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Abstract: In the field of dental health care, plaster models combined with 2D radiographs 
are widely used in clinical practice for orthodontic diagnoses. However, complex 
malocclusions can be better analyzed by exploiting 3D digital dental models, which allow 
virtual simulations and treatment planning processes. In this paper, dental data captured by 
independent imaging sensors are fused to create multi-body orthodontic models composed 
of teeth, oral soft tissues and alveolar bone structures. The methodology is based on 
integrating Cone-Beam Computed Tomography (CBCT) and surface structured light 
scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues  
(visible surfaces) through the digitalization of both patients’ mouth impressions and plaster 
casts. These data are also used to guide the segmentation of internal dental tissues by 
processing CBCT data sets. The 3D individual dental tissues obtained by the optical 
scanner and the CBCT sensor are fused within multi-body orthodontic models without 
human supervisions to identify target anatomical structures. The final multi-body models 
represent valuable virtual platforms to clinical diagnostic and treatment planning. 

Keywords: dental CBCT images; optical scanning; sensor fusion; tooth segmentation; 
orthodontic model 
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1. Introduction 

The development of procedures for the computerized design and manufacturing of custom dental 
devices has become of growing interest to orthognathic and orthodontic treatments. In clinical practice, 
odontoiatric diagnosis and therapy planning conventionally rely on the use of plaster models of the 
patient’s mouth. Moreover, two-dimensional lateral cephalograms and/or panoramic radiographs are 
often used to assess clinical outcomes and to provide information about the relative disposition 
between dentition and skeletal structures. However, the use of 2D investigations does not always 
provide reliable information about relative displacements between teeth, roots and bone. In case of 
complex pathologies (i.e., unerupted or impacted teeth, presence of severely curved roots), full 3D 
digital dental models should be used to predict the biomechanical behavior of dental tissues and to 
evaluate the biological feasibility of treatment plans. Generally, computer-assisted dentistry requires a 
digital virtual model providing the following features: (i) accurate modeling of tooth crown surface 
and related soft tissue (gingiva), (ii) reconstruction of alveolar bone structure and tooth root geometry, 
and (iii) reliable relative placements of dental tissues. Within restorative dentistry, orthodontics 
requires the reconstruction of a full mouth model (orthodontic model) to provide better functionalities 
and appearances. In this context, the gingiva model is essential to control the motion of teeth within 
visually acceptable conditions. Moreover, root geometry is required to analyze pathways of tooth 
movements during the treatment over time, especially for complex malocclusions [1]. 

Nowadays, orthodontic clinicians can be assisted in malocclusion diagnoses and virtual treatment 
planning by 3D imaging techniques such as computed tomography (CT), magnetic resonance (MR), 
stereo-photogrammetry and optical scanning. However, none of the existing imaging technologies are 
able to simultaneously acquire and integrate all the anatomical tissues that are involved in the clinical 
orthodontic practice. 

Computed Tomography is considered the first choice for demanding bone imaging tasks, even if high 
radiation doses are unavoidable. In recent years, Cone Beam Computed Tomography (CBCT) has been 
introduced in dentistry and orthodontic applications since diagnostics accuracies are obtained with lower 
radiation doses [2]. However, CBCT data do not provide images suitable for accurate 3D reconstructions of 
soft tissues. The presence of artifacts owing to metal restorations and/or orthodontic fixed appliances, 
impairs the accurate reproduction of tooth information. Moreover, accuracy and resolution of CBCT 
reconstructions are not adequate for the design and production of tight-fitting removable appliances. 
On the other hand, optical scanning can be effectively used to provide accurate digitalization of 
patient’s dental arches, also reproducing oral soft tissues. However, surface optical scanners only 
provide the reconstruction of visible surfaces, whereas bone structures and teeth roots are missing.  

