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Abstract: Electrical capacitance tomography (ECT) attempts to reconstruct the 
permittivity distribution of the cross-section of measurement objects from the capacitance 
measurement data, in which reconstruction algorithms play a crucial role in real 
applications. Based on the robust principal component analysis (RPCA) method, a dynamic 
reconstruction model that utilizes the multiple measurement vectors is presented in this 
paper, in which the evolution process of a dynamic object is considered as a sequence of 
images with different temporal sparse deviations from a common background. An 
objective functional that simultaneously considers the temporal constraint and the spatial 
constraint is proposed, where the images are reconstructed by a batching pattern. An 
iteration scheme that integrates the advantages of the alternating direction iteration 
optimization (ADIO) method and the forward-backward splitting (FBS) technique is 
developed for solving the proposed objective functional. Numerical simulations are 
implemented to validate the feasibility of the proposed algorithm.  

Keywords: electrical capacitance tomography; capacitance sensor; image reconstruction; 
inverse problem; robust principle component analysis; forward-backward splitting 
technique; alternating direction iteration optimization method 
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1. Introduction 

Acquiring the spatial distribution information of materials is vital for improving the system 
efficiency and reducing pollution emission in chemical reactors or multiphase flow units. ECT is a 
noninvasive imaging technique, which is used to acquire spatial distribution information from 
inaccessible objects in order to monitor industrial processes. Owing to its distinct advantages such as 
the non-intrusive sensing, radiation-free nature, high temporal resolution, affordable measuring device 
and easy implementation, ECT is proven to be useful in industrial process monitoring, multiphase flow 
measurements, the visualization of combustion flames in porous media and the identification of  
two-phase flow patterns [1–10]. 

ECT technology attempts to reconstruct the permittivity distribution of the cross-section via an 
appropriate reconstruction algorithm from the capacitance measurement data, where reconstructing 
high-quality images plays a crucial role in real applications. Due to the ill-posed nature of the inverse 
problem, the ‘soft-field’ effect and the underdetermined problem in ECT image reconstruction, 
achieving high-accuracy reconstruction of a dynamic object is challenging. The key issue for 
improving the reconstruction quality has attracted intensive attention, and thus various algorithms, 
which can be approximately divided into two categories, static and dynamic reconstruction algorithms, 
had been developed for ECT image reconstruction. Common static reconstruction algorithms include the 
linear back-projection (LBP) method [11], the Tikhonov regularization method [12], the Landweber 
iteration algorithm [13–15], the offline iteration and online reconstruction (OIOR) technique [16], the 
truncated singular value decomposition (TSVD) method [17], the algebraic reconstruction technique 
(ART) [17], the simultaneous iterative reconstruction technique (SIRT) [17], the genetic algorithm 
(GA) [18], the generalized vector sampled pattern matching (GVSPM) method [19], the generalized 
Tikhonov regularization methods [20–23], the simulated annealing (SA) algorithm [24], the neural 
network algorithm [25], the level set method [26,27]. Detailed discussions about the numerical 
performance of other reconstruction algorithms can be found in [17,28].  

The above-mentioned algorithms have played an important role in promoting the development of 
ECT technology and found numerous successful applications. It is worth mentioning that static 
reconstruction algorithms are often used to image a dynamic object [4,8]. However, these approaches 
exploit only the spatial relationship of the objects of interest, without using any temporal dynamics of 
the underlying process, which are not optimal for reconstructing a dynamic object unless the inversion 
solution is temporally uncorrelated. ECT measurement tasks often involve time-varying objects, and 
will be more applicable to image a dynamic object using a dynamic reconstruction algorithm that 
considers the temporal correlations of a dynamic object. In the field of ECT image reconstruction, 
dynamic reconstruction algorithms do not attract enough attention at present. Fortunately, several 
algorithms, such as the particle filter (PF) technique [29], the Kalman filter (KF) method [30] and the 
four-dimensional imaging algorithm [31], had been proposed for tackling the dynamic reconstruction 
tasks. Overall, the investigations of the dynamic reconstruction algorithms in the field of ECT are far 
from perfect, and finding an efficient dynamic reconstruction algorithm remains a critical issue.  

Based on the RPCA method, a dynamic reconstruction model that utilizes the multiple 
measurement vectors is presented in this paper, where the evolution process of a dynamic object is 
regarded as a sequence of 2-D images with different temporal sparse deviations from a common 
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background. An objective functional that simultaneously considers the temporal constraint and the 
spatial constraint is proposed, in which the images are reconstructed in a batching pattern. An iteration 
scheme that integrates the merits of the ADIO method and the FBS technique is developed for solving 
the established objective functional. Numerical simulations are implemented to validate the feasibility 
of the proposed algorithm. 

