, for example, to the algorithm developers. Algorithms can use raw data from one or more available
technologies to provide a location estimation. The location estimations are available in real time (or
off-line, with access to historical data) for location applications.

The advantage of the proposed architecture, as opposed to monolithic solutions, is that it allows a
generalization and retargeting for new LBS and applications, reducing costs of further development.
Other kind of purpose built systems can be expensive and hard to implement in practice.

To demonstrate the application of the architecture and its platform, the paper introduces two case
studies based on real deployments. Moreover, the performance of the platform in a specific scenario has
been demonstrated by the validation results.
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