In recent years, complete models of dental structures are typically obtained through the fusion of 
multi-modal data obtained by integrating different imaging sensors. Technical literature has 
documented the use of multi-modal image fusion processes for the creation of facial skeleton–dentition 
models by integrating digital patient’s teeth captured by an optical scanner within bone models 
reconstructed by tomographic scanning. These approaches establish an augmentation of skeletal 
models with improved visualization of dentition without artifacts [3–5]. However, none of the 
proposed solutions takes into account the reconstruction of individual tooth shapes including root 
morphology. In [6], a method for visualizing tooth roots within orthodontic models has been 
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2. Methods 

The proposed methodology exploits 3D digital tooth crown models obtained by an optical scanning 
technique. In particular, the optical scanner is used to digitize plaster models manufactured from mouth 
impressions, which still represents the most accurate replicas of patients’ dentitions [7]. The tooth crown 
reconstruction is further enhanced by also scanning the mouth impression models. The two distinct 
scanning results are merged and used to separate each individual crown surface from the oral soft 
tissue geometry by exploiting the local curvature map. This approach allows a better modeling of the 
boundaries between adjacent teeth, which typically present missing data at touching regions. 

The CBCT image processing provides roots and jaws. In particular, tooth crown geometries 
obtained by the optical scanner are used to guide the reconstruction of root morphology and alveolar 
bone by optimizing the detection of tooth-bone boundaries, which are hardly distinguishable. 

The final step consists in merging the multi-modal dental data in order to provide an accurate full 
orthodontic representation including individual crowns obtained by the optical scanner and roots 
reconstructed by the CBCT. Moreover, the overall procedure provides each tooth in a reliable 
placement with respect to the alveolar bone. The overall methodology is schematized by the workflow 
shown in Figure 1 and described in the following sections. 

2.1. Digital Mouth Model through Optical Scanning 

In this paper, an optical scanner based on an active stereo vision approach (Figure 2) has been 
assembled in order to reconstruct patients’ dentition models including tooth crowns and surrounding 
gingival tissue [8]. Typically, these models can be either obtained by scanning the inner surface of an 
impression or the outer surface of a plaster cast. However, not all the surfaces composing a tooth shape 
can be easily reconstructed by using an optical scanning methodology. In particular, two circumstances 
may occur: (1) the space between the proximal surfaces of adjoining teeth (interproximal space) is not 
accessible to the impression material and therefore cannot be captured; (2) the interproximal space is 
adequate to be captured by the impression, but not sufficient to avoid optical undercuts during the 
plaster model scanning. In the first case, crowns remain incomplete either by scanning the impression 
or the plaster cast since geometry details of interproximal regions, where adjacent teeth in the same 
arch are contacting, are missing. The interproximal space must then be reconstructed by  
post-processing the acquired data through hole filling tools which, however, only approximate the real 
surface geometry by interpolating neighborhood data. In the latter case, the interproximal space can be 
reconstructed by scanning the inner surface of the patient’s impression. 

In this paper, the optical scanner has been configured with the aim at digitizing both impressions 
and plaster casts through the integration of an optical head with a motorized platform. A two-axis 
platform structure, including rotating and tilting movements, has been designed by assembling a 
turntable equipped with two stepper motors having a resolution of 400 steps per round.  

The optical sensor (Figure 2) is composed of a monochrome digital CCD camera (1,280 × 960 pixels) 
and a multimedia white light DLP projector (1,024 × 768 pixels) which are used as active devices for a 
stereo triangulation process. In this paper, a multi-temporal Gray Code Phase Shift Profilometry 
(GCPSP) method is used for the 3D shape recovery. A sequence of vertical light planes is projected 
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onto the model to be reconstructed. The planes are defined by black and white fringes whose period is 
progressively halved along the temporal sequence. Each pixel in the camera images is characterized by 
a light intensity that can be either bright or dark, depending on its location in the respective plane 
image. A binary code (0, 1 with n bit) is assigned to each pixel, where n is the number of the projected 
stripe patterns, and the values 0 and 1 are associated to the intensity levels, i.e., 0 = black and 1 = white. 
This encoding procedure provides l = 2n−1 encoded lines. The 3-D coordinates of the observed scene point 
are then computed by intersecting the optical ray with the plane considering that the geometry of the 
hardware set-up, the camera ray direction and the plane equation of the corresponding stripe are 
known. The methodology provides np = lh × lv encoded points, where lh is the horizontal resolution of 
the projector while lv is the vertical resolution of the camera. 