The rest of this paper is organized as follows: based on the RPCA method, a reconstruction model that 
utilizes the multiple measurement vectors is proposed in Section 2. The original image reconstruction 
model is formulated into an optimization problem, and a new objective functional is established in 
Section 3. In Section 4, an iteration scheme that integrates the advantages of the ADIO method and the 
FBS algorithm is developed for solving the proposed objective functional. In Section 5, numerical 
simulations are implemented to evaluate the feasibility of the proposed algorithm, and a concise 
discussion on the numerical results is provided. Finally, conclusions are presented in Section 6. 

2. Model Representation 

2.1. Static Reconstruction Model 

The ECT image reconstruction process involves two key phases: the forward problem and the 
inverse problem. The forward problem solves the capacitance values from a given permittivity 
distribution. It is worth mentioning that the forward problem is a well-posed problem, and it can be 
easily solved by numerical methods such as the finite element method or the finite difference method. 
The relationship between capacitance and the permittivity distribution can be formulated by [17]: 

1 ( , ) ( , )dQC x y x y
V V

ε φ
Γ

= = − ∇ Γ∫∫  (1) 

where Q  is the electric charge; V  represents the potential difference between two electrodes forming 
the capacitance; ( , )x yε  and ( , )x yφ  indicate the permittivity and electrical potential distributions, 
respectively; Γ  stands for the electrode surface. 

The inverse problem attempts to estimate the permittivity distribution from the given capacitance 
data. In real applications, the static linearization image reconstruction model can be simplified as [17]: 

=SG C + r  (2) 

where G  is an 1n×  dimensional vector standing for the normalized permittivity distributions; C  
represents an 1m×  dimensional vector indicating the normalized capacitance values; r  is an 1m×  
dimensional vector representing the capacitance measurement noises; S  stands for a matrix of 
dimension m n× , and it is called as the sensitivity matrix in the field of ECT image reconstruction, 
which can be formulated by [32,33]: 

, ( , )

( , )( , )( , ) d dji
i j p x y

i j

E x yE x yx y x y
V V

= − ⋅∫S  (3) 

where , ( , )i j x yS  defines the sensitivity between the thi  electrode and the thj  electrode at ( , )p x y ; 
( , )iE x y  stands for the electric field distribution inside the sensing domain when the thi  electrode is 

activated as an excitation electrode by applying a voltage iV  to it.  
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2.2. Multiple Measurement Vectors Dynamic Reconstruction Model 

Equation (2) only considers the instantaneous measurement information, and uses single 
measurement data to implement image reconstruction without any considerations of the temporal 
dynamics of the underlying process, which is not optimal for reconstructing a dynamic object. It is 
well known that ECT reconstruction objects are often in a dynamic evolution process, and the 
measurement results at different time instants have a close correlation [4]. Therefore, considering such 
information may be important for imaging a dynamic object. In this paper, we propose a multiple 
measurement vectors dynamic reconstruction model, which can be formulated as: 

=SX + U Y + N  (4) 

where U  is an m t×  dimensional matrix representing the model distortions derived from the  
facts [17,23,34], such as: (1) the simplification of a true physical process, (2) the linearization 
approximation distortions of the reconstruction model, and (3) physically implementing an ECT 
sensor; 1t >  defines the number of measurements or the measurement time window; Y  stands for an 
m t×  dimensional matrix indicating the capacitance measurement data; X  represents an n t×  
dimensional matrix, and each column of X  stands for the permittivity distributions at the 
measurement time window t ; N  is an m t×  dimensional matrix standing for the capacitance 
measurement noises. 

In the static reconstruction model, the solution merely reflects an instantaneous measurement 
without any considerations of temporal dynamics of the underlying process, whereas in the case of the 
dynamic reconstruction model it reflects a sequence of temporally successive measurement, such that 
the temporal correlations of a dynamic object of interest should be imposed. In other word, the 
dependence of the capacitance measurement on the evolution of the permittivity distribution is 
explicitly considered in the dynamical reconstruction model. If the evolution of the permittivity 
distribution does not follow any dynamics, the dynamical reconstruction model reduces to the static 
reconstruction model. Obviously, the static reconstruction model is a special case of the dynamic 
reconstruction model. 

The PCA method is an efficient data processing technique, which have enjoyed wide popularity in 
various fields. Unfortunately, the performances of the PCA technique suffer from the outliers in the 
data matrix, and thus different approaches had been developed for improving the PCA method. The 
RPCA method provides a new insight for modern data analysis approaches, which alleviates the 
deficiencies of the PCA method by applying the 1 -regularization and the nuclear norm on the matrix 
entries. Therefore, the RPCA method is robust to grossly corrupted observations of the underlying 
low-rank matrix. In a word, the RPCA method tries to recover principal component A  (modeled by a 
low-rank matrix) from data matrix D  with outliers E  (modeled by a sparse matrix), which can be 
formulated into the following minimization problem under the certain conditions [35,36]: 

{ }* 1
( , ) min λ= +A E A E , subject to = +D A E  (5) 

where, *
⋅  defines the nuclear norm for a matrix, and it can be specified as 

* k
k

σ=∑A , and kσ  are 

the singular values of matrix A ; 1
⋅  represents the 1 -norm for a matrix, which can be defined as 
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j i

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑E E ; 0λ >  is a regularization parameter. It is worth mentioning that term 1
E  is 

introduced to satisfy the sparsity assumption of matrix E . 

Studies indicate that the evolution process of a dynamic object can be regarded as a sequence of 
images with different temporal sparse deviations from a common background. Motivated by this 
observation, the following low-rank and sparse decomposition of X  can be obtained [37]: 

1 2+X = X X  (6) 

where 1X  is the low-rank matrix component for modeling the ‘background components’ of X . It is 
worth mentioning that 1X  is assumed to resemble each other rather than to be constant in time, which 
can be described as a low-rank matrix in mathematics under the RPCA framework [37]. On the other 
hand, 2X  is the sparse matrix component for modeling the sparse deviation from the background 1X . 
Submitting Equation (6) to Equation (4) yields the following expression: 

1 2( ) =S X + X + U Y + N  (7) 

3. Design of the Objective Functional 

Equation (7) is a matrix-based reconstruction model, and it includes three unknown matrix 
variables. Therefore, it is hard to directly solve the equation. ECT image reconstruction process is a 
typical ill-posed problem, methods that ensure the numerical stability while improving the quality of 
an inversion solution should be employed. The Tikhonov regularization technique is an efficient 
method for solving the ill-posed problems, which has enjoyed wide popularity in various fields. A 
Tikhonov regularization solution is essentially a result of balancing the accuracy and stability of an 
inversion solution. According to the Tikhonov regularization method and the optimization theory, 
Equation (7) can be reformulated as: 

2 24
1 2 1 1 2 2 3 1 2* 1

1min ( ) ( ) ( )
2 2F F

αα α α⎧ ⎫+ − + + Ω + +⎨ ⎬
⎩ ⎭

S X X + U Y + X X U X X W  (8) 

where operator F
⋅  defines the Frobenius norm for a matrix; 

2
1 2 1 2 1 2( ) Tr(( ( ) ) ( ( ) ))T

F
+ − = + − + −S X X + U Y S X X + U Y S X X + U Y , and Tr( )⋅  represents the 

trace of a matrix; 1 0α > , 2 0α > , 3 0α >  and 4 0α >  are the regularization parameters; Ω  represents a 

stabilizing functional; 2
1 2 1 2 1 2( ) Tr((( ) ) (( ) ))T

F
=X + X W X + X W X + X W stands for a temporal 

constraint, where W  is defined as: 

1

1 0 0
1 1 0
0 1 0

0 0 1
0 0 1 t t× −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

W =  (9)
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Equation (8) can be called as a generalized Tikhonov functional, where 2
1 2( )

F
+ −S X X + U Y  

measures the accuracy of an inversion solution, and 1 *
X , 2 1

X , ( )Ω U  and 2
1 2( )

F
X + X W  achieve 

the numerical stability. Particularly, terms 1 *
X  and 2 1

X  are used to model the background 

component and the sparse deviation from the background of a dynamic process, respectively. It is 
worth mentioning that 2

1 2( )
F

X + X W  can be considered as a temporal constraint, which is introduced 

to impose the temporal correlation of a dynamic object. 
The design of function Ω  is vital for Equation (8). For simplicity, function Ω  is defined as: 

1
( )Ω =U U  (10) 

Following the discussions presented in previous sections, an objective functional for ECT image 
reconstruction can be specified by: 

2 24
1 2 1 1 2 2 3 1 2* 1 1

1min ( ) ( )
2 2F F

αα α α⎧ ⎫+ − + + + +⎨ ⎬
⎩ ⎭

S X X + U Y + X X X X WU  (11) 

Several desirable properties can be found from Equation (11): 

(1) In traditional reconstruction models, only single measurement data is used to independently 
implement image reconstruction; in Equation (11), however, multiple measurement vectors are 
employed to image a dynamic object and the images are reconstructed by a batching pattern, which 
differs from other vector-based reconstruction algorithms such as the ART method and the  
GVSPM algorithm.  