Figure 2. Scheme of the assembled optical dental scanner. 

 

The optical reconstructions are carried out by collecting 3D surface data of dental models from 
various conveniently selected directions. Different views are automatically aligned with reference to a 
common coordinate system on the basis of accurate angle measurements around the controlled rotating 
axes, exploiting a calibration procedure which relates the turntable position with respect to the 
common reference system [3]. The combination of two distinct controlled axes allows a reliable 
reproduction of shape details, since different viewing directions better handle occlusion problems  
and undercut areas. 

The vision system has been configured for a working distance of 300 mm and a working volume of 
100 mm × 80 mm × 80 mm (width × height × depth). The scanner is capable of measuring about 1 million 
3D points with a spatial resolution of 0.1 mm and an overall accuracy of 0.01 mm [3]. The integration 
between optical devices and mechanical turntables allows the automatic full field data capturing and 
reconstruction of dental casts and patient’s impressions.  

Figure 3(a,b) show an example of patient’s mouth impression (made by polyether impression material) 
along with the corresponding manufactured plaster cast (made by yellow stone), respectively.  
Figure 4(a,b) report the 3D reconstructions of the two physical models as obtained by aligning 16 different 
views for each model. As clearly visible in the corresponding triangular mesh models (Figure 4(c,d)), 
interproximal spaces are better reconstructed by scanning inner surface of the patient’s impression, 
whereas the top of the teeth is better acquired by scanning the outer surface of the plaster cast.  
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Figure 3. (a) Patient’s mouth impression. (b) Corresponding plaster cast. 

 
(a) (b) 

Figure 4. Aligned scans relative to the acquisition of the mouth impression (a) and the 
plaster cast (b) along with the corresponding triangular mesh models (c,d). 

 
(a) (b) 

 

(c) (d) 

Figure 5 shows the final digital reproduction of the patient tooth crowns and surrounding gingival 
tissue (digital mouth model) as obtained by fusing the captured data. The two distinct data sets are 
integrated through a manual alignment which is refined by a global registration procedure based on 
ICP techniques (Figure 5(a)). The final result is obtained by merging the common areas between  
the impression and the plaster digital models within a predefined tolerance value. A classical 
reconstruction pipeline (filtering, sampling and marching cube tessellation) [9] is then used to obtain 
the StL digital representation of the mouth surface model (Figure 5(b)). 
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Figure 5. (a) Fusion of the different views of the two distinct data sets. (b) Corresponding 
digital mouth surface model. 

 
(a) (b) 

2.2. Segmentation of Tooth Crown Surfaces 

The overall surface representing tooth crowns and oral soft tissue must be segmented into 
disconnected regions representing the individual tooth shapes and the gingiva. The mesh model can be 
partitioned by computer-based cutting tools, even if a manual process would require labor-intensive 
interactions. In this paper, a semi-automated procedure has been developed by exploiting the curvature 
of the digital mouth model. This model contains ridges and margin lines, which highlight the 
boundaries between different teeth, and between teeth and soft tissue. Regions with abrupt shape 
variations can be outlined by using curvature information.  

In this paper, curvature estimations are efficiently computed by directly processing the acquired 
sample points without exploiting any intermediate tessellation. In particular, local surface properties 
can be computed on the basis of the eigenanalysis of the covariance matrix of local neighborhoods of 
sample points [10]. The covariance matrix for a sample point p is given by: 

  (1)

and: 

 (2)

where  is the centroid of the neighbors  of p and Np is the number of points within the 

neighborhood. Since C is symmetric and positive semi-definite, all eigenvalues λl ( ) are 

real-valued and the eigenvectors vl form an orthogonal frame, corresponding to the principal 
components of the point set Np. Eigenvalues λl measure the coordinates variation of points pi along the 
direction of the corresponding eigenvector. Assuming λ0 ≤ λ1 ≤ λ2, the plane:  

 (3)

through  minimizes the sum of squared distances to the neighbors of p. Thus, the eigenvector v0 
approximates the surface normal np at point p, whereas v1 and v2 describe the tangent plane at point p. 
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Figure 7. (a) Segmented digital merged model and (b) relative optically-scanned  
crown model. 