(2) In Equation (11), the image series are divided into two matrix-based components by the RPCA 
method, and the evolution process of a dynamic object is considered as a sequence of images with 
different temporal sparse deviations from a common background. It is worth mentioning that in real 
applications different constraints can be imposed on the two matrix-based components according to the 
prior information of a dynamic object, which will facilitate the improvement of the reconstruction quality. 

(3) In Equation (11), the temporal constraint and the spatial constraint are simultaneously 
considered. Particularly, the temporal constraint is introduced to impose the temporal correlations of a 
dynamic object. Furthermore, the nuclear norm and the 1 -norm are used to model the background 
component and the sparse component of a dynamic evolution process, respectively. 

(4) The measurement noises and the model approximation distortions are simultaneously considered 
in Equation (11), which is highly suitable for real applications. In particular, the accuracy measure of 
an inversion solution is considered under a measurement time window, which differs from single 
measurement vector-based methods.  

(5) ECT image reconstruction process is a typical ill-posed problem, methods that ensure the 
numerical stability while improving the quality of an inversion solution should be employed. In 
Equation (11), the Tikhonov regularization technique is introduced to ensure the numerical stability of 
an inversion solution. 

(6) The unknown variables in Equation (11) are three matrices, and the computational approaches 
and strategies will be distinctly different from other vector-based reconstruction algorithms such as the 
ART method and the GVSPM algorithm. 
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4. Solving of the Objective Functional 

Developing an efficient algorithm to solve Equation (11) is crucial for real applications of the 
proposed dynamic reconstruction model. In this section, the ADIO method and the FBS technique are 
concisely introduced, and an iteration scheme that integrates the advantages of the both methods is 
developed for solving Equation (11).  

4.1. Alternating Direction Iteration Optimization Method 

Equation (11) includes three unknown matrix variables U , 1X  and 2X , and directly solving the 
equation is challenging. In the ADIO method, different unknown variables can be alternately  
solved [38], and thus Equation (11) can be reformulated into the following three sub-problems: 

2

3 1
1

1 2
1min ( )
2

k k

F

k α+ = ⎧ ⎫+ −⎨ ⎬
⎩ ⎭U

S X X U+U + U Y  (12) 

where 
2

1 2 1 2 1 2( ) Tr(( ( ) ) ( ( ) ))k k k k T k k

F
+ − = + − + −S X X + U Y S X X + U Y S X X + U Y . 

1

2 21 1 4
1 1 2 1 1 1 2*

1min ( ) ( )
2 2

k k k k

F F

αα+ +⎧ ⎫= + − + +⎨ ⎬
⎩ ⎭X

X S X X + U Y + X X X W  (13) 

where
21 1 1

1 2 1 2 1 2( ) Tr(( ( ) ) ( ( ) ))k k k k T k k

F

+ + ++ − = + − + −S X X + U Y S X X + U Y S X X + U Y  and 
2

1 2 1 2 1 2( ) Tr((( ) ) (( ) ))k k T k

F
+ = + +X X W X X W X X W . 

2

2 21 1 1 14
2 1 2 2 2 1 21

1min ( ) ( )
2 2

k k k k

F F

αα+ + + +⎧ ⎫= + − + + +⎨ ⎬
⎩ ⎭X

X S X X + U Y X X X W  (14) 

where 
21 1 1 1 1 1

1 2 1 2 1 2( ) Tr(( ( ) ) ( ( ) ))k k k k T k k

F

+ + + + + ++ − = + − + −S X X + U Y S X X + U Y S X X + U Y  and 
21 1 1

1 2 1 2 1 2( ) Tr((( ) ) (( ) ))k k T k

F

+ + ++ = + +X X W X X W X X W . 

According to the above discussions, Equation (11) is divided into three sub-problems, in which 
Equation (12) can be solved by the shrinkage algorithm [39]. Obviously, solving Equations (13) and (14) 
plays a crucial role in real applications. 

4.2. Forward-Backward Splitting Technique 

The FBS technique is originally proposed for solving the following optimization problem [40–44]: 

{ }min ( ) ( )J Hμ +
u

u u  (15) 

where J  and H  are the known functions.  
According to the corresponding deductions, the resulting FBS algorithm can be formulated as: 

1 Prox ( ( ))k k k
J Hδμ δ+ = − ∂u u u  (16) 

where the proximal operator Prox ( )Jδμ v  is defined as: 
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21arg min ( )
2

Jμ
δ

⎧ ⎫+ −⎨ ⎬
⎩ ⎭u

u u v  (17) 

In the case of 21( )
2

H = −u Au f , we can obtain ( ) ( )TH∂ −u = A Au f . Therefore, Equation (15) 

can be solved by the following two-step algorithm: 