(a) (b) 

2.3. Segmentation of CBCT Volumes 

One of the most challenging issues for 3D dental modeling from CBCT images concerns with the 
segmentation and manipulation of individual teeth. Several factors may influence the tooth detection 
process: (i) images deriving from CBCT can be noisy due to low radiation doses, (ii) tooth crowns may 
have touching adjacent regions occurring in some slices, (iii) dental fillings and/or orthodontic fixed 
appliances usually cause streak artifacts that may degrade the target data. All these circumstances 
impair the accurate extraction of individual tooth shapes.  

In this paper, a multi-step tooth segmentation procedure has been developed by integrating a 
thresholding method and a level set method. In particular, the overall procedure is guided by the result of 
the 3D tooth surface segmentation performed onto the digital mouth surface model (Figure 7(b)). The aim 
of the proposed approach is twofold. Firstly, a reliable placement of the crown shapes, captured by the 
optical scanner, is obtained with respect to the bone structure reconstructed from CBCT imaging. 
Secondly, accurate tooth root geometries are extracted with minimal human intervention. 

The methodology consists in the following steps: 

• 3D crown reconstruction by segmenting CBCT images through different threshold values; 
• alignment of the optically-scanned crown model (ground truth) to the segmented CBCT crown 

volumes by determining the optimal threshold value which minimizes the alignment discrepancies; 
• individual reconstruction of tooth roots guided by the crown shapes extracted in the 

segmentation step performed onto the surface mouth model; 
• fusion of optically-scanned crown and CBCT root into a unique shape. 

2.3.1. Spatial Referring Optically-Scanned Tooth Crowns into CBCT Data Sets 

The first step involves the reconstruction of crown shapes by segmenting a sequence of Digital 
Imaging and Communications in Medicine (DICOM) images (slices) obtained from a CBCT scan. 
Automatic image segmentation of each slice is performed by extracting iso-gray contour lines  
(Figure 8(a)). An iso-gray surface is then reconstructed from the volume data set (Figure 8(b)). 
Different models are obtained by varying the threshold gray value. In this paper; an optimal threshold 
value is determined by using the optically-scanned crown model as ground truth. In particular; the 
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2.3.2. Reconstruction of Tooth Roots and Multi-Body Modeling 

In this paper, an edge-based active contour model has been implemented through a level set 
formulation. The procedure consists in processing CBCT stack images to retrieve individual tooth 
contours slice by slice. A closed contour C is implicitly represented as the zero level set of a signed 
distance function φ, called Level Set Function (LSF), by C = {(x,y) | φ(x,y)=0}. The contour motion, 
defined as the evolution of the LSF, is given by the zero level set at the time t of the function φ(x,y,t). 
The basic idea is to allow the zero level set (contour) to deform accordingly to an evolution partial 
differential equation so as to minimize a given energy functional in order to achieve the target 
segmentation. The level set method presents properties which are suitable for tooth segmentation of 
DICOM images [12]. In particular, the implicit representation of the contour avoids the  
re-parameterization of the curve thus efficiently handling topological changes, such as splitting and 
merging, in a natural and efficient way (i.e., the tooth contour may split from the single crown into 
several roots). In the present paper, the Distance Regularized Level Set Evolution (DRLSE) method 
presented in [13] has been used. DLRSE is a generalized variational level set formulation with a 
distance regularization term and an external energy term that drives the motion of the zero level 
contour toward desired locations. Let I be an image on a 2D domain Ω, the level set evolution is 
derived as a gradient flow minimizing a certain energy functional, which is expressed as: 

 (5)

where μ > 0, λ > 0, α is a signed weight coefficient, δ is the Dirac function, and H is the Heaviside 
step function. The edge indicator function g is defined as: 

 (6)

where Gσ is a Gaussian kernel with a standard deviation σ. The convolution in Equation (6) is used to 
reduce the noise in the original image. Low values (close to 0) outline the object boundaries, while 
high values (close to 1) describe homogeneous background. The first term on the right end side of 
relation Equation (5) acts as the distance regularization term, which is defined with a double-well 
potential function p, and is used to penalize the deviation of φ from a signed distance during its 
deformation. The second term makes the contour smooth. The third term is introduced to speed up the 
motion of the zero level contour during the level set evolution process making the contour either shrink 
or expand depending on the sign of α. The initialization of the LSF is done by using a binary step 
function, which takes negative values inside the zero level contour and positive values outside. In this 
case, if the initial contour is placed outside the region to be segmented, the parameter α should be 
positive in order to make the contour shrink in the level set evolution. If the initial contour is placed 
inside the region, the parameter α should take negative values to expand the contour.  

A fast and accurate convergence of the zero level contour depends on both the involved parameters 
and the initialization of the closed contour C. In [13], a preliminary segmentation step based on a 
thresholding method is suggested in order to obtain a proper initial binary LSF. In [12], the 
segmentation of the DICOM images stack is performed by manually drawing the initial contour on a 
starting slice which is chosen in order to separate the tooth into the crown and root geometries. In this 

( )( ) ( ) ( )p dxdy g dxdy gH dxdyφ μ φ λ δ φ φ α φΩ Ω ΩΕ = ∇ + ∇ + −∫ ∫ ∫
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paper, the initialization of the LSF is obtained by exploiting the segmented shapes of optically-scanned 
crowns, which are spatially referred to the DICOM data sets. The initialization procedure allows the 
detection of a starting contour, which is close to the tooth region to be segmented. In particular, the 
procedure can be schematized as follows:  

• selection of the individual tooth to be segmented (Ti); 
• detection of the preliminary teeth crown region, R0, by searching the first slice of the whole 

stack which yields a closed intersection with the aligned optically-scanned tooth Ti (Figure 9); 
• definition of the initial contour (Cinit) for the level set method by applying a dilation on the 

detected region R0 using a disk shaped structuring element; 
• application of the DRLSE method to the first slice using Cinit to initialize the LSF; 
• use of the result at initial contour for the DRLSE method on the successive slice. 

The proposed methodology provides a straightforward LSF initialization, which is also close to the 
region to be segmented for each slice. Thus, a few iterations are needed to move the zero level contour 
from the initial estimate to the desired 2D shape boundary. The parameters of the DRLSE method are 
experimentally set in order to minimize the discrepancies between the optically-scanned and DICOM 
crown models. In particular, small positive values of the parameter α (from 0 to 1) are used since low 
shrinking forces have to be applied due to the outer proximity of the initial contour to the tooth shape. 

Figure 9. Initialization of the LSF for tooth 11 by using the optically scanned crown. 

 

Figure 10 show the initializations of the tooth contours applied to three different teeth numbered as 
tooth 11, 14 and 16 in accordance with the ISO 3950 notation [14]. Figure 10(a) presents the original 
images while Figure 10(b) illustrates the initial closed contours (blue loops) obtained by slicing the 
relative optically-scanned crown models aligned to the DICOM stack images. Figure 10(c) shows the 
dilated contours used as starting binary LSF.  

The convergence results of the DRLSE method applied to the same slices are illustrated in Figure 10(d). 
This procedure automatically restricts the regions of interest for the level set evolution, thus properly 
constraining the overall process and for the succeeding slices. 

Figures 11, 12 and 13 show the sequential contours obtained by processing the DICOM slices for 
tooth 11, 14 and 16, respectively. 
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Figure 10. Contour extractions of three teeth by processing the first slices: (a) original 
images; (b) contouring initializations; (c) initial definitions of contours for the level set 
method; (d) results of the DRLSE method. 