1 ( )k k T kδ+ = − −v u A Au f  (18) 

21 11arg min ( )
2

k kJμ
δ

+ +⎧ ⎫= + −⎨ ⎬
⎩ ⎭u

u u u v  (19) 

4.3. Proposed Iteration Scheme 

Following the above discussions, an iteration scheme can be developed for solving Equation (11), 
which can be summarized as follows: 

Step 1. Specify the algorithmic parameters and the initial values. 
Step 2. Update variable U  by solving Equation (12) using the shrinkage algorithm [39]. 
Step 3. Update variable 1X  by solving Equation (13) using the FBS algorithm and the singular 
value thresholding (SVT) technique [45]. 
Step 4. Update variable 2X  by solving Equation (14) using the FBS method. 
Step 5. Loop to Step 2 until a predetermined iteration stopping criterion is satisfied. 

Additionally, it can be known in advance that the inversion solution belongs to the range 1 2[ , ]Θ Θ , 
therefore a projected operator is introduced to the iteration scheme: 

{ }1 1Projectk k+ +=X X  (20) 

where: 

1 , 1

, 1 , 2

2 , 2

, if
Project ( ), if

if

i j

i j i j

i j

f x
⎧Θ < Θ
⎪⎡ ⎤ = Θ ≤ ≤ Θ⎨⎣ ⎦
⎪Θ > Θ⎩

D
D D

D
 (21) 

5. Numerical Simulations and Discussions 

According to the above discussions, the proposed reconstruction technique can be concisely called 
as the multiple measurement vectors dynamic reconstruction (MMVDR) algorithm. In this section, 
dynamic reconstruction cases are implemented to evaluate the feasibility of the MMVDR algorithm, 
and the reconstruction quality is compared with the projected Landweber iteration (PLI) method. The 
initial values are computed by the standard Tikhonov regularization method. All algorithms are 
implemented using the MATLAB 7.0 software on a PC with a Pentium Ⅳ 2.4 G Hz CPU, and 4 G 
bytes memory. The image error is used to evaluate the reconstruction quality, which is defined as [17]: 

True Estimated

True

100%η
−

= ×
G G

G
 (22) 
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Figure 3. Reconstructed images by the PLI algorithm. 

  
(a) (b) (c) 

Figure 4. Reconstructed images by the MMVDR algorithm. 

  
(a) (b) (c)  

Table 1. Algorithmic parameters for the PLI algorithm. 

Algorithmic Parameters Figure 3(a) Figure 3(b) Figure 3(c) 
Relaxation factor 1 1 1 

Number of iteration 480 401 432 

Table 2. Image errors (%). 

Algorithms Figure 2(a) Figure 2(b) Figure 2(c) 
PLI 12.61 18.03 18.82 

MMVDR 9.08 13.92 15.11 

The images reconstructed by the PLI method are presented in Figure 3. Numerical simulation 
results indicate that distinct advantages of the PLI method involve easy numerical implementation and 
low computational complexity and cost owing to the fact that only gradient information of the 
objective functional is used. However, the PLI fails to consider the temporal correlations of a dynamic 
object, and the improvement of the reconstruction quality is therefore restricted. For the cases 
simulated in this section, the quality of the images reconstructed by the PLI method is far from perfect 
and the distortions are relatively serious.  

The images reconstructed by the MMVDR algorithm are illustrated in Figure 4. Numerical 
simulation results indicate that the MMVDR algorithm can ensure the numerical stability of an 
inversion solution owing to the fact that the Tikhonov regularization technique is used to stabilize the 
numerical solution. Particularly, the computational complexity and cost of the MMVDR algorithm are 
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Figure 7. Reconstructed images by the MMVDR algorithm. 

 
(a) (b) (c) (d)  

Algorithmic parameters for the PLI method are listed in Table 3. The algorithmic parameters for the 
MMVDR algorithm are the same as Section 5.1. The images reconstructed by the PLI method and the 
MMVDR algorithm are illustrated in Figures 6 and 7, respectively. Table 4 lists the image errors for 
the PLI algorithm and the MMVDR algorithm. 

Table 3. Algorithmic parameters for the PLI algorithm. 

Algorithmic Parameters Figure 6(a) Figure 6(b) Figure 6(c) Figure 6(d) 
Relaxation factor 1 1 1 1 

Number of iteration 535 500 111 748 

Table 4. Image errors (%). 

Algorithms Figure 5(a) Figure 5(b) Figure 5(c) Figure 5(d) 
PLI 15.77 15.09 15.22 18.39 

MMVDR 10.37 11.55 6.68 13.40 

The images reconstructed by the PLI method are presented in Figure 6. It can be seen that for the 
dynamic reconstruction case simulated in this section, the quality of the images reconstructed by the 
PLI method is far from perfect and the distortions are relatively large.  

Figure 7 illustrates the images reconstructed by the MMVDR algorithm. As can be expected, it can 
be seen from Figure 7 that the quality of the images reconstructed by the MMVDR algorithm is 
improved as compared to the PLI method. At the same time, it can be observed from Table 4 that for 
the case simulated in this section, the MMVDR algorithm gives the smallest image errors, which 
indicates that the MMVDR algorithm is successful in solving ECT inverse problems. 

5.3. Case 3 

In this section, the noise-contaminated capacitance data is used to evaluate the robustness of the 
MMVDR algorithm. In this case, two measurement vectors ( 2t = ) are used to implement the image 
reconstruction. The noise level is defined by [17]: 

Contaminated True

True

100%γ
−

×
C C

=
C

 (23) 

where γ  is the noise level; TrueC  stands for the true capacitance data; ContaminatedC is the noise-contaminated 
capacitance data; Contaminated True= +C C r , where 1 randnσ= ⋅r ; 1σ  represents the standard deviation and 
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Figure 11. Reconstructed images by the MMVDR algorithm under the noise level of 24%. 

   
(a)     (b) 

Figure 12. Reconstructed images by the MMVDR algorithm under the noise level of 33%. 

   
(a)    (b) 

Table 5. Image errors (%). 

Noise levels Figure 8(a) Figure 8(b) 
0 10.89 7.36 

9% 11.03 7.87 
24% 12.63 10.06 
33% 13.81 10.20 

Figures 9–12 are the images reconstructed by the MMVDR algorithm under the noise levels of 0, 
9%, 24% and 33%, respectively. As can be expected, it can be seen from Figures 9–12 that the 
MMVDR algorithm shows satisfactory robustness, and the quality of the images reconstructed under 
different noise levels is acceptable, which is highly desirable for real applications owing to the fact that 
the measurement noises are inevitable in practice. When the noise level is 33%, especially, the image 
errors for the dynamic reconstruction objects, Figure 8(a,b), are 13.81% and 10.20%, which indicates 
that the MMVDR algorithm is successful in treating with the measurement noises. Additionally, it can 
be seen from Figures 9–12 and Table 5 that the image errors increase with the increment of the noise 
levels, which indicates that the inaccuracy of the capacitance measurement data should be seriously 
tackled and this issue should be further studied in the future. 

6. Conclusions 

ECT is considered a promising visualization measurement technology, in which reconstructing high 
quality images is highly desirable for real applications. In this paper, based on the RPCA technique, a 
dynamic reconstruction model that utilizes the multiple measurement vectors is presented, in which the 
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evolution process of a dynamic object is considered as a sequence of images with different temporal 
sparse deviations from a common background. An objective functional that simultaneously considers 
the temporal constraint and the spatial constraint is proposed, where the images are reconstructed in a 
batching pattern. An iteration scheme that integrates the advantages of the ADIO method and the FBS 
technique is developed for solving the proposed objective functional. Numerical simulation results 
indicate that the proposed algorithm can ensure a stable numerical solution. For the cases simulated in 
this paper, the quality of the images reconstructed by the proposed algorithm is improved, which 
indicates that the proposed algorithm is successful in solving ECT inverse problems. As a result, a 
promising algorithm is introduced for ECT image reconstruction. 

Applications indicate that each algorithm may show different numerical performances to different 
reconstruction tasks. In practice, the selection of a reconstruction algorithm depends mainly on the 
measurement requirements and the prior information of a specific reconstruction task. Our work 
provides an alternative approach for solving ECT inverse problems, which needs to be validated by 
more cases in the future. At the same time, more investigations on the improvement of the 
reconstruction speed should be undertaken. 

Acknowledgements 

The authors wish to thank the National Natural Science Foundation of China (Nos. 51206048, 
61072005 and 51006106) and the Program for the Changjiang Scholars and Innovative Research Team 
in University (No.IRT0952) for supporting this research. 

References 

1. Rimpilainen, V.; Heikkinen, L.M.; Vauhkonen, M. Moisture distribution and hydrodynamics of 
wet granules during fluidized-bed drying characterized with volumetric electrical capacitance 
tomography. Chem. Eng. Sci. 2012, 75, 220–234. 

2. Rimpilainen, V.; Poutiainen, S.; Heikkinen, L.M.; Savolainen, T.; Vauhkonen, M.; Ketolainen, J. 
Electrical capacitance tomography as a monitoring tool for high-shear mixing and granulation. 
Chem. Eng. Sci. 2011, 66, 4090–4100. 