 (a) (b) (c) (d) 

tooth 11 

 

tooth 14 

 

tooth 16 

 

Figure 11. Results of the DRLSE method for tooth 11, obtained by processing some CBCT 
slice images. 
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Figure 12. Results of the DRLSE method for tooth 14, obtained by processing some CBCT 
slice images. 

 

Figure 14 illustrates the final three dimensional models obtained by the DRLSE method. The results 
evidence the entire individual tooth geometries including roots and crowns. Moreover, the procedure 
intrinsically provides CBCT reconstructions overlapped to the optically-scanned crowns, which can be 
used as reference models to assess the segmentation accuracy.  

The last step of the 3D modeling process consists in merging the shape reconstructions by keeping 
the optically-scanned crown geometries and the root CBCT models.  

Figure 13. Results of the DRLSE method for tooth 16, obtained by processing some CBCT 
slice images. 
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starting slice as well as the initial contour must be manually selected by the operator since the two 
impacted teeth are not yet erupted and consequently not visible in the optically-scanned model. 

Figure 16 shows the final multi-body orthodontic model including the maxilla, gingival tissue and 
individual teeth composed of both crown and root regions. The maxilla model has been additionally 
segmented by following the same approach used for the impacted teeth. Once the initial contour on the 
starting slice has been manually selected, the level set evolution is performed. For each slice, the areas 
outlined by the detected teeth contours are then subtracted by the area outlined by the extracted  
bone contour.  

Tooth shapes are then excluded from the alveolar bone model and can be replaced by the separated 
segmented tooth models. Therefore each tooth can be independently manipulated within the orthodontic 
model, thus providing an effective tool for orthodontic simulations and treatment planning processes. 

Figure 15. Three slices from the CBCT data set corresponding to the upper jaw. 

 

Figure 16. 3D views of the multi-body orthodontic model including maxilla, gingival 
tissue and individual teeth (crowns + roots). 

 

4. Conclusions 

In this paper, a computer-based methodology to digitally reconstruct full multi-body dentitions 
referred to both gingiva and alveolar bone has been developed. The methodology is based on 
integrating two imaging sensors, i.e., a structured light scanner and a CBCT device. The optical 
scanner is used to model tooth crowns and relative gingiva (optically visible surfaces). Moreover, the 
optically-scanned crown models represent the references for automatic reconstructions of full teeth 
(including roots) and alveolar bone, through a guided-based processing of CBCT images. The overall 
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methodology intrinsically provides an accurate spatial reference of the optically-scanned dental 
surfaces within the CBCT volumes. The final model consists of the multi-body data sets, which 
includes the most accurate model for each tissue: i.e., tooth crowns and gingiva by optical scanning 
and tooth roots and bone by CBCT imaging.  

The proposed approach exploits the guidance of crown tooth shapes obtained by optically scanning 
patient mouth impressions and plaster casts to robustly perform the complete segmentation of dentition 
structures from CBCT image sequences. The user does not need to provide anatomical information 
since the rough initial tooth contour on the first CBCT slice is automatically specified by the aligned 
optically-scanned tooth models. Therefore, the fusion of 3D orthodontic data is carried out by limiting 
the requirement of expert human supervision still assuring accurate and consistent identification of the 
target anatomic structures. 

The presented methodology allows the removal of artifacts generated in the reconstruction of tooth 
shapes owing to the presence of metallic restorations. When metallic dental fillings or orthodontic 
devices are present, the quality of tomographic scans is greatly reduced (as shown by examples  
tooth 11 and 16 of Figure 10(a)), providing poor reconstructions of 3D shapes in the surroundings of 
restorations. Crowns surface models obtained by optically scanning impressions and plaster casts are 
used to remove the corrupted information from DICOM data sets. Moreover, accuracy and resolution 
of the optical scanner as compared to a CBCT scanning allows optimal reconstructions of both tooth 
crown surfaces and oral soft tissues making feasible the design and production of tight-fitting 
removable appliances to be used for orthodontic treatments. 
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