3. Wang, H.G.; Yang, W.Q. Measurement of fluidised bed dryer by different frequency and different 
normalisation methods with electrical capacitance tomography. Powder Technol. 2010, 199, 60–69. 

4. Xiong, X.; Zhang, Z.; Liu, S.; Lei, J. Wavelet enhanced visualization of solids distribution in the 
top of a CFB. Chem. Eng. J. 2010, 158, 61–68. 

5. Zhao, T.; Takei, M.; Doh, D.H. ECT measurement and CFD-DEM simulation of particle 
distribution in a down-flow fluidized bed. Flow Meas. Instrum. 2010, 21, 212–218. 

6. Hamidipour, M.; Larachi, F. Dynamics of filtration in monolith reactors using electrical 
capacitance tomography. Chem. Eng. Sci. 2010, 65, 504–510. 

7. Niedostatkiewicz, M.; Tejchman, J.; Chaniecki, Z.; Grudzien, K. Determination of bulk solid 
concentration changes during granular flow in a model silo with ECT sensors. Chem. Eng. Sci. 
2009, 64, 20–30. 

8. Liu, S.; Chen, Q.; Xiong, X.; Zhang, Z.; Lei, J. Preliminary study on ECT imaging of flames in 
porous media. Meas. Sci. Technol. 2008, 19, 1–7. 



Sensors 2013, 13 2091 
 

 

9. Makkawi, Y.; Ocone, R. Integration of ECT measurement with hydrodynamic modelling of 
conventional gas-solid bubbling bed. Chem. Eng. Sci. 2007, 62, 4304–4315. 

10. Du, B.; Warsito, W.; Fan, L.S. Imaging the choking transition in gas-solid risers using electrical 
capacitance tomography. Ind. Eng. Chem. Res. 2006, 45, 5384–5395. 

11. Xie, C.G.; Huang, S.M.; Hoyle, B.S.; Thorn, R.; Lenn, C.; Snowden, D.; Beck, M.S. Electrical 
capacitance for flow imaging: system model for development of image reconstruction algorithms 
and design of primary sensors. IEE Proc. G 1992; 139, 89–98. 

12. Tikhonov, A.N.; Arsenin, V.Y. Solution of Ill-posed Problems; V.H. Winston & Sons: New York, 
NY, USA, 1977. 

13. Landweber, L. An iteration formula for fredholm integral equations of the first kind. Am. J. Math. 
1951, 73, 615–624. 

14. Yang, W.Q.; Spink, D.M.; York, T.A.; McCann, H. An image reconstruction algorithm based on 
Landweber’s iteration method for electrical capacitance tomography. Meas. Sci. Technol. 1999, 
10, 1065–1069. 

15. Jang, J.D.; Lee, S.H.; Kim, K.Y.; Choi, B.Y. Modified iterative Landweber method in electrical 
capacitance tomography. Meas. Sci. Technol. 2006, 17, 1909–1917. 

16. Liu, S.; Fu, L.; Yang, W.Q.; Wang, H.G.; Jiang, F. Prior-online iteration for image reconstruction 
with electrical capacitance tomography. IEE Proc. Sci. Meas. Technol. 2004, 151, 195–200. 

17. Yang, W.Q.; Peng, L.H. Image reconstruction algorithms for electrical capacitance tomography. 
Meas. Sci. Technol. 2003, 14, L1–L13. 

18. Mou, C.H.; Peng, L.H.; Yao, D.Y.; Xiao, D.Y. Image reconstruction using a genetic algorithm for 
electrical capacitance tomography. Tsinghua Sci. Technol. 2005, 10, 587–592. 

19. Takei, M. GVSPM image reconstruction for capacitance CT images of particles in a vertical pipe 
and comparison with the conventional method. Meas. Sci. Technol. 2006, 17, 2104–2112. 

20. Soleimani, M.; Lionheart, W.R.B. Nonlinear image reconstruction for electrical capacitance 
tomography using experimental data. Meas. Sci. Technol. 2005, 16, 1987–1996. 

21. Wang, H.X.; Tang, L.; Cao, Z. An image reconstruction algorithm based on total variation with 
adaptive mesh refinement for ECT. Flow Meas. Instrum. 2007, 18, 262–267. 

22. Fang, W.F. A nonlinear image reconstruction algorithm for electrical capacitance tomography. 
Meas. Sci. Technol. 2004, 15, 2124–2132. 

23. Lei, J.; Liu, S.; Guo, H.H.; Li, Z.H.; Li, J.T.; Han, Z.X. An image reconstruction algorithm based 
on the semiparametric model for electrical capacitance tomography. Comp. Math. Appl. 2011, 61, 
2843–2853. 

24. Ortiz-Aleman, C.; Martin, R.; Gamio, J.C. Reconstruction of permittivity images from capacitance 
tomography data by using very fast simulated annealing. Meas. Sci. Technol. 2004, 15, 1382–1390. 

25. Warsito, W.; Fan, L.S. Neural network based multi-criterion optimization image reconstruction 
technique for imaging two-and three-phase flow systems using electrical capacitance tomography. 
Meas. Sci. Technol. 2001, 12, 2198–2210. 

26. Banasiak, R.; Soleimani, M. Shape based reconstruction of experimental data in 3D electrical 
capacitance tomography. NDT & E Int. 2010, 43, 241–249. 

27. Kortschak, B.; Wegleiter, H.; Brandstatter, B. Formulation of cost functionals for different 
measurement principles in nonlinear capacitance tomography. Meas. Sci. Technol. 2007, 18, 71–78. 



Sensors 2013, 13 2092 
 

 

28. Lei, J. Research on Image Reconstruction Algorithms of Electrical Capacitance Tomography for 
the Multiphase Flow, PhD thesis, Institute of Engineering Thermophysics, Chinese Academy of 
Sciences, Beijing, China, 2008. 

29. Watzenig, D.; Brandner, M.; Steiner, G. A particle filter approach for tomographic imaging based 
on different state-space representations. Meas. Sci. Technol. 2007, 18, 30–40. 

30. Soleimani, M.; Vauhkonen, M.; Yang, W.Q.; Peyton, A.; Kim, B.S.; Ma, X.D. Dynamic imaging 
in electrical capacitance tomography and electromagnetic induction tomography using a Kalman 
filter. Meas. Sci. Technol. 2007, 18, 3287–3294. 

31. Soleimani, M.; Mitchell, C.N.; Banasiak, R.; Wajman, R.; Adler, A. Four-dimensional electrical 
capacitance tomography imaging using experimental data. Prog. Electromagn. Res. 2009, 90, 
171–186. 

32. Waterfall, R.C.; He, R.; White, N.B.; Beck, C.M. Combustion imaging from electrical impedance 
measurements. Meas. Sci. Technol. 1996, 7, 369–374. 

33. Peng, L.H.; Ye, J.M.; Lu, G.; Yang, W.Q. Evaluation of effect of number of electrodes in ECT 
sensors on image quality. IEEE Sens. J. 2012, 12, 1554–1565. 

34. Zhang, Z.L.; Huang, Q.Y.; Wen, H.Y.; Deng, Y.J. Deformation Monitoring Analysis and 
Prediction for Engineering Constructions; Surveying and Mapping Press: Beijing, China, 2007. 

35. Candes, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principle component analysis? J. ACM 2011, 58, 1–37. 
36. Wright, J.; Peng, Y.; Ma, Y.; Ganesh, A.; Rao, S. Robust principal component analysis: exact 

recovery of corrupted low-rank matrices via convex optimization. In Proceedings of The 23rd Annual 
Conference on Neural Information Processing, Vancouver, BC, Canada, 7–10 December 2009. 

37. Gao, H.; Cai, J.F.; Shen, Z.; Zhao, H. Robust principle component analysis based  
four-dimensional computed tomography. Phys. Med. Biol. 2011, 56, 3181–3198.  

38. Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 
2009, 2, 323–343. 

39. Yin, W.; Osher, S.; Goldfarb, D.; Darbon, J. Bregman iterative algorithms for L1 minimization 
with applications to compressed sensing. SIAM J. Imag. Sci. 2008, 1, 143–168. 

40. Zhang, X.; Burger, M.; Bresson, X.; Osher S. Bregmanized nonlocal regularization for 
deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 2010, 3, 253–276. 

41. Beck, A.; Tebouule, M. A fast iteration shrinkage-thresholding algorithm for linear inverse 
problems. SIAM J. Imag. Sci. 2009, 2, 183–202. 

42. Duchi, J.; Singer, Y. Efficient online and batch learning using forward backward splitting.  
J. Mach. Learn. Res. 2009, 10, 2899–2934. 

43. Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. SIAM J. 
Multiscale Model. Simul. 2005, 4, 1168–1200. 

44. Montefusco, L.B.; Lazzaro, D.; Papi, S.; Guerrini, C. A fast compressed sensing approach to 3D 
MR image reconstruction. IEEE Trans. Med. Imag. 2011, 30, 1064–1075. 

45. Cai, J.F.; Candes, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. 
SIAM J. Optim. 2008, 20, 1956–1982. